Inductive Definitions
The function

$$
r: \mathbb{N} \rightarrow \mathbb{A}
$$

inductively defined from

$$
\begin{aligned}
& a \in A \\
& f: \mathbb{N} \times A \rightarrow A
\end{aligned}
$$

is The unique such that

$$
\left\{\begin{array}{l}
r(0)=a \\
r(n+1)=f(n, r(n)) \quad n \in \mathbb{N}
\end{array}\right.
$$

Let A be a set. For $a \in A$ and a function $f: \mathbb{N} \times A \rightarrow A$,
Define

$$
\zeta=\operatorname{def}\{R \subseteq N \times A \mid R \text { is }(a, f) \text {-closed }\}
$$

Def: R is (a, f)-closed if $O R a$
and

$$
\forall n \in \mathbb{N}, \forall a \in A, n R a \Rightarrow(n+1) R f(n, a)
$$

Theorem
(1) The relation

$$
r=\operatorname{def} \cap E: \mathbb{N} \rightarrow A
$$

is functional and total
(2) The function $r: \mathbb{N} \rightarrow A$ is The unique such that

$$
r(0)=a
$$

and

$$
r(n+1)=f(n, r(n)) \text { for } a U_{n \in \mathbb{N}} \text {. }
$$

Lemma: r is (a, f)-closed.
Corollary: r is total.

$$
\forall n \in \mathbb{N} . \exists x \in A . n r x \text {. }
$$

Proof: Bymduction.
Basicase $(n=0)$. RIP: $\exists x \in A$. or x
Indeed ora
Induchre step for $n \in N$.
(It) $\exists x \in A, n r x$
RIP: $\exists y \in A \cdot(n+1) r y$

Thee of $n r x$ then $(n+1) r f(n, x)$
since r in (a, f)-Closed.
Proposition r is functional
There is only one pair (n, x) in r for all n.
PRoof: By induction.
Base case $(n=0)$. We Know $(n, e) \in r$
Consider $r^{\prime} \subseteq \mathbb{N} \times A$ defined as.
Def: $\quad(0, a) \in r^{\prime}$

$$
(n, x) \in r^{\prime} \quad \forall n \geqslant 1, \forall x
$$

- $r \underline{r^{\prime}}$ which a (0,f)-closed
r^{\prime} is fuatisual at 0 and then go is r
Inductire step:
(IH) suppose that r is fugtinal at n
Congider $r^{\prime} \subseteq \mathbb{N} \times A$ defined as
Def

$$
\begin{array}{cc}
i r^{\prime} x \Leftrightarrow i r x & \forall 0 \leq i \leq n \\
(n+1) r^{\prime} f(n, y) & \forall n r y \\
j r y & \forall y
\end{array} \quad \forall j>n+1
$$

$r \leqslant r^{\prime} r^{\prime}$ is (a, f)-cloed and fuctional at $n+1$ becense by (IH) r in fuctiousl at n. There fire r is fuctiond at $n+1$

Theorem 126 The identity partial function is a function, and the composition of functions yields a function.

NB

1. $\mathrm{f}=\mathrm{g}: A \rightarrow B$ iff $\forall \mathrm{a} \in \mathcal{A} . \mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$.
2. For all sets A, the identity function $\operatorname{id}_{A}: A \rightarrow A$ is given by the rule

$$
\operatorname{id}_{A}(a)=a
$$

and, for all functions $f: A \rightarrow B$ and $g: B \rightarrow C$, the composition function $g \circ f: A \rightarrow C$ is given by the rule

$$
(g \circ f)(a)=g(f(a)) .
$$

Proposition 125 For all finite sets A and B,

$$
\#(A \Rightarrow B)=\# B^{\# A}
$$

Proof idea: $A=\left\{a_{1} \ldots a_{m}\right\} \quad B=\left\{b_{1} \ldots b_{n}\right\}$

b_{n}

$$
n \times n \times \ldots \times n=n^{m}
$$

$A \xrightarrow[b i \text { jective }]{f} B$
inver tible of rever gible functions.

Th def

$$
\begin{array}{ll}
\exists g: B \rightarrow A . & g \circ f=d_{A} \\
\wedge & \exists n: B \rightarrow A .
\end{array} f \circ h=X_{B} .
$$

NB: If f insijective and $g \circ f=x_{A}$ add foh $=x_{B}$ Thew $h=g$

$$
h_{h^{\text {doin }}}^{\text {gofoh "going }}
$$

NB: Inverses of bijections are unique
The inverse of is denoted f^{-1}.
Bijections
Definition 127 A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be bijective, or a bijection, whenever there exists a (necessarily unique) function $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ (referred to as the inverse of f) such that

1. g is a retraction (or left inverse) for f :

$$
\mathrm{g} \circ \mathrm{f}=\mathrm{id}_{\mathrm{A}}
$$

2. g is a section (or right inverse) for f :

$$
\mathrm{f} \circ \mathrm{~g}=\mathrm{id}_{\mathrm{B}} .
$$

Examples

$\mathbb{K}_{\underset{\text { pred }}{\text { Puce }}}^{<}$
Puce (n) $=n+1$
pred $(n)=n-1$

Non-ex ample

There is $k \in \mathbb{N}$, namely $k=0$, such that, for all $n \in N$, suce $(n) \neq k$.
 $f(a)=f(a!)$ for $a \neq a!$ is mot a bijection.

Proposition: A function $f: A \rightarrow B$ is a bijection ff, and only f,

$$
\forall b \in B . \exists!a \in A . f(a)=b .
$$

Proposition 129 For all finite sets A and B,

$$
\# \operatorname{Bij}(A, B)= \begin{cases}0 & , \text { if } \# A \neq \# B \\ n!, & \text { if } \# A=\# B=n\end{cases}
$$

Proof idea:

$$
\begin{aligned}
& \text { OF IDEA: } \\
& A=\left\{a_{1}, \ldots, a_{m}\right\} \quad B=\left\{b, \ldots b_{n}\right\}
\end{aligned}
$$

If $m<n$ then There is no bijection. If $n<m$ then there is no bigedion. If $n=m$ then: $a_{1} \mapsto b_{i_{1}}$
mchoices. m

$$
\begin{aligned}
& a_{2} \longmapsto b_{i_{2}} \quad(m-1) \text { choices }{ }_{x}^{x}(m-1) \\
& a_{3} \mapsto b_{i_{3}} \\
& a_{m} \stackrel{\rightharpoonup}{\rightarrow} b_{375} \mathrm{im}_{n} \\
& (m-2) \text { disice }{ }_{x}^{x}(m-2) \\
& 1 \text { choice } \times 1 \text { 回 }
\end{aligned}
$$

Theorem 130 The identity function is a bijection, and the composition of bijections yields a bijection.
$N B:\left(d_{A}\right)^{-1}=\operatorname{rd}_{A}$

For $f: A \rightarrow B$ and $g: B \rightarrow C$ bijections, g of: $A \rightarrow C$ bijection with morse

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}: C \rightarrow A .
$$

NB: $\left(B\right.$ if $\left.(A, A), i A_{A}, 0\right)$ is a group.

Definition 131 Two sets A and B are said to be isomorphic (and to have the same cardinatity) whenever there is a bijection between them; in which case we write

$$
A \cong B \quad \text { or } \quad \# A=\# B
$$

Examples:

1. $\{0,1\} \cong\{$ false, true $\}$.
2. $\mathbb{N} \cong \mathbb{N}^{+}, \quad \mathbb{N} \cong \mathbb{Z}, \quad \mathbb{N} \cong \mathbb{N} \times \mathbb{N}, \quad \mathbb{N} \cong \mathbb{Q}$.

Examples

$$
\mathbb{N} \cong \mathbb{N}^{+}
$$

$$
\mathbb{N} \cong \mathbb{Z}
$$

$$
\underset{\sim}{N_{g}^{f}} \underset{t}{f}
$$

