Partial functions

Definition 119 A relation $R: A \longrightarrow B$ is said to be functional, and called a partial function, whenever it is such that

$$
\forall a \in A . \forall b_{1}, b_{2} \in B . a R b_{1} \wedge a R b_{2} \Longrightarrow b_{1}=b_{2} .
$$

Def $R: A \nrightarrow B$
R is functional at $a \in A$
whenever a in rebated to at most one element of B

$$
\forall a_{1}, b_{2} \in B \quad a R b_{1} \wedge a R b_{2} \Rightarrow b_{1}=b_{2}
$$

NB: $S \subseteq R: A \nrightarrow B$
If R is functioned at a Then so is S.

Notation:
$f: A \rightharpoonup B \quad f$ is a partial function from A to B
Given $a \in A$, we have
either
(i) There is no $b \in B$ such that $a f b$
or
(ii) There is a unique $b \in B$ such that a $f b$

In case (i), we wite
$f(a) \uparrow \quad f$ is undefined ot a
In case (ii), we wite
$f(a) \downarrow \quad f$ is defined at a
Moreover,
$f(a)$ denote the unique element of B such $\overline{T h} a t(a, f(a))$ is in f.

Domain of definition
For $f: A \rightharpoonup B$,

$$
\begin{aligned}
& \frac{\operatorname{dsm}(f) \subseteq A}{\| \operatorname{dlf}} \\
& \{a \in A \mid f(a) \downarrow\}=\{a \in A \mid \exists b \in B . \\
& a f b\} .
\end{aligned}
$$

Example:
pred: $\mathbb{N} \rightarrow \mathbb{N}$
du f 11

$$
\begin{aligned}
& \{(n+1, n) \in \mathbb{N} \times \mathbb{N} \mid n \in \mathbb{N}\} \\
& \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \geqslant 1 \wedge x=y+1\}
\end{aligned}
$$

- pred $(0) \uparrow$
- pred $(m) \downarrow$ for m a positive integer ll $_{m-1}$ - dom (pred) is The set of positive integers

Defining partial functions

$$
f: A \rightharpoonup B
$$

mapping, assignment, definition, construction, etc.

Example:
pred: $\mathbb{N} \rightharpoonup \mathbb{N}$

as arelation:

$$
\text { pred }=\left\{(n, m) \in \mathbb{N} \times \mathbb{N} \mid m=\max _{k \in \mathbb{N}} k<n\right\}
$$

For all $n \in \mathbb{N}$ There is at most one element equal to $m a x_{k \in \mathbb{N}} k<n$. For $n=0$ There is no such element, for $n \geqslant 1$ That element is $n-1$.

Example: Quotient with remainder for integers

$$
\begin{aligned}
& q r: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{N} \\
& \underline{\operatorname{dom}(q r)}(\underline{q})\{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid m \neq 0\} \\
& \underline{q r}:(n, m) \mapsto(q, r) \in \mathbb{Z} \times \mathbb{N} \\
& \text { such That } n=q \cdot m+r \\
& \text { with } 0 \leq r<m
\end{aligned}
$$

Example: The following defines a partial function $\mathbb{Z} \times \mathbb{Z} \rightharpoonup \mathbb{Z} \times \mathbb{N}$:

- for $n \geq 0$ and $m>0$,

$$
(n, m) \mapsto(\operatorname{quo}(n, m), \operatorname{rem}(n, m))
$$

- for $n \geq 0$ and $m<0$,

$$
(\mathfrak{n}, \mathfrak{m}) \mapsto(-\operatorname{quo}(n,-m), \operatorname{rem}(n,-m))
$$

- for $\mathrm{n}<0$ and $\mathrm{m}>0$,

$$
(n, m) \mapsto(-\operatorname{quo}(-n, m)-1, \operatorname{rem}(m-\operatorname{rem}(-n, m), m))
$$

- for $\mathrm{n}<0$ and $\mathrm{m}<0$,

$$
(n, m) \mapsto(\operatorname{quo}(-n,-m)+1, \operatorname{rem}(-m-\operatorname{rem}(-n,-m),-m))
$$

Its domain of definition is $\{(\mathrm{n}, \mathrm{m}) \in \mathbb{Z} \times \mathbb{Z} \mid \mathfrak{m} \neq 0\}$.

Notation: $\quad\left\{\begin{array}{l}\text { The set of all relations from } \\ A \text { to } B\end{array}\right.$

$$
(A \Rightarrow B) \subseteq \operatorname{Rel}(A, B)=P(A \times B)
$$

The set of all partial functions from A to B

$$
f=g: A>B
$$

If
$\forall a \in A .(f(a) \downarrow \Leftrightarrow g(a) \downarrow)$

$$
\wedge[f(a) \downarrow \wedge g(a) \downarrow \Rightarrow f(a)=g(a)]
$$

Identities and Composition

- $r_{A} \in \operatorname{Rel}(A, A)$
is a partial function $A \rightharpoonup A$
- Let $f: A>B$ and $g: B \rightarrow C$.

Consider oof $\in \operatorname{Rel}(A, C)$
$\| d y$

$$
\begin{aligned}
&\{(a, c) \in A \times C \mid \exists b \in B \cdot a f b \\
&\wedge b g c\}
\end{aligned}
$$

Theorem 121 The identity relation is a partial function, and the composition of partial functions yields a partial function.

NB

$$
f=g: A \rightharpoonup B
$$

jiff

$$
\begin{gathered}
\forall a \in A \cdot(f(a) \downarrow \Longleftrightarrow g(a) \downarrow) \wedge f(a)=g(a) \\
f: A \rightarrow B, g: B \rightarrow C \sim g \circ f: A \rightharpoonup c \\
(g \circ f)(a)= \begin{cases}\uparrow & , \text { if } f(a) \uparrow \\
\uparrow & , \text { of } f(a) \downarrow \text { but } g(f(a)) \uparrow \\
g(f(a)) & , \text { if fa) } \downarrow \text { add } g(f(a)) \downarrow\end{cases}
\end{gathered}
$$

Proposition 122 For all finite sets A and B,

$$
\#(A \Rightarrow B)=(\# B+1)^{\# A}
$$

Proof idea: $A=\left\{a_{1}, \ldots, a_{m}\right\}$

Functions

$$
(A \Rightarrow B) \subseteq(A \Rightarrow B) \subseteq \operatorname{Rel}(A, B)
$$

T The set of all functions from A to B

Functions (or maps)
Definition 123 A partial function is said to be total, and referred to as a (total) function or map, whenever its domain of definition coincides with its source.

Theorem 124 For all $f \in \operatorname{Rel}(A, B)$,

$$
\begin{aligned}
f \in(A \Rightarrow B) \Longleftrightarrow & \forall a \in A . \exists!b \in B . a f b . \\
& -368-
\end{aligned}
$$

Example: Total predecessor function.
totpred: $\mathbb{N} \rightarrow \mathbb{N}^{\prime}$

$$
\begin{aligned}
& \text { Totpred: }: \mathbb{N} \rightarrow \mathbb{N} \\
& \text { totpred }(n)= \begin{cases}0 & \text { if } n=0 \\
n-1 & \text { if } n \geq 1\end{cases}
\end{aligned}
$$

Inductive Definitions
Example:
add: $\mathbb{N}^{2} \rightarrow \mathbb{N}$

$$
\left\{\begin{array}{l}
\text { add }: \mathbb{N} \rightarrow \mathbb{N} \\
\underline{\operatorname{add}}(m, 0)=\operatorname{def} m \\
\underline{\operatorname{add}}(m, n+1)=\operatorname{def} \operatorname{add}(m, n)+1
\end{array}\right.
$$

Example: $\quad t: \mathbb{N} \rightarrow \mathbb{N}$

$$
t(n)=\sum_{i=0}^{n} i
$$

$$
\left\{\begin{array}{l}
t(0)=0 \\
t(n+1)=a d d(n, t(n))
\end{array}\right.
$$

Inductive Definitions
The function

$$
r: \mathbb{N} \rightarrow \mathbb{A}
$$

inductively defined from

$$
\begin{aligned}
& a \in A \\
& f: \mathbb{N} \times A \rightarrow A
\end{aligned}
$$

is The unique such that

$$
\left\{\begin{array}{l}
r(0)=a \\
r(n+1)=f(n, r(n)) \quad n \in \mathbb{N}
\end{array}\right.
$$

NB:
for fired $m \in \mathbb{N}$.

$$
\begin{aligned}
& \operatorname{\partial d}_{m}: N \rightarrow N \\
& \left\{\begin{array}{l}
\operatorname{add}_{m}(0)=m \\
\operatorname{add} m(n+1)=\operatorname{ddd} m(n)+1
\end{array}\right. \\
& \text { add: } N \times \mathbb{N} \rightarrow \mathbb{N} \\
& \text { add }(m, n)=\text { add }_{m}(n)
\end{aligned}
$$

Let A be a set. For $a \in A$ and a function $f: \mathbb{N} \times A \rightarrow A$.
Define

$$
\zeta=\operatorname{def}\{R \subseteq N \times A \mid R \text { is }(a, f) \text {-closed }\}
$$

Def: R is (a, f)-closed if $O R a$
and

$$
\forall n \in \mathbb{N}, \forall a^{\prime} \in A, n R a^{\prime} \Rightarrow(n+1) R f\left(n, a^{\prime}\right)
$$

$$
\left\{\begin{array}{l}
r=\operatorname{def} \cap G_{2} \\
\left\{\begin{array}{l}
\text { the get of all }(2, f) \text {-clred } \\
\text { reletions. }
\end{array}\right.
\end{array}\right.
$$

inductrecty defined by (a, f) is the least (a, A)-clued relation.
Tham: r is total functiond relation.
$N \rightarrow A$
Fotel: $\forall n \in N . \exists a_{n} \in A . n r a_{n}$ fuctiod: $\forall n \in \mathbb{N}$. $n r x$ anry $\Rightarrow x=y . \quad \forall x, y \in A$.

Lemur: $\quad r=\cap \zeta$ is (a, f)-closed.

$$
\text { ir } x \Leftrightarrow \forall(a, f) \text {-clued } R . \quad i R_{x}
$$

ora?
$\forall(2, f)-\operatorname{closed} R$, OR a which is the case

$$
\overline{n r} x \stackrel{?}{\Rightarrow}(n+1) r f(n, x)
$$

$\forall(2, A-d x r d R$
\mathbb{N}
n_{n}
\forall (a, f) -dosed R. $(n+1) R f(n, x)$

Theorem
(1) The relation

$$
r=\operatorname{def} \cap E: \mathbb{N} \rightarrow A
$$

is functional and total
(2) The function $r: \mathbb{N} \rightarrow A$ is The unique such that

$$
r(0)=a
$$

and

$$
r(n+1)=f(n, r(n)) \text { for } a U_{n \in \mathbb{N}} \text {. }
$$

