Directed graphs
Definition 108 A directed graph (A, R) consists of a set A and a relation R on A (ie. a relation from A to A).

$\left(\operatorname{Re}\left((A), \underline{d}_{A}, 0\right)\right.$ is a monoid.
$R \in \operatorname{Rel}(A)$

$$
\begin{aligned}
& \underbrace{R}_{R^{0(1)}}, \underbrace{R \circ R}_{R^{0^{(2)}}}, \underbrace{R_{0} R_{0} R}_{R^{0(3)}}, \ldots, \underbrace{R_{0} \ldots \text { times }}_{R^{0(n)}}, \ldots \\
& x R^{0(2)} y \quad R^{o(n+1)}=R^{0(n)} \circ R \\
& \Leftrightarrow \exists_{z} \cdot x R_{t} \wedge z R_{y} \\
& =R_{O} R^{o(n)} \\
& x^{0 R^{0(3)} y} \\
& \Leftrightarrow \exists z . x R^{\circ(z)} z \wedge z R y \Leftrightarrow \exists z, y, x R u \wedge u R z a \neq R y .
\end{aligned}
$$

Corollary 110 For every set A, the structure

$$
\left(\operatorname{Rel}(A), \operatorname{id}_{A}, \circ\right)
$$

is a monoid.

Definition 111 For $R \in \operatorname{Rel}(A)$ and $n \in \mathbb{N}$, we let

$$
R^{\circ n}=\underbrace{R \circ \cdots \circ R}_{n \text { times }} \in \operatorname{Rel}(A)
$$

be defined as $\operatorname{id}_{\mathrm{A}}$ for $\mathrm{n}=0$, and as $\mathrm{R} \circ \mathrm{R}^{\circ m}$ for $\mathrm{n}=m+1$.

Paths
Proposition 113 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A, s R^{\circ n} t$ ff there exists a path of length n in R with source s and target t .
Proof: Paths
A path of length n from s to t is a sequence

$$
S=a_{0} R a_{1} R a_{2} \ldots R a_{n}=t
$$

NB: There is always a path of length 0 from a node to itself.

PROOF $S \mathbb{R}^{0(n)} t$
$\Leftrightarrow \exists$ path of length n from s to t.
By unduchon on $n \in \mathbb{N}$.
BABE CASE $\binom{n=0}{2}$:
$S R^{o(x)} t \stackrel{2}{\Leftrightarrow}$ 于 path of length 0 from to t

$$
s \stackrel{\rightharpoonup}{d} t \Longleftrightarrow s=t
$$

INDUCTIVE STEP
(It) $S R^{(n)}+\Leftrightarrow$ 马 path If length n frons tot.
RIP: $\cap S \mathbb{R}^{(n+1)} t$
$\Leftrightarrow \exists$ pah of length $n+1$ from s to t
$\left(\Leftrightarrow s R^{(n+1)} t \Leftrightarrow S R^{(n)} z \wedge z R t\right.$ for sine z
$B y(I N): \exists$ path of Length n from s to z, say

$$
S=a_{0} R a_{1} R \ldots R R_{n}=z
$$

So $s=a_{0} R Q_{1} R \ldots R_{n} R a_{n+1}=t$ in . pith of leigh not from s to t.
(\Leftrightarrow) RIP: I path of length $n+1$ from s to t

$$
\Rightarrow s R^{B(n+1)} t
$$

Assure $s=a_{0} R a_{1} R \ldots \quad R a_{n} R a_{n+1}=t$
Then $s=a_{0} R a, R \ldots R a_{n}$ is a path of length n n from s to a_{n}. So by $(I-I): S R^{o(n)}$ an. Moreover $a_{n} R t$. Therefor $s \underbrace{\left(R^{\circ(n)} \circ R\right)}_{R^{\circ(n+1)} \text { by def. }} t$.
$x R^{0 *} y \Leftrightarrow \exists n \notin \mathbb{N}, x R^{0(n)} y$
$\Leftrightarrow \exists n \in \mathbb{N}$. F path of length n fromxtoy
\Leftrightarrow g(finiti) path from x to y.
Definition 114 For $R \in \operatorname{Rel}(A)$, let

$$
R^{\circ *}=\bigcup\left\{R^{\circ n} \in \operatorname{Rel}(A) \mid n \in \mathbb{N}\right\}=\bigcup_{n \in \mathbb{N}} R^{\circ n}
$$

Corollary 115 Let (A, R) be a directed graph. For all $s, t \in A$, $s R^{\circ *} t$ iff there exists a path with source s and target t in R .

NB Suppose $A=[n]=\{0,1, \ldots, n-1\}$

$$
R^{0 *}=T d_{A} \cup R \cup R^{0(2)} \cup R^{0(3)} \cup \cdots \cup R^{0(n-1)}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
R \subseteq[n] \times[n] \sim R^{0 *}
\end{array}\right.} \\
& \operatorname{mat}(R)=M \text { adjecency matrix of } R \\
& R^{0 *}=d_{A} \cup R \cup R^{0(2)} \cup \cdots \cup R^{0(n-1)}
\end{aligned}
$$

$$
\begin{aligned}
& M^{\prime 2} \\
& M^{*}=I_{n}+M+M^{2}+\cdots+M^{n-1}
\end{aligned}
$$

$M_{0}=I_{n}$
$M_{1}=I_{n}+\left(M \cdot M_{0}\right)=I_{n}+M \cdot I_{n}=I_{n}+M$
$M_{2}=I_{n}+M \cdot M_{1}=I_{n}+M\left(I_{n}+M\right)=I_{n}+M \cdot I_{n}+M^{2}$

$$
=I_{n}+M+M^{2}
$$

The $(n \times n)$-matrix $M=\operatorname{mat}(R)$ of a finite directed graph $([n], R)$ for n a positive integer is called its adjacency matrix.

The adjacency matrix $\mathrm{M}^{*}=\operatorname{mat}\left(\mathrm{R}^{\circ *}\right)$ can be computed by matrix multiplication and addition as M_{n} where

$$
\left\{\begin{aligned}
M_{0} & =I_{n} \\
M_{k+1} & =I_{n}+\left(M \cdot M_{k}\right)
\end{aligned}\right.
$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

Preorders

Definition 116 A preorder $(\mathrm{P}, \sqsubseteq)$ consists of a set P and a relation
\sqsubseteq on P (i.e. $\sqsubseteq \in \mathcal{P}(\mathrm{P} \times \mathrm{P})$) satisfying the following two axioms.

- Reflexivity.

$$
\forall x \in \mathrm{P} . x \sqsubseteq x
$$

- Transitivity.

$$
\forall x, y, z \in P .(x \sqsubseteq y \wedge y \sqsubseteq z) \Longrightarrow x \sqsubseteq z
$$

$\frac{\text { Partial order: A preorder such That }}{(\text { antisymmetry })}$
(autisymmetty)

$$
x 5 y \wedge y 5 x \Rightarrow x=y
$$

Examples:

$$
\left[\begin{array}{l}
(\mathbb{R}, \leq) \text { and }(\mathbb{R}, \geq) . \\
(\mathcal{P}(\mathcal{A}), \subseteq) \text { and }(\mathcal{P}(A), \supseteq) .
\end{array}\right.
$$

- (\mathbb{Z}, \mid).
L note $\left.\left.n\right|_{-n^{2 n d}-n}\right|_{n}$ but $n \neq-n$ for $n \neq 0$

Theorem 118 For $R \subseteq A \times A$, let

$$
\mathcal{F}_{\mathrm{R}}=\{\mathrm{Q} \subseteq A \times A \mid \mathrm{R} \subseteq \mathrm{Q} \wedge \mathrm{Q} \text { is a preorder }\} .
$$

Then, (i) $\mathrm{R}^{\circ *} \in \mathcal{F}_{\mathrm{R}}$ and (ii) $\mathrm{R}^{\circ *} \subseteq \bigcap \mathcal{F}_{\mathrm{R}}$. Hence,, $\mathrm{R}^{\circ *}=\bigcap \mathcal{F}_{\mathrm{R}}$.
Proof:
Row* is the least preorder 0 that contains R

$$
R^{0 *} \in \mathcal{F}_{R} \Rightarrow \cap F_{R} \subseteq R^{0 *}
$$

(i) $R^{o \infty} \in F_{R}$
$\Leftrightarrow R \subseteq R^{0 *}$ and $R^{0 *}$ is a preorder. exercax.
(ii) $R^{0 *} \subseteq \cap F_{R}$

$$
\Leftrightarrow U_{n \in \mathbb{N}} R^{o(n)} \subseteq \cap F_{R}
$$

$\Leftrightarrow \not \forall n \in \mathbb{N} . \quad R^{o(n)} \subseteq \cap F_{R}$

$$
\left[\begin{array}{l}
\cup F \subseteq x \\
\because U 1 \\
\forall A \in F . \\
A \subseteq X
\end{array}\right.
$$

\Leftrightarrow FnEN. $\forall Q \in \mathcal{F} \cdot R^{o(a)} \subseteq Q$.
By noluction on $n \in \mathbb{N}$.

Base cose $(n=0) \quad$ rd $\subseteq Q$ becars $Q>$ reflearive.
Ind. Step.

