Directed graphs

Definition 108 A directed graph (A, R) consists of a set A and a relation R on A (i.e. a relation from A to A).

(Rel(A),
$$Id_A$$
, o) is a monord.

REPOL(A)

R, ROR, ROROR, ..., ROWOR

 $2^{o(1)}$ $R^{o(2)}$ $R^{o(3)}$ $R^{o(n)}$ times

 $R^{o(n)}$ $R^{o(n)}$

Corollary 110 For every set A, the structure

(
$$\operatorname{Rel}(A)$$
, id_A , \circ)

is a monoid.

Definition 111 For $R \in Rel(A)$ and $n \in \mathbb{N}$, we let

$$R^{\circ n} = \underbrace{R \circ \cdots \circ R}_{n \text{ times}} \in \operatorname{Rel}(A)$$

be defined as id_A for n = 0, and as $R \circ R^{\circ m}$ for n = m + 1.

Paths

Proposition 113 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A$, $s \in \mathbb{R}^n$ t iff there exists a path of length n in R with source s and target t.

Poths
A path of length n from stot
is a sequence PROOF: s=aoRa, Raz...Ran=t NB: There is always a path of Length O from a wode to itself.

PROOF SRO(n) t E) 3 path of length n from stot. By under other on nEW. BASE CASE (n=0): S Rolls) + (=) 7 poth of length o from s to t

INDUCTIVE STEP (IH) s R(n) + 20 7 poth of length in from stot. RTP:? SR(n+1) t

(=) J path of length not from stot

SR(non) t (=) SR(n) 2 12 Rt for some 2 By (IH): 3 path of Leigth in from s to 2, say S=ApRA1R...Ran=Z So s=aoRaiR...RanRann=t is a path of leigh not from s to t.

(=) RTP: 3 path of length not from s to t => s R ochurit t Assure s=aoRa, R... Ran Ran+=t Then S=20Ra, R... Ran is a path of length n from S to an. So by (IH): SRO(N) an. More over ankt. Therefore s(Rocmor)t. RO(n+1) by def.

2 RO* y (=) In tol. 2 Ro(n) y (=) In con. I path of length a front by (=) I (finite) path from 2 to y.

Definition 114 For $R \in Rel(A)$, let

$$R^{\circ*} = \bigcup \, \big\{\, R^{\circ n} \in \mathrm{Rel}(A) \mid n \in \mathbb{N} \,\big\} = \bigcup_{n \in \mathbb{N}} \, R^{\circ n}$$
 .

Corollary 115 Let (A, R) be a directed graph. For all $s, t \in A$, $s \in R^{\circ *}$ t iff there exists a path with source s and target t in R.

NB Suppose
$$A = [n] = \{0, 1, ..., n-1\}$$

 $R^{0*} = Td_A \cup R \cup R^{0(2)} \cup R^{0(3)} \cup ... \cup R^{0(n-1)}$

RC[n]×[n] ~ R°* mat(R)=M adjecency matrix of R RO# = THAURURO(2) U ... U RO(n-1) $mat(R^{0+2}) = maxt(R) + M + maxt(R^{02}) + ... + maxt(R^{0(n-1)})$ $= \lim_{N \to \infty} || M^{n-1}$ $= \lim_{N \to \infty} || M^{n-1}$ $= \lim_{N \to \infty} || M^{n-1}$ M* = In+ M+ M2 + --- + M4-1

$$M_0 = I_n$$
 $M_1 = I_n + (M \cdot M_0) = I_n + M \cdot I_n = I_n + M$
 $M_2 = I_n + M \cdot M_1 = I_n + M(I_n + M) = I_n + M \cdot I_n + M^2$
 $= I_n + M \cdot M_1 = I_n + M(I_n + M) = I_n + M \cdot M + M^2$

The $(n \times n)$ -matrix $M = mat(R)$ of a finite directed graph (n) , R

The $(n \times n)$ -matrix M = mat(R) of a finite directed graph ([n], R) for n a positive integer is called its *adjacency matrix*.

The adjacency matrix $M^* = mat(R^{\circ *})$ can be computed by matrix multiplication and addition as M_n where

$$\begin{cases} M_0 &= I_n \\ M_{k+1} &= I_n + (M \cdot M_k) \end{cases}$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

Preorders

Definition 116 A preorder (P, \sqsubseteq) consists of a set P and a relation \sqsubseteq on P (i.e. $\sqsubseteq \in \mathcal{P}(P \times P)$) satisfying the following two axioms.

► Reflexivity.

$$\forall x \in P. \ x \sqsubseteq x$$

► Transitivity.

$$\forall x, y, z \in P$$
. $(x \sqsubseteq y \land y \sqsubseteq z) \implies x \sqsubseteq z$

Partial order: A presider such That

(autisymmetry)

2 = y 1 y = 2 = y

Examples:

- $ightharpoonup (\mathbb{R}, \leq)$ and (\mathbb{R}, \geq) .
- \blacktriangleright $(\mathfrak{P}(A),\subseteq)$ and $(\mathfrak{P}(A),\supseteq)$.
- **▶** (ℤ, |).

L note n|-nond-n|n but n≠-n for n≠0

Theorem 118 For $R \subseteq A \times A$, let

$$\mathcal{F}_R = \{ Q \subseteq A \times A \mid R \subseteq Q \land Q \text{ is a preorder } \}$$
.

Then, (i)
$$R^{\circ *} \in \mathcal{F}_R$$
 and (ii) $R^{\circ *} \subseteq \bigcap \mathcal{F}_R$. Hence, $R^{\circ *} = \bigcap \mathcal{F}_R$.

Proof:

(i) ROP & FR Rox is a previder. exercise. REROX and (Ti) ROME OFR UFSX (=) Unem Ro(n) C () FR M. VACT. ACX Shen. Ro(n) c n FR Enew. Aletr. Rola EQ. By ndiction on nEW.

Base cose (n.20) rd cQ becoure Q = reflesive. Ind. Step. (IH) HACTR. RO(n) CQ Lemma.

R1-S1 HREFR. RO(MI) SQ. RIOR2 STOS2 Let QCFR. = Ro(n) o R C Q Q Q Hansithe

(IH) GOQEQ

by Washits

M