Relations

Definition $99 A$ (binary) relation R from a set A to a set B

$$
R: A \longrightarrow B \quad \text { or } \quad R \in \operatorname{Rel}(A, B)
$$

is

$$
R \subseteq A \times B \quad \text { or } \quad R \in \mathcal{P}(A \times B)
$$

Notation 100 One typically writes $a \operatorname{Rb}$ for $(a, b) \in R$.

Informal examples:

- Computation.
- Typing.
- Program equivalence.
- Networks.
- Databases.

Examples:

- Empty relation.

$$
\emptyset: A \longrightarrow B
$$

- Full relation.

$$
(A \times B): A \longrightarrow B
$$

$$
(a(A \times B) b \Longleftrightarrow \text { true })
$$

- Identity (or equality) relation.

$$
\operatorname{id}_{A}=\{(a, a) \mid a \in A\}: A \longrightarrow A \quad\left(a \operatorname{id}_{A} a^{\prime} \Longleftrightarrow a=a^{\prime}\right)
$$

- Integer square root.

$$
R_{2}=\left\{(m, n) \mid m=n^{2}\right\}: \mathbb{N} \longrightarrow \mathbb{Z}
$$

$$
\left(m R_{2} n \Longleftrightarrow m=n^{2}\right)
$$

Internal diagrams
Example:

$$
\begin{aligned}
& R=\{(0,0),(0,-1),(0,1),(1,2),(1,1),(2,1)\}: \mathbb{N} \rightarrow \mathbb{Z} \\
& S=\{(1,0),(1,2),(2,1),(2,3)\}: \mathbb{Z}+\mathbb{Z} \\
& \text { enc es }
\end{aligned}
$$

Relational extensionality

$$
R=S: A \longrightarrow B
$$

iff
$\forall a \in A . \forall b \in B . a R b \Longleftrightarrow a S b$

Relational composition

$\forall a \in A, c \in C$ of

$$
\begin{aligned}
& A, c \in C \quad \text { of } \\
& a\left(S_{O} R\right) c
\end{aligned} \Rightarrow b \in B \cdot a R b \wedge b S c
$$

Exouple
def
Sq: $R_{\geqslant 0} \rightarrow \mathbb{R}$
a Sq. $b \Leftrightarrow a=b^{2}$
Neg: $\mathbb{R} \rightarrow \mathbb{R}$
$x \operatorname{Neg} y \stackrel{\operatorname{def}}{\Leftrightarrow} y=-x$
Claim:

$$
N_{\text {ego }} S_{q}=S_{q}: \mathbb{R} \geqslant 0 \rightarrow \mathbb{R}
$$

RTP: $\forall s \in \mathbb{R}_{\geqslant 0}, t \in \mathbb{R}$.
of 还 $s\left(N\right.$ Neg。 $\left.S_{q}\right) t \Leftrightarrow s S_{q} t \Leftrightarrow s=t^{2}$
Tleveras
Fr $\in \mathbb{R} . s \operatorname{sg} r$ arNegt \Leftrightarrow FrGR. $s=r^{2} \wedge t=-r$

Theorem 102 Relational composition is associative and has the identity relation as neutral element.

- Associativity.

For all $\mathrm{R}: \mathrm{A} \mapsto \mathrm{B}, \mathrm{S}: \mathrm{B} \longrightarrow \mathrm{C}$, and $\mathrm{T}: \mathrm{C} \longrightarrow \mathrm{D}$,

$$
(T \circ S) \circ R \xlongequal{\prime} T \circ(S \circ R)
$$

- Neutral element.

For all $R: A \longrightarrow B$,

$$
R \circ \mathrm{id}_{A}=R=\operatorname{id}_{B} \circ R
$$

$$
\left(\tau_{0} S\right) \cdot R=\tau_{0}\left(\delta_{0} R\right): A \rightarrow D
$$

$\forall a \in A, d \in D$.

$$
\begin{aligned}
& \in A, d \in D \\
& a\left(\left(\tau_{0} S\right) \cdot R\right) d \stackrel{?}{\Leftrightarrow} a\left(\tau_{0}(\delta \sigma R)\right) d \\
& n_{0} \in C
\end{aligned}
$$

$\exists b \in B . a R b a b\left(\tau_{0} s\right) d \quad \exists c \in c \cdot a\left(\delta_{0} R\right) c \mathbb{A} \subset T d$ in
 π $\exists b \in B . \exists c \in C \cdot a R b \wedge b S c \wedge c T d$.

Relations and matrices

Definition 103

1. For positive integers m and n, an $(m \times n)$-matrix M over a Com M. semiring $(S, 0, \oplus, 1, \odot)$ is given by entries $M_{i, j} \in S$ for all

$$
\begin{aligned}
& 0 \leq i<m \text { and } 0 \leq \mathfrak{j}<\mathfrak{n} \text {. }
\end{aligned}
$$

Theorem 104 Matrix multiplication is associative and has the identity matrix as neutral element.

$$
\begin{aligned}
& M(m \times n) \text {-matrix } \\
& N(n \times l) \text { matric } \\
& N \cdot M(m \times l) \text {-matric } \left\lvert\, I_{i, j}= \begin{cases}1 & i=j) \text {-mathre } \\
0 & \text { otro }\end{cases} \right. \\
& (N \cdot M)_{i, j}=\sum_{\sum_{i, R}^{R}} N_{R, j} \\
& \text { itertd } \oplus \text { of } s
\end{aligned}
$$

Recall: $[k]=\{0,1,2, \ldots, k-1\} \quad R \in \mathbb{N}$
Relations from $[\mathrm{m}]$ to $[\mathrm{n}]$ and $(\mathrm{m} \times \mathrm{n})$-matrices over Boolean provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
Given

$$
R:[m] \rightarrow[n]
$$

Define
$\operatorname{mat}(R)(m \times n)$-matrix
$\left(\underset{i \in[m], j \in[n]}{\left(\frac{m a t}{}(R)\right)_{i, j}=}\left\{\begin{array}{l}\text { true } i R j \mid \odot=\pi \\ \text { false } i \text { tr }\end{array}\right.\right.$

$$
\begin{aligned}
& R:[3] \rightarrow[2] \\
& \underline{\operatorname{mot}(R)}=\left[\begin{array}{cc}
0 & \text { tive } \\
1 \\
2 & \text { Blse } \\
2 & \text { Ble } \\
\text { Ale } & \text { true } \\
\text { Alse }
\end{array}\right] \\
& R=\{(0,0),(1,1)\}
\end{aligned}
$$

Given $(m \times n)$-matrix M, define $r e l(M):[m]+i[m]$

$$
\forall i \in[m], j \in[n] \text {, }
$$

$$
\begin{aligned}
& {[m)_{1} j \in(n)} \\
& i(\operatorname{rel}(m)) j \Leftrightarrow\left(M_{i, j}=\text { true }\right)
\end{aligned}
$$

Preposition:

$$
\begin{aligned}
& \operatorname{rel}(\operatorname{mot}(R))=R \\
& \operatorname{mat}(\operatorname{rel}(M))=M
\end{aligned}
$$

Rroposition: $[m] \xrightarrow{R}[n],[n]^{S}+[l]$

$$
\begin{align*}
& \underset{(m \times n)-m a t r i x}{\operatorname{mat}(R)} \frac{\operatorname{mat}(S)}{(n \times l)-m a t r i x} \\
& \operatorname{mot}(S \circ R)=\operatorname{mat}(S) \cdot \operatorname{mat}(R) \tag{*}
\end{align*}
$$

Cordlary:

$$
\text { SoR }=\operatorname{rel}(\operatorname{mat}(S) \cdot \operatorname{mat}(R))
$$

$$
\begin{aligned}
& (\operatorname{mat}(S \circ R))_{i, j}=\text { true } \\
\Leftrightarrow & i(S \cdot R) j \\
\Leftrightarrow & \exists k \cdot i R k \wedge R S_{j} \\
& (\operatorname{mat}(S) \cdot \operatorname{mat}(R))_{i, j} \\
= & V_{k} \cdot \operatorname{mat}(R)_{i, R} \wedge \operatorname{mat}(S)_{R, j} \\
= & V_{k}(i, R) \in R \wedge(k, j) \in S
\end{aligned}
$$

Def $M, N(M \times n)$ matrices.

$$
(M+N)_{i, g}=M_{i, j} \oplus N_{i j}
$$

Prop: $R, S:[m] \rightarrow[n]$

$$
\left\{\begin{array}{l}
\frac{\operatorname{mat}(R u S)}{}=\operatorname{mat}(R)+\operatorname{mat}(S) \\
\operatorname{mat}(\phi)=0
\end{array}\right.
$$

