BIG UNIONS and INTERSECTIONS

Sets and logic

$\mathcal{P}(\mathbf{U})$	$ig\{ ext{false} , ext{true} ig\}$
Ø	false
u	true
U	
\cap	\wedge
$(\cdot)^{\mathrm{c}}$	$\neg(\cdot)$
U	于
	\forall
-305 $-$	

Eranple: Brg union

•
$$E = \frac{\text{def}}{\sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} \left\{ \sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \left\{ \sum_{j=1}^{n} \sum_{$$

• UE is the union of the sets in E $n \in UE \iff \exists T \in E. n \in T$ $UE = \{0, 1, 2\}$

Big unions

Definition 90 Let U be a set. For a collection of sets $\mathfrak{F} \in \mathfrak{P}(\mathfrak{P}(U))$, we let the big union (relative to U) be defined as

$$\bigcup \mathcal{F} = \left\{ x \in U \mid \exists A \in \mathcal{F}. x \in A \right\} \in \mathcal{P}(U) .$$

Examples:

•
$$U(P(u)) = \{z \in U \mid \exists S \in P(u). x \in S\}$$

= $\{z \in U \mid true \} = U$

• $U\emptyset = \{x \in U \mid \exists s \in \emptyset, x \in S\}$ = $\{x \in U \mid \beta u \in \} = \emptyset$

ASSOCIATIVITY (idea / ontrition)

$$F = \{ -..., B, B', \}$$

$$F = \{ -..., A, A', \}$$

Proposition 91 For all $\mathfrak{F} \in \mathfrak{P}(\mathfrak{P}(\mathfrak{P}(U)))$,

$$\bigcup \left(\bigcup \mathcal{F} \right) = \bigcup \left\{ \bigcup \mathcal{A} \in \mathcal{P}(u) \mid \mathcal{A} \in \mathcal{F} \right\} \in \mathcal{P}(u) .$$

PROOF:

NB(1): pattern-matching notation for
$$\{X \in P(u) \mid \exists A \in F. X = UA \}$$

$$NB(2)$$
: (Type-checking) as $F \in P(P(P(u)))$ we have $U \notin P(P(u))$ and then $U(UF) \in P(u)$

U(UF)=U { UACP(U) | AEF } YREN. XEU(UF) (ZEU { UBCP(U) | ACF }. XEU(UF) () ES EUF. XES () ES. SEUF A YES

⇒ JS. JAEF. SEANTES

• $\chi \in U \{ U \in P(u) \mid A \in F \}$ (=) $\exists A \in F. \chi \in U \in A.$ (=) $\exists A \in F. \exists S \in A. \chi \in S.$

PROOF: For x & U, we show: xeU(UF) => xeU(XeJ(u) | 3 def. X=Ud) On The one hand, xeU(UF) => JSEUF. xeS => 3 A EF. JSEA, XES On The other hand, x & U { X & P(u) |] & & & F. X= U & } (=> 3 XEP(U). 3 AeF. X=U dan 2 EX (=) Fact. xeUd ES FACF. FSEA. XES.

Example: Big intersection

•
$$S = \frac{\text{def}}{S} \left\{ S \subseteq [5] \mid \text{ the sum of the elements} \right\}$$

= $\left\{ 2,43,50,2,43,51,2,33 \right\}$

• ∩S is the intersection of the sets in S n∈∩S (=) ∀ S∈S.n∈S

$$NS = \{2\}$$

Big intersections

Definition 92 Let U be a set. For a collection of sets $\mathfrak{F} \subseteq \mathfrak{P}(U)$, we let the big intersection (relative to U) be defined as

$$\bigcap \mathcal{F} = \left\{ x \in U \mid \forall A \in \mathcal{F}. x \in A \right\} .$$

Examples:

•
$$(P(u)) = \{x \in u \mid \forall S \in P(u), x \in S \}$$

= $\{x \in u \mid \forall s \in \mathcal{F}(u), x \in \mathcal{F}\}$

Theorem 93 Let

$$\mathcal{F} = \left\{ S \subseteq \mathbb{R} \mid (0 \in S) \land (\forall x \in \mathbb{R}. x \in S \implies (x+1) \in S) \right\}.$$

Then, (i) $\mathbb{N} \in \mathcal{F}$ and (ii) $\mathbb{N} \subseteq \bigcap \mathcal{F}$. Hence, $\bigcap \mathcal{F} = \mathbb{N}$.

PROOF:

We show NGF, which is the cox.

We show Hnew. P(n) nhere pon=of & SEF. nES. By nduction: Broken=0: \fSEF.0ES. holds by definition of F. INDUCTIVE STEP. Let nEN. ¥SeJ.neS (IH) YSEF. (nH)ES

Let $S \in \mathcal{F} := \mathcal{O}(\mathcal{A} \times \mathcal{ER} \cdot \times \mathcal{ES} = (2+1) \in S)$ Then by $(\mathcal{I}_{H})^{\odot} \in \mathcal{S}$ 2d so, by O ad O, $(n+1) \in \mathcal{S}$.

Proposition: Let U be a set and let FCP(U) be 2 collection of subsets of U. (1) For all SEP(u), JUF [YAEF.ACS] and [YXEP(u). (YAEF.AGX) >SCX] (2) For all TEP(u), TI TENF and [YAEF. TCA]
[YYEP(W). (YAEF. YCA) => Y CT]

Union axiom

Every collection of sets has a union.

$$\bigcup \mathcal{F}$$

$$x \in \bigcup \mathcal{F} \iff \exists X \in \mathcal{F}. x \in X$$

For $non-empty \mathcal{F}$ we also have

$$\bigcap \mathcal{F}$$

defined by

$$\forall x. \ x \in \bigcap \mathcal{F} \iff (\forall X \in \mathcal{F}. x \in X)$$
.

$$\{11\} \times A = \{(1,a) \mid a \in A\}$$

 $\{27 \times B = \{(2b) \mid b \in B\}$
 $\{27 \times B = \{(2b) \mid b \in B\}$

Disjoint unions

Definition 94 The disjoint union $A \uplus B$ of two sets A and B is the set

$$A \uplus B = (\{1\} \times A) \cup (\{2\} \times B) .$$

Thus,

$$\forall x. x \in (A \uplus B) \iff (\exists a \in A. x = (1, a)) \lor (\exists b \in B. x = (2, b)).$$

Proposition 96 For all finite sets A and B,

$$A \cap B = \emptyset \implies \#(A \cup B) = \#A + \#B$$
.

PROOF IDEA:

Corollary 97 For all finite sets A and B,

$$\# (A \uplus B) = \#A + \#B$$
.

-328 -

Relations

Definition 99 A (binary) relation R from a set A to a set B

$$R: A \longrightarrow B$$
 or $R \in Rel(A, B)$,

is

$$R \subseteq A \times B$$
 or $R \in \mathcal{P}(A \times B)$.

Notation 100 One typically writes a R b for $(a, b) \in R$.

Informal examples:

- ► Computation.
- ► Typing.
- ► Program equivalence.
- ► Networks.
- ► Databases.

PROGRAM SEMANTICS

Sq: R70 +> R given by all pairs (x,y) such that $x=y^2$ In particular, 1 89 1 1 Sq -1

P: 2 Ł.g. (fnx-jx, bool-) bool) (fnx-)x, net-)net) are in the Typing relation (fn2-12, bool-nat) is mt.

TYPING

NETWORKS

N - wdes

C - connections

 $C: \mathcal{N} \longrightarrow \mathcal{N}$

DATABASES

A relation R on sets A1, A2, ---, An is defined as a subset $R \subseteq A_1 \times A_2 \times --- \times An$

E.g. R C Movies x Drectors x Years x Rerson Consisting of all quadruples (m,d,y,p) such that movie m was directed by director of in year y with person pa cost member

Examples:

▶ Empty relation.

$$\emptyset: A \longrightarrow B$$

 $(a \emptyset b \iff false)$

▶ Full relation.

$$(A \times B) : A \longrightarrow B$$

 $(a (A \times B) b \iff true)$

► Identity (or equality) relation.

$$id_A = \{ (a, a) \mid a \in A \} : A \longrightarrow A$$

 $(a id_A a' \iff a = a')$

► Integer square root.

$$R_2 = \{ (m,n) \mid m = n^2 \} : \mathbb{N} \longrightarrow \mathbb{Z}$$

$$(m R_2 n \iff m = n^2)$$