$$
B I G
$$

UNIONS and INTERSECTIONS

## Sets and logic

| $\mathcal{P}(\mathrm{U})$ | $\{$ false, true $\}$ |
| :---: | :---: |
| $\emptyset$ | false |
| U | true |
| $\cup$ | $\vee$ |
| $\cap$ | $\wedge$ |
| $(\cdot)^{c}$ | $\neg(\cdot)$ |
| $\bigcup$ | $\exists$ |
| $\bigcap$ | $\forall$ |

Example: Big union

- $G=\operatorname{def}\left\{T \subseteq[5] \left\lvert\, \begin{array}{l}\text { the sum of the elements } \\ \text { of } T \text { is less than or equal } 2\end{array}\right.\right\}$

$$
=\{\phi,\{0\},\{1\},\{0,1\},\{0,2\}\}
$$

- $\cup Z$ is the union of the sets in 6

$$
\begin{aligned}
& n \in U Z \Leftrightarrow \exists T \in Z, n \in T \\
& \cup Z=\{0,1,2\}
\end{aligned}
$$

## Big unions

Definition 90 Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathrm{U}))$, we let the big union (relative to U) be defined as

$$
\bigcup \mathcal{F}=\{x \in U \mid \exists A \in \mathcal{F} . x \in A\} \in \mathcal{P}(U) .
$$

Examples:

- U

$$
\begin{aligned}
U(P(U)) & =\{x \in U \mid \exists S \in P(U) \cdot x \in S\} \\
& =\{x \in U \mid \text { true }\}=U
\end{aligned}
$$

- U

$$
\begin{aligned}
\phi & =\{x \in U \mid \exists S \in \phi, x \in S\} \\
& =\{x \in U \mid \text { pulse }\}=\varnothing
\end{aligned}
$$

Associativizy
(idec/intuition)

$$
F \subseteq P(P(U))
$$

$$
\begin{gathered}
\{\ldots, B, B, \ldots\} \\
\mathcal{F}=\left\{\begin{array}{l}
11 \\
\cdots, B, \ldots\} \\
\\
\left\{\ldots, A, A^{\prime}, \ldots\right\}
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \cup \mathcal{F}=\ldots \cup A \cup B \cup \ldots \\
&=\left\{\ldots, \ldots A^{\prime}, \ldots, \ldots B, B^{\prime}, \ldots, \ldots\right\} \\
& \cup(\cup F)=\left(\ldots \ldots \cup A \cup A^{\prime} \cup \ldots \ldots B^{\prime} \cup B^{\prime} \cup \ldots \ldots\right) \\
& \cup\{\ldots, \cup A, \cup B, \ldots\} \\
&=\ldots \cup\left(\ldots \cup A \cup A^{\prime} \cup \ldots\right) \cup\left(\ldots \cup B \cup B^{\prime} \cup \ldots\right) \cup \ldots
\end{aligned}
$$

Proposition 91 For all $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathrm{U})))$,

$$
\cup(\cup \mathcal{F})=\bigcup\{\bigcup \mathcal{A} \in \mathcal{P}(\mathrm{U}) \mid \mathcal{A} \in \mathcal{F}\} \in \mathcal{P}(\mathrm{U}) .
$$

Proof:
NB (1): pattern-matiching natation for

$$
\{x \in P(u) \mid \exists A \in F . x=U A A\}
$$

$N B(2):($ Type-checking ) as $F \in P(P(P(u)))$ we have $\cup F \in P(P(u))$ and then

$$
U(U F) \in P(U)_{-317-}
$$

$$
\begin{aligned}
& U(U F)^{R T D}= U\{U A \in P(U) \mid A \in F\} \\
& \forall x \in U . \\
& x \in U(U F) \Leftrightarrow x \in U\{U A \in P(U) \mid A \in F\} . \\
& \cdot x \in U(U F) \Leftrightarrow \exists S \in U F \cdot x \in S \\
& \Leftrightarrow \exists S \cdot S \in U F A x \in S \\
& \Leftrightarrow \exists S . \exists A \in F . S \in A A x \in S \\
& \bullet x \in U\{U A \in P(U) \mid A \in F\} \\
& \Leftrightarrow \exists A \in F . x \in U A \\
& \Leftrightarrow \exists A \in F . \exists S \in A . x \in S .
\end{aligned}
$$

PROOF: For $x \in U$, we show:

$$
x \in U(U F) \Leftrightarrow x \in U\left\{X \in P(u) \mid \exists A \in F \cdot X=U_{d} d\right\}
$$

On the one hind,

$$
\begin{aligned}
x \in U(U F) & \Leftrightarrow \exists S \in U F, x \in S \\
& \Leftrightarrow \exists A \in F \cdot \exists S \in \mathbb{A}, x \in S
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& x \in U\{x \in P(u) \mid \exists \mathscr{A} \in F, x=U \mathscr{A}\} \\
& \Leftrightarrow \exists X \in P(u) \cdot \exists \mathbb{A} \mathcal{F} \cdot X=U A_{\sim} x \in X \\
& \Leftrightarrow \exists \otimes \in F, x \in \cup \otimes \\
& \Leftrightarrow \exists A \in F \cdot \exists s \in A, x \in S
\end{aligned}
$$

Example: Big intersection

- $S=$ of $\left\{S \subseteq[5] \left\lvert\, \begin{array}{l}\text { the sum of the elements } \\ \text { of } S \text { equids } 6\end{array}\right.\right\}$

$$
=\{\{2,4\},\{0,2,4\},\{1,2,3\}\}
$$

- $\cap S$ is the intersection of the sets in $S$

$$
\begin{aligned}
& n \in \cap S \Leftrightarrow \forall S \in S \cdot n \in S \\
& \cap S=\{2\}
\end{aligned}
$$

## Big intersections

Definition 92 Let U be a set. For a collection of sets $\mathcal{F} \subseteq \mathcal{P}(\mathrm{U})$, we let the big intersection (relative to U) be defined as

$$
\cap \mathcal{F}=\{x \in U \mid \forall A \in \mathcal{F} . x \in A\} .
$$

Examples:

$$
\text { - } \begin{aligned}
\cap(P(u)) & =\{x \in u \mid \forall s \in P(u) x \in s\} \\
& =\{x \in u \mid \text { false }\}=\varnothing
\end{aligned}
$$

$$
\text { - } \begin{aligned}
\cap \phi & =\{x \in U \mid \forall S \in \phi \cdot x \in S\} \\
& =\{x \in U \mid \text { true }\}=u .
\end{aligned}
$$

Theorem 93 Let

$$
\mathcal{F}=\{S \subseteq \mathbb{R} \mid(0 \in S) \wedge(\forall x \in \mathbb{R} \cdot x \in S \Longrightarrow(x+1) \in S)\}
$$

Then, (i) $\mathbb{N} \in \mathcal{F}$ and (ii) $\mathbb{N} \subseteq \cap \mathcal{F}$. Hence, $\cap \mathcal{F}=\mathbb{N}$.
Proof:
RIP: $\cap F=N \Leftrightarrow(\cap F \subseteq \mathbb{N} \wedge N \subseteq \cap F)$.
(i) RTP: $\cap \mathcal{F} \subseteq \mathbb{N}$.

We show $N \in F$, which is the case.
(ii) RTP: $\mathbb{N} \subseteq \bigcirc F$
$\Leftrightarrow \forall n \in \mathbb{N} . n \in \cap F \Leftrightarrow \forall n \in \mathbb{N} . \forall s \in F$.

$$
-321-\quad n \in S
$$

We show $\forall n \in \mathbb{N}, P(n)$
where $P(n)=$ dof $\forall S \in F, n \in S$.
By uduction:
BreCOS $n=0: \forall S \in F, 0 \in S$. holds by definition of $F$.
INDUCTVE STEP. Let $n \in \mathbb{N}$.
(IH) $\quad \forall s \in F . n \in S$
RTP $\quad \forall s \in F \cdot(n+1) \in S$

Let $S \in F \Rightarrow(\forall x \in \mathbb{R}, x \in S \Rightarrow(x+1) \in S)$
Then by $( \pm 4)^{(2)} n \in S$
ad so, y 0 ad (2), $(n+1) \in S$.

Proposition: Let $u$ be a set and let $F \subseteq P(u)$ be a collection of subsets of $u$.
(1) For all $S \in P(u)$,

$$
\begin{aligned}
& \text { if } S=U F \\
& \quad[\forall A \in F \cdot A \subseteq S] \\
& \text { and }[\forall x \in P(u) \cdot(\forall A \in F \cdot A \subseteq X) \Rightarrow S \subseteq X]
\end{aligned}
$$

(2) For all $\tau \in P(u)$,

$$
\text { if } T=\cap F
$$

$[\forall A \in F, T \subseteq A]$

$$
[\forall Y \in P(u) \cdot(\forall A \in F, Y \subseteq A) \Rightarrow Y \subseteq T]
$$

## Union axiom

Every collection of sets has a union.

$$
\begin{gathered}
\bigcup \mathcal{F} \\
x \in \bigcup \mathcal{F} \Longleftrightarrow \exists X \in \mathcal{F} . x \in X
\end{gathered}
$$

For non-empty $\mathcal{F}$ we also have

$$
\bigcap \mathcal{F}
$$

defined by

$$
\forall x . x \in \bigcap \mathcal{F} \Longleftrightarrow(\forall X \in \mathcal{F} . x \in X)
$$

$$
\begin{gathered}
\{1\} \times A=\{(1, a) \mid a \in A\} \\
\{2\} \times B=\{(2, b) \mid b \in B\} \quad(\{12 \times A) \cap(\{22 \times B)=\varnothing \\
\text { Disjoint unions }
\end{gathered}
$$

Definition 94 The disjoint union $A \uplus B$ of two sets $A$ and $B$ is the set

$$
A \uplus B=(\{1\} \times A) \cup(\{2\} \times B) .
$$

Thus,
$\forall x \cdot x \in(A \uplus B) \Longleftrightarrow(\exists a \in A \cdot x=(1, a)) \vee(\exists b \in B \cdot x=(2, b))$.

Proposition 96 For all finite sets A and B ,

$$
A \cap B=\emptyset \Longrightarrow \#(A \cup B)=\# A+\# B .
$$

Proof idea:


Corollary 97 For all finite sets $A$ and $B$,

$$
\begin{gathered}
\#(A \uplus B)=\# A+\# B . \\
-328-
\end{gathered}
$$

## Relations

Definition $99 A$ (binary) relation $R$ from a set $A$ to a set $B$

$$
R: A \longrightarrow B \quad \text { or } \quad R \in \operatorname{Rel}(A, B)
$$

is

$$
R \subseteq A \times B \quad \text { or } \quad R \in \mathcal{P}(A \times B)
$$

Notation 100 One typically writes $a \operatorname{Rb}$ for $(a, b) \in R$.

## Informal examples:

- Computation.
- Typing.
- Program equivalence.
- Networks.
- Databases.

PROGRAM SEMANTICS
Sq: $\mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}$
given by all pairs
$(x, y)$ such that $x=y^{2}$
In particular, 1 sq 1
1 sq -1

TYPING
$P: \alpha$
Egg.

$$
\begin{aligned}
& (f \underline{n} x \rightarrow x, \text { boot } \rightarrow \text { bol }) \\
& \left(f_{n} x \rightarrow x, \text { not } \rightarrow \text { not }\right)
\end{aligned}
$$

are in the Typing relation
$\left(f_{n} x \rightarrow x\right.$, fol $\rightarrow$ nat $)$
is not.

NETWORKS
$N$ - nodes
$C$ - connections

$$
C: N \rightarrow N
$$

DATABASES
A relation $R$ on sets $A_{1}, A_{2}, \ldots, A_{n}$ is defined as a subset

$$
R \subseteq A_{1} \times A_{2} \times \cdots \times A_{n}
$$

E.g. $R \subseteq$ Movies $\times$ Rectors $\times$ Years $\times$ Rerson Consisting of all quadruples $(m, d, y, p)$ such That movie $m$ was directed by director a in year $y$ with person $p$ a cost member.

## Examples:

- Empty relation.

$$
\emptyset: A \longrightarrow B
$$

- Full relation.

$$
(A \times B): A \longrightarrow B
$$

$$
(a(A \times B) b \Longleftrightarrow \text { true })
$$

- Identity (or equality) relation.

$$
\operatorname{id}_{A}=\{(a, a) \mid a \in A\}: A \longrightarrow A \quad\left(a \operatorname{id}_{A} a^{\prime} \Longleftrightarrow a=a^{\prime}\right)
$$

- Integer square root.

$$
R_{2}=\left\{(m, n) \mid m=n^{2}\right\}: \mathbb{N} \longrightarrow \mathbb{Z}
$$

$$
\left(m R_{2} n \Longleftrightarrow m=n^{2}\right)
$$

