Venn diagrams ${ }^{\text {a }}$

${ }^{\text {a }}$ From http://en.wikipedia.org/wiki/Intersection_(set_theory).

Union

Intersection

Complement

The powerset Boolean algebra

$$
\left(\mathcal{P}(\mathrm{U}), \quad \emptyset, \mathrm{u}, \cup, \cap, \quad(\cdot)^{\mathrm{c}}\right)
$$

For all $A, B \in \mathcal{P}(\mathrm{U})$,

$$
\begin{aligned}
& A \square B=\{x \in U \mid x \in A \square x \in B\} \in \mathcal{P}(U) \\
& A \rightarrow B=\{x \in U \mid x \in A \boxtimes x \in B\} \in \mathcal{P}(U) \\
& \text { A }=\{x \in \mathrm{U} \text { 目 }(x \in A)\} \quad \in \mathcal{P}(\mathrm{U})
\end{aligned}
$$

- The union operation \cup and the intersection operation \cap are associative, commutative, and idempotent.

$$
\begin{array}{ll}
(A \cup B) \cup C=A \cup(B \cup C), & A \cup B=B \cup A, \\
A \cup A=A \\
(A \cap B) \cap C=A \cap(B \cap C), & A \cap B=B \cap A,
\end{array} \quad A \cap A=A
$$

- The empty set \emptyset is a neutral element for \cup and the universal set U is a neutral element for \cap.

$$
\emptyset \cup A=A=U \cap A
$$

- The empty set \emptyset is an annihilator for \cap and the universal set U is an annihilator for \cup.

$$
\begin{gathered}
\emptyset \cap A=\emptyset \\
u \cup A=u
\end{gathered}
$$

- With respect to each other, the union operation \cup and the intersection operation \cap are distributive and absorptive.

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C), \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

$$
A \cup(A \cap B)=A=A \cap(A \cup B)
$$

Prop. $A \cup(A \cap B)=A$
froof. $\forall x, x \in A \cup(A \cap B) \Leftrightarrow x \notin A$
Let x be ar kirary.
\Leftrightarrow Assume $x \in A \cup(A \cap B) \Leftrightarrow(x \in A \vee x \in A \cap B)$
RTP $x \in A$.
Cose $x \in A$, we are done.
Cose $x \in A \cap B \Leftrightarrow(x \in A \wedge x \in B) \Rightarrow x \in A$
\Leftrightarrow Assme $x \in A$.
R卫P $x \in A \cup(A \cap B)$. which in the care beconse $x \in A$.

- The complement operation $(\cdot)^{\mathrm{c}}$ satisfies complementation laws.

$$
A \cup A^{c}=U, \quad A \cap A^{c}=\emptyset
$$

Proposition 85 Let U be a set and let $A, B \in \mathcal{P}(U)$.

1. $\forall X \in \mathcal{P}(\mathrm{U}) . A \cup B \subseteq X \Longleftrightarrow(A \subseteq X \wedge B \subseteq X)$.
2. $\forall X \in \mathcal{P}(U) . X \subseteq A \cap B \Longleftrightarrow(X \subseteq A \wedge X \subseteq B)$.

Proof: Let $A, B, x \in P(U)$.
RIP: $A \cup B \subseteq X \Leftrightarrow(A \subseteq X$ a $B \subseteq X)$
\Leftrightarrow Assume $A \cup B \subseteq X$
RIP $A \subseteq x \wedge B S X$
$\Leftrightarrow \forall a \in A \cdot a \in X \wedge \forall b \in B \cdot b \in X$.
Assume $a \in A \Rightarrow L \subset A \cup B \Rightarrow L C X$
Ashe $b \in B \Rightarrow b \in A \cup B \Rightarrow b \in X$.
$\left(\Leftrightarrow\right.$ Assume ${ }^{(1)} A \leq X \quad d^{(2)} B \subseteq X$.
RIP $A \cup B \subseteq x$
Let $x \in A \cup B \Leftrightarrow(x \in A \vee x \in B)$.
Care $x \in A$: The by $(0, x \in X$.
Case $x \in B$: Then by (2), $x \in x$.

Corollary 86 Let U be a set and let $A, B, C \in \mathcal{P}(\mathrm{U})$.

1. $C=A \cup B$
jiff
C contain A ad B
and of is the smallest such.

$$
[\forall X \in \mathcal{P}(\mathrm{U}) .(A \subseteq X \wedge \mathrm{~B} \subseteq X) \Longrightarrow \mathrm{C} \subseteq X]
$$

2. $C=A \cap B$
jiff

$$
[C \subseteq A \wedge C \subseteq B]
$$

$$
[\forall X \in \mathcal{P}(U) .(X \subseteq A \wedge X \subseteq B) \Longrightarrow X \subseteq C]
$$

Sets and logic

$\mathcal{P}(\mathrm{U})$	$\{$ false, true $\}$
\emptyset	false
U	true
\cup	\vee
\cap	\wedge
$(\cdot)^{c}$	$\neg(\cdot)$

UNORDERED \& ORDERED Pairing

Pairing axiom

For every a and b, there is a set with a and b as its only elements.

$$
\{a, b\} \rightleftharpoons\{b, a\}
$$

defined by

$$
\begin{aligned}
& \forall x . x \in\{a, b\} \Longleftrightarrow(x=a \vee x=b) \\
& \forall x \cdot x \in\{b, a\} \Leftrightarrow(x=b \vee x=a))
\end{aligned}
$$

NB The set $\{a, a\}$ is abbreviated as $\{a\}$, and referred to as a singleton.

Examples:

- $\#\{\emptyset\}=1$
- $\#\{\{\emptyset\}\}=1$
- $\#\{\emptyset,\{\emptyset\}\}=2$

Proposition For all a, b, c, x, y,
(1) $\{x, y\} \subseteq\{a\} \Rightarrow(x=a \wedge y=a)$
(2) $\{c, x\}=\{c, y\} \Rightarrow x=y$.

Prof: (1) Assume $\{x, y \mid \leq\{a\}$
Then since $x \in\{x, y\} \Rightarrow x \in\{a\} \Rightarrow x=a$
Anologinsly for $y=a$.
(2) Assume $\{c, x\}=\{c, y\}$.

$$
\text { Then } \left.\begin{array}{l}
(x=c \vee x=y) \\
\wedge(y=c \vee y=x)
\end{array}\right] \stackrel{\text { exerax }}{\Longrightarrow} x=y
$$

Ordered Pairing
Notation:

$$
(a, b) \text { or }\langle a, b\rangle
$$

Fundamental property:

$$
(a, b)=(x, y) \Leftrightarrow(a=x \wedge b=y)
$$

Ordered pairing

For every pair a and b, the set

$$
\{\{a\},\{a, b\}\}
$$

is abbreviated as

$$
\langle a, b\rangle
$$

and referred to as an ordered pair.

Proposition 87 (Fundamental property of ordered pairing)
For all a, b, x, y,

$$
\langle a, b\rangle=\langle x, y\rangle \Longleftrightarrow(a=x \wedge b=y) \cdot d f
$$

Proof:
(\Leftarrow) Straight forward.

$$
\langle a, b\rangle=\{\{a\},\{a, b\}\}
$$

\Leftrightarrow Assume

$$
\{\{a\},\{a, b\}\}=\{\{x\},\{x, y\}\}
$$

RIP: $a=x$ a $b=y$
By assumption, $(\{a\}=\{x\} \vee\{a\}=\{x, y\})$

$$
\wedge(\{a, b\}=\{x\} \vee\{a, b\}=\{x, y\})
$$

$$
\begin{aligned}
& (\{x\}=\{a \mid \vee\{x \mid=\{a, b\}) \\
& (\{x, y|=| a\} \vee\{x, y\}=\{a, b\}) .
\end{aligned}
$$

Evorise: finish the argume t.

Products

The product $A \times B$ of two sets A and B is the set
where

$$
A \times B=\{x \mid \exists a \in A, b \in B . x=(a, b)\}
$$

$$
=\{(a, b) \mid a \in A \wedge b \in B\}
$$

$\forall a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$.

$$
\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) \Longleftrightarrow\left(a_{1}=a_{2} \wedge b_{1}=b_{2}\right)
$$

Thus,

$$
\forall x \in A \times B . \exists!a \in A . \exists!b \in B . x=(a, b)
$$

Pattern-Matching Notation
Example: The subset of ordered pars from a set A with equal components is formally

$$
\left\{x \in A \times A \mid \exists a_{1} \in A . \exists a_{2} \in A . x=\left(a_{1}, a_{2}\right) \wedge a_{1}=a_{2}\right\}
$$

but of ten abbreviated using pattern-matching notation as

$$
\left\{\left(a_{1}, a_{2}\right) \in A \times A \mid a_{1}=a_{2}\right\} .
$$

Notation: For a property $P(a, b)$ wiTh a ranging over a set A and b rangin over a set B,

$$
\{(a, b) \in A \times B \mid P(a, b)\}
$$

abbreviates

$$
\{x \in A \times B \mid \exists a \in A . \exists b \in B, x=(a, b) \wedge P(a, b)\} .
$$

Proposition 89 For all finite sets A and B,

$$
\#(A \times B)=\# A \cdot \# B .
$$

Proof idea:

$$
\left.\begin{array}{rl}
\operatorname{Soy} A= & \left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \text { and } B= \\
\# A= & \left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \\
\# B=n
\end{array}\right\} \begin{aligned}
A \times B=\{ & \left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right), \ldots, \\
& \left(a_{1}, b_{n}\right), \\
& ,\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots \\
& \left.\left(a_{m}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}
\end{aligned}
$$

An elemat of $A \times B$ is give by
an arbirerg elenent of A, for ch ch J hare m chotes, ad then an arbitrary elenat of B, for hich I hare n chrices

80, intotel
$m \times n$
chotes.

$$
B I G
$$

UNIONS and INTERSECTIONS

Sets and logic

$\mathcal{P}(\mathrm{U})$	$\{$ false, true $\}$
\emptyset	false
U	true
\cup	\vee
\cap	\wedge
$(\cdot)^{c}$	$\neg(\cdot)$
\bigcup	\exists
\bigcap	\forall

Example: Big union

- $G=\operatorname{def}\left\{T \subseteq[5] \left\lvert\, \begin{array}{l}\text { the sum of the elements } \\ \text { of } T \text { is less than or equal } 2\end{array}\right.\right\}$

$$
=\{\phi,\{0\},\{1\},\{0,1\},\{0,2\}\}
$$

- $\cup Z$ is the union of the sets in 6

$$
\begin{aligned}
& n \in U Z \Leftrightarrow \exists T \in Z, n \in T \\
& \cup Z=\{0,1,2\}
\end{aligned}
$$

Big unions

Definition 90 Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathrm{U}))$, we let the big union (relative to U) be defined as

$$
\bigcup \mathcal{F}=\{x \in U \mid \exists A \in \mathcal{F} . x \in A\} \in \mathcal{P}(U) .
$$

