

Objectives

To introduce the basics of the theory of sets and some of its uses.

Abstract sets

It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as

or even simply as

for other considerations.

Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be *naively* looking at ubiquituous structures that are available within it.

Set membership We write \in for the membership predicate; so that xeA stands for x is an element of A We further write $x \notin A$ for $\neg (x \in A)$ Example: 0 E { 0,1 }, 1 \$ { 0 }

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$\forall \text{ sets } A, B. \ A = B \iff (\ \forall x. x \in A \iff x \in B)$$

.

Example:

because
$$1 \notin \{0, 1\}$$
 and $1 \notin \{0, 1\}$

 $\{0\} \neq \{0, 1\} = \{1, 0\} \neq \{2\} = \{2, 2\}$

Proposition For
$$b \in \mathbb{R}$$
, let

$$A = \stackrel{\text{def}}{=} \sum z \in \mathbb{C} \mid 2^{2} - 2bz + c = 0 \frac{3}{2}$$

$$B = \stackrel{\text{def}}{=} \sum b + \sqrt{b^{2} - c}, \quad b - \sqrt{b^{2} - c} \frac{3}{2}$$

$$C = \stackrel{\text{def}}{=} \sum b \frac{3}{2}$$
Then,
(1) $A = B$,
and
(2) $b^{2} = c \iff B = C$.

(1) $\sum_{x \in C} |x^2 - 2bx + C = \sum_{x \in C} |x^2$ equivalently $\forall x \in \mathbb{C}$. $x^2 - 2ba + c = 0 \Leftrightarrow \begin{pmatrix} x = b + \sqrt{b^2 - c} \\ v = b + \sqrt{b^2 - c} \end{pmatrix}$. $\begin{pmatrix} x = b + \sqrt{b^2 - c} \\ v = b + \sqrt{b^2 - c} \end{pmatrix}$. (2) $b^2 = c = (=) \begin{cases} b_7 \sqrt{b^2 - c}, b_7 \sqrt{b^2 - c} \\ b_7 \sqrt{b^2 - c} \end{cases} = \begin{cases} b_7 \sqrt{b^2 - c}, b_7 \sqrt{b^2 - c} \\ b_7 \sqrt{b^2 - c} \end{cases}$ (=) Assme { b+ 162c, b- 162c? = {b? $R70: b^2 = c.$ By a son ption $b+1b^2-c=5$ Hence $1b^2-c=0,...$

Subsets and supersets

Aire subset of B or B is 2 superset of A $A \subseteq B$ a i.or B i. Fay $Fx. r \in A \Rightarrow r \in B.$ $\underline{NB}: A = B \iff (A \leq B \land B \leq A)$

Lemma 83

1. Reflexivity.

For all sets $A, A \subseteq A$.

2. Transitivity.

For all sets A, B, C, $(A \subseteq B \land B \subseteq C) \implies A \subseteq C$.

3. Antisymmetry.

For all sets A, B, $(A \subseteq B \land B \subseteq A) \implies A = B$.

Let A, B, C be sets. ASSME ASB and BCC® $RTP: AS C Z = (\forall z. z \in A =) z \in C)$ Let z in A. RTP x n C. By ∂ ad ∂ , $x \in C$.

Proper subsets We let ACB stand for ASBNAZB Hence ACB TH (Yx. x EA =) X EB) ~ (Jy. y&Any EB)

Example: ¿03 c {0,13

For any set A and any definable property P, there is a set containing precisely those elements of A for which the property P holds.

 $\{x \in A \mid P(x)\}$

NB:

 $\begin{aligned} & \left\{ x \in A \mid P(x) \right\} \subseteq \left\{ y \in B \mid Q(y) \right\} \\ & \text{ is equivalent to} \\ & \quad \forall z \cdot \left[(2 \in A) \land P(z) \right] \Rightarrow \left[(2 \in B) \land Q(z) \right] \end{aligned}$

Russell's paradox

 $\mathcal{U} = \frac{def}{2} \sum_{x \in \mathcal{I}} \frac{R(x)}{R(x)} + \frac{R(x)}{2} + \frac{def}{2} \sum_{x \in \mathcal{I}} \frac{x \neq x}{x \neq x}$ Then $\chi \in \mathcal{U} \iff \mathcal{R}(z) \iff \chi \notin \chi$ for all 2. In particular, $\mathcal{NEU} \Longrightarrow \mathcal{U} \notin \mathcal{U}.$ 2 contradiction. M

NB: for all sets A and B, {zeA | false } = {yeB | false }

NB: for all sets A, $\emptyset \subseteq A$

Empty set Ø or {}

defined by

 $\forall x. x \notin \emptyset$

or, equivalently, by

 $\neg(\exists x. x \in \emptyset)$

-290 -

Cardinality

The *cardinality* of a set specifies its size. If this is a natural number, then the set is said to be *finite*.

Typical notations for the cardinality of a set S are #S or |S|.

Example:

 $\#\emptyset = 0$

-291 -

 $T_{n} particular, [0] = \{3, [1] = \{0\}, [n] = \{0, 1, ..., n-1\}$ Finite Sets The finite sets are those with cordinality a natural number Example: For new, $[n] = \stackrel{\text{ad}}{=} \begin{cases} x \in \mathbb{N} \\ x < n \end{cases}$

is finite of cordinality n.

Powerset axiom

For any set, there is a set consisting of all its subsets.

 $\mathcal{P}(\mathbf{U})$

$\forall \, X. \, \, X \in \mathfrak{P}(u) \iff X \subseteq u \quad .$

Ezample: $P(\{x,g,z\})$ subsets of cordinality $= \{ \emptyset,$ fzz, {z}, {z}, {z}, $\{x,y\}, \{x,z\}, \{y,z\},$ 2. {x,y,z} 3

 $\# P(\{x,g,z\}) = 8$

$\underline{NB}: \emptyset \in \mathcal{P}(\mathcal{U}) \qquad \text{become } \emptyset \subseteq \mathcal{U}$ $\mathcal{U} \in \mathcal{P}(\mathcal{U}) \qquad \text{become } \mathcal{U} \subseteq \mathcal{U}$

Hasse diagrams

Proposition 84 For all finite sets U,

 $\# \mathcal{P}(\mathbf{U}) = 2^{\# \mathbf{U}}$.

PROOF IDEA:
(1) #
$$P(u) = \sum_{k=0}^{\#u} P^{(k)}(u)$$

where $P^{(k)}(u) = \sum_{k=0}^{\#u} | \#S = k \frac{2}{3}$
Since
$P^{(k)}(u) = \binom{\#u}{k}$
$P(u) = \sum_{k=0}^{\#u} \binom{\#u}{k} = (1+1)^{\#u} = 2^{\#u}$

To count #P([n]) is to comp the arrays from 0...(n-1) of Broleans. Equivalently it is to cont The sequences of OKI'S of length n; which is 2^h.

NB: The powerset construction can be iterated. In particular, $F \in \mathcal{P}(\mathcal{P}(\mathcal{U})) \iff F \subseteq \mathcal{P}(\mathcal{U})$ That is, F is a set of subsets of U, sometimes referred to as a family.

Example: The family $\mathcal{E} \subseteq \mathcal{P}([5])$ consisting of the non-empty subsets of $[5] \stackrel{\text{def}}{=} [0, 1, 2, 3, 4]$ ok whose elements are even T

$$\begin{aligned} & \mathcal{E} = \left\{ \begin{array}{l} \{0\}, \{2\}, \{4\}, \\ \{0, 2\}, \{0, 4\}, \{2, 4\}, \\ \{0, 2, 4\} \right\} \\ & \{0, 2, 4\} \\ \end{array} \right\} \end{aligned}$$

Exercise: Explicitly describe the family $S = \begin{cases} S \leq [5] \\ of S \end{bmatrix}$ the sum of the elements? $S = \begin{cases} S \leq [5] \\ of S \end{bmatrix}$ and depict its Hasse and Venn diagrams.