Sets

$-277-$

Objectives

To introduce the basics of the theory of sets and some of its uses.

Abstract sets

It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

$$
\begin{array}{lllll}
\bullet^{(1,1)} & \bullet^{(1,2)} & \bullet^{(1,3)} & \bullet^{(1,4)} & \bullet^{(1,5)} \\
\bullet^{(2,1)} & \bullet(2,2) & \bullet^{(2,3)} & \bullet^{(2,4)} & \bullet^{(2,5)}
\end{array}
$$

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as

$$
\bullet^{(1,1)} \bullet^{(2,1)} \quad \bullet^{(1,2)} \quad \bullet^{(2,2)} \quad \bullet^{(1,3)} \quad \bullet^{(2,3)} \quad \bullet^{(1,4)} \quad \bullet^{(2,4)} \quad \bullet^{(1,5)} \quad \bullet^{(2,5)}
$$

or even simply as

for other considerations.

Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be naively looking at ubiquituous structures that are available within it.

Set membership
We write ϵ for the membership predicate; so that
$x \in A$ stands for x is an element of A We further write
$x \notin A$ for $\neg(x \in A)$
Example: $O \in\{0,1\}, \quad i \notin\{0\}$

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,
\forall sets $A, B . A=B \Longleftrightarrow(\forall x \cdot x \in A \Longleftrightarrow x \in B)$.

Example:

$$
\begin{aligned}
& \text { beeanse } 1 \in\{0,1\} \text { and } 1 \notin\{0\} \\
& \{ \\
& \{0\} \neq\{0,1\}=\{1,0\} \neq\{2\}=\{2,2\}
\end{aligned}
$$

Proposition For $b, c \in \mathbb{R}$, let

$$
\begin{aligned}
& A=d y\left\{x \in \mathbb{C} \mid x^{2}-2 b x+c=0\right\} \\
& B=d q\left\{b+\sqrt{b^{2}-c}, b-\sqrt{b^{2}-c}\right\} \\
& C=a q\{b\}
\end{aligned}
$$

Then,
(1) $A=B$,
and
(2) $b^{2}=c \Leftrightarrow B=C$.
(1) $\left\{x \in \mathbb{C} \mid x^{2}-2 b x+c=0\right\} \stackrel{\text { RTP }}{=}\left\{b+\sqrt{b^{2}-c}, b-\sqrt{b^{2}-c}\right\}$ equivelen bly

$$
\forall x \in \mathbb{C} \cdot x^{2}-2 b x+c=0 \Leftrightarrow\binom{x=b+\sqrt{b^{2}-c}}{v=b-\sqrt{b^{2}-c}}
$$

(2) $b^{2}=c \Leftrightarrow\left\{b+\sqrt{b^{2}-c}, b-\sqrt{b^{2}-c}\right\}=\{b\}$

RTP
$\left(\Leftrightarrow\right.$ Assme $\left\{b+\sqrt{b^{2}-c}, b-\sqrt{b^{2}-c}\right\} \begin{array}{l}\text { RTp } \\ =\{b\}\end{array}$
RID: $b^{2}=c$.
By assuption $b+\sqrt{b^{2}-c}=b$ then $a \sqrt{b^{2}-c}=0, \ldots$

Subsets and supersets
$A \subseteq B \quad A$ in a subset of B
or B na superset of A
for

$$
\forall x . \quad x \in A \Rightarrow x \in B .
$$

WB: $\quad A=B \Leftrightarrow(A \subseteq B \wedge B \subseteq A)$

Lemma 83

1. Reflexivity.

For all sets $A, A \subseteq A$.
2. Transitivity.

For all sets $A, B, C,(A \subseteq B \wedge B \subseteq C) \Longrightarrow A \subseteq C$.
3. Antisymmetry.

For all sets $A, B,(A \subseteq B \wedge B \subseteq A) \Longrightarrow A=B$.

Let A,B,C be sets.
Assime (2) $A \in B$ and $B \subseteq C^{(4)}$
RTP: $A \subseteq C \Longleftrightarrow(\forall x, x \in A \Rightarrow x \in C)$
Let x in $A^{(1)}$
RTP $x a C$.
By(1) ad(2), x in $B^{(3)}$
$B y(3) d a, x \in C$.

Proper subsets
We let $A \subset B$ stand for $A \subseteq B \cap A \neq B$
Hence
of $A C B$
If $(\forall x \cdot x \in A \Rightarrow x \in B) \wedge(\exists y, y \notin A \wedge y \in B)$
Example: $\{0\} \subset\{0,1\}$

$$
a \in\{x \in A \mid P(x)\}
$$

$\Leftrightarrow(a \in A) \wedge P(a)$

 Separation principleFor any set A and any definable property P , there is a set containing precisely those elements of A for which the property P holds.

$$
\{x \in A \mid P(x)\}
$$

$N B:$

$$
\{x \in A \mid P(x)\} \subseteq\{y \in B \mid Q(y)\}
$$

is equivalent to

$$
\forall z \cdot[(z \in A) \wedge P(z)] \Rightarrow[(z \in B) \wedge Q(z)]
$$

Russell's paradox

$$
u=\operatorname{def}\{x \mid R(x)\} \quad R(x)=\operatorname{def} \quad x \neq x
$$

Then

$$
x \in U \Leftrightarrow R(x) \Leftrightarrow x \notin x
$$

for all x.
In particular,

$$
u \in u \Leftrightarrow u \notin u .
$$

a contradiction. Y

Empty set

- The theory provides an empty set, with no elements
- This is,

$$
\phi=\operatorname{dy}\{x \in A \mid \text { false }\}
$$

- Indeed, $a \in \varnothing \Leftrightarrow$ false That is, $\forall a, a \notin \varnothing$

NB: for all sets A and B,
$\{x \in A \mid$ false $\}=\{y \in B \mid$ false $\}$

NB: for all sets A,

$$
\varnothing \subseteq A
$$

Empty set

$$
\emptyset \text { or }\}
$$

defined by

$$
\forall x . x \notin \emptyset
$$

or, equivalently, by

$$
\neg(\exists x . x \in \emptyset)
$$

Cardinality

The cardinality of a set specifies its size. If this is a natural number, then the set is said to be finite.

Typical notations for the cardinality of a set S are $\# S$ or $|S|$.

Example:

$$
\# \emptyset=0
$$

In particular, $[0]=\{ \} ;[1]=\{0\} ;[n]=\{0,1, \ldots, n-1\}$
Finite sets
The finite sets are those with cardinality a natural number

Example: For $n \in \mathbb{N}$,

$$
[n]=\text { af }\{x \in \mathbb{N} \mid x<n\}
$$

is finite of cardinality n.

Powerset axiom

For any set, there is a set consisting of all its subsets.
$\mathcal{P}(\mathrm{U})$
$\forall \mathrm{X} . \mathrm{X} \in \mathcal{P}(\mathrm{U}) \Longleftrightarrow \mathrm{X} \subseteq \mathrm{U}$.

Example:

$$
\begin{aligned}
P & (\{x, y, z\}) \\
= & \left\{\begin{array}{l}
\emptyset \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\{x, y, y,\{x, y, z\},\{x, z\},\{y, z\},\right. \\
& \# P(\{x, y, z\})=8
\end{aligned}
$$

subsets of cardinality

NB: $\phi \in P(U)$ becense $\phi \subseteq U$
$u \in P(u)$ becouse $u \leq u$

Hasse diagrams

Proposition 84 For all finite sets U,

$$
\# \mathcal{P}(\mathrm{U})=2^{\# \mathrm{U}} .
$$

Proof idea:
(1) $\# P(u)=\sum_{k=0}^{\# u} p^{(k)}(u)$
where $p^{(k)}(u)=\{s \leq u \mid \# s=k\}$
since

$$
\begin{aligned}
& \# P^{(k)}(u)=\binom{\# u}{k} \\
& \# P(u)=\sum_{k=0}^{\ddagger u}\binom{\# u}{k}=(1+1)^{\# u}=2^{\# u} \\
& -294-
\end{aligned}
$$

(2) \#P([n]) $[n]=\{0,1, \ldots, n-1\}$

Consider $S \in P([n]) \Leftrightarrow S \subseteq[n]$ It way be visualized as

$\phi:$

$u:$

To count

$$
\# P([n])
$$

is to count the arrays from $0 \ldots(n-1)$ of Broleans. Equisalatly it is to cont The sequences of $O \& 1$'s of length n; which is 2^{n}.

NB: The powerset construction can be iterated. In particular,

$$
F \in P(P(u)) \Leftrightarrow F \subseteq P(u)
$$

That is, F is c set of subsets of U, sometimes referred to as a family.

Example: The family $\varepsilon \subseteq P([5])$ consisting of the non-empty subsets of $[5] \stackrel{d y}{=}\{0,1,2,3,4\}$ all whose elements are even is

$$
\begin{aligned}
\varepsilon=\{ & \{0\},\{2\},\{4\}, \\
& \{0,2\},\{0,4\},\{2,4\}, \\
& \{0,2,4\}\}
\end{aligned}
$$

Exercise: Explicitly describe the family $\delta=\left\{S \subseteq[5] \left\lvert\, \begin{array}{l}\text { the sum of the elements } \\ \text { of } S \text { is } 6\end{array}\right.\right\}$ and depict its Hesse and Venn diagrams.

