Lemma 58 For all positive integers m and n,

$$
\mathrm{CD}(\mathfrak{m}, \mathfrak{n})= \begin{cases}\mathrm{D}(\mathfrak{n}) & , \text { if } \mathfrak{n} \mid \mathrm{m} \\ \mathrm{CD}(\mathrm{n}, \operatorname{rem}(\mathrm{~m}, \mathfrak{n})) & , \text { otherwise }\end{cases}
$$

Since a positive integer n is the greatest divisor in $D(n)$, the lemma suggests a recursive procedure:

$$
\operatorname{gcd}(m, n)= \begin{cases}n & , \text { if } n \mid m \\ \operatorname{gcd}(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

for computing the greatest common divisor, of two positive integers m and n. This is

Euclid's Algorithm

NB: If ged (m, n) trmindts say with output R,
Then $C D(m, n)=\underline{D}(k)$.

$$
\operatorname{gcd}
$$

```
fun gcd( m , n )
    = let
        val ( q , r ) = divalg( m , n )
        in
            if r = 0 then n
            else gcd( n , r )
        end
```

Example $59(\operatorname{gcd}(13,34)=1)$

$$
\begin{aligned}
\operatorname{gcd}(13,34) & =\operatorname{gcd}(34,13) \\
& =\operatorname{gcd}(13,8) \\
& =\operatorname{gcd}(8,5) \\
& =\operatorname{gcd}(5,3) \\
& =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,1) \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& C D(m, n)=D(k) \\
& C D(m, n)=\left\{\begin{array}{l}
d \in \mathbb{N}: \\
\left.\left.d\right|_{m a} d \ln \right\}
\end{array}\right. \\
& \Leftrightarrow\left[\begin{array}{l}
\forall d \in \mathbb{N} . \\
\quad(d / \operatorname{mad} / n) \Leftrightarrow d / R
\end{array}\right] \\
& D(R)=\{d \in \mathbb{N}: d \mid R\} \\
& \Leftrightarrow\left[\begin{array}{l}
\left.(1) k\right|_{m a} k \mid n \\
\Lambda(2) \forall d \in \mathbb{N} . d|m \sim d \ln \Rightarrow d| k
\end{array}\right]
\end{aligned}
$$

Proper bies (1) dd (2) unique ly chara cterisi R.
Suppose $\left[\begin{array}{l}(1)_{1} k_{1}\left|m \times k_{1}\right| n \\ \left.U_{(2)} \text {. } \forall d . d|m \wedge d| n \Rightarrow d \mid k_{1}\right]\end{array}\right]$
did

$$
\left[\begin{array}{l}
(1)_{2} k_{2}\left|m \wedge k_{2}\right| n \\
\&_{(2)_{2}} \forall d \cdot d|m \wedge d| n \Rightarrow d \mid k_{2}
\end{array}\right]
$$

Then, we daim, $k_{1}=k_{2}$.

Theorem 60 Euclid's Algorithm god terminates on all pairs of positive integers and, for such m and $n, g c d(m, n)$ is the greatest common divisor of m and n in the sense that the following two properties hold:
(i) both $\operatorname{gcd}(m, n) \mid m$ and $\operatorname{gcd}(m, n) \mid n$, and
(ii) for all positive integers d such that $\mathrm{d} \mid \mathrm{m}$ and $\mathrm{d} \mid \mathrm{n}$ it necessarily follows that $\mathrm{d} \mid \operatorname{gcd}(\mathrm{m}, \mathrm{n})$.

Proof:
PROOF PRiNCiPLE
To show that some k is the $q C d$ of m and w go on to show that
(1) k / m ad $k l n$
ad (2) $\forall d . d l m \wedge d \ln \Rightarrow d l k$.

$$
\text { - } 191-
$$

running tince is $O(\log (\max (m, n)))$.

Fractions in lowest terms

```
fun lowterms( m , n )
    = let
    val gcdval = gcd( m , n )
    in
        ( m div gcdval , n div gcdval )
    end
```


Some fundamental properties of gads

Lemma 62 For all positive integers l, m, and n ,

1. (Commutativity) $\operatorname{gcd}(\mathfrak{m}, \mathfrak{n})=\operatorname{gcd}(\mathfrak{n}, \mathfrak{m})$,
2. (Associativity) $\operatorname{gcd}(l, \operatorname{gcd}(\mathfrak{m}, \mathfrak{n}))=\operatorname{gcd}(\operatorname{gcd}(l, \mathfrak{m}), \mathfrak{n})$,
3. (Linearity $)^{\mathrm{a}} \operatorname{gcd}(\mathrm{l} \cdot \mathrm{m}, \mathrm{l} \cdot \mathrm{n})=l \cdot \operatorname{gcd}(m, n)$.

Proof:
We show (1) $l \cdot \operatorname{gcd}(m, n) \mid \ell m$ and $l \cdot g c d(m, n) \mid \ell \cdot n$ ad (2) $\forall d$. Id 1 lm and tlln then $d \mid l \cdot g c d(m, n)$.

[^0](1) RTP: $l \cdot g c d(m, n) \mid l \cdot m$

Since $g \underline{d}(m, n) \mid m$ then $l \cdot g \underline{c d}(m, n) \mid l \cdot m$
[Lemme $a|b \Rightarrow a \cdot c| b \cdot c$]
Analogously $l \cdot \operatorname{gcd}(n, n) \mid l \cdot n$.
(2) RTP: $\forall d$ of $d / l m$ and allen then $d \mid l \cdot g c d(m, n)$ Let d be anarbitrang pos. int. such that
$\begin{array}{ll}\text { (1) } d \mid l \cdot m \text { and } d^{2} d \mid l \cdot n & (*)[(a|b \wedge b| c) \Rightarrow a \mid c]\end{array}$
Aron (1) ad (2), we hare $d \mid g c d(l \cdot m, l \cdot n)$
If $\operatorname{gcd}(l \cdot m, l \cdot n) \mid l \cdot g c d(m, n)$ by $(*)$ we will be dore.

We nant to slow

$$
\sum \operatorname{gcd}(l \cdot m, l \cdot n) \mid l \cdot g c d(m, n) \text {. }
$$

Exercase.

Euclid's Theorem
Theorem 63 For positive integers k, m, and n, if $k \mid(m \cdot n)$ and $\operatorname{gcd}(\mathrm{k}, \mathrm{m})=1$ then $\mathrm{k} \mid \mathrm{n}$.

Proof:
Assume $k \mid(m \cdot n)$ ad $\operatorname{gcd}(k, m)=1$
\Downarrow
for sine k

$$
k \cdot \underline{g c d}(n, l)=\operatorname{gcd}(n k, l \cdot k)=n \Rightarrow k \mid n .
$$

Corollary 64 (Euclid's Theorem) For positive integers m and n, and prime p, if $p \mid(m \cdot n)$ then $p \mid m$ or $p \mid n$.

Now, the second part of Fermat's Little Theorem follows as a corollary of the first part and Euclid's Theorem.
Proof: Assur $p \mid(m \cdot n)$
cast: if $p 1 m$ then weare dine.
case ${ }^{2}$ if $p+m$ then $q c d(p, m)=1$ and se p / n.

天下

$$
i p \equiv i(\bmod p)
$$

suppane $i \neq 0($ wod $p)$
Then $p \mid\left(i^{p}-i\right)=\left(c^{p-1}-1\right) i$ ad by Enotid's Thn.

$$
p \mid i^{p-1}-1
$$

That is, $i^{p-1} \equiv 1(\operatorname{wod} p)$.
$N B:$

$$
p \left\lvert\,\binom{ p}{m} \quad 0<m<p \quad(p \text { rime } p)\right.
$$

Eberate.

[^0]: ${ }^{a}$ Aka (Distributivity).

