Corollary 47 Let m be a positive integer.

1. For every natural number n,

$$n \equiv \text{rem}(n, m) \pmod{m}$$
.

$$n = quo(n,m). m + rem(n,m)$$
 $o = m$

Corollary 47 Let m be a positive integer.

1. For every natural number n,

$$n \equiv \text{rem}(n, m) \pmod{m}$$
.

2. For every integer k there exists a unique integer $[k]_m$ such that

$$0 \le [k]_{\mathfrak{m}} < \mathfrak{m}$$
 and $k \equiv [k]_{\mathfrak{m}} \pmod{\mathfrak{m}}$.

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

$$\mathbb{Z}_{\mathfrak{m}}$$
 : 0, 1, ..., $\mathfrak{m}-1$.

with arithmetic operations of addition $+_m$ and multiplication \cdot_m defined as follows

$$k +_m l = [k + l]_m = \operatorname{rem}(k + l, m)$$
,
 $k \cdot_m l = [k \cdot l]_m = \operatorname{rem}(k \cdot l, m)$

for all $0 \le k, l < m$.

Example 49 The addition and multiplication tables for \mathbb{Z}_4 are:

+ ₄ 0 1 2 3	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

• 2	1	0	1	2	3
C)	0	0	0	0
1		0	1	2	3
2	-	0	2	0	2,
3		0	3	2	

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

3 is its own re aproved in 724

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	
1	3	1	1
2	2	2	_
3	1	3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

FLT: For p prime, $i \neq 0 \pmod{p}$ **Example 50** The addition and multiplication tables for \mathbb{Z}_{5} are:

+5	0	1	2	3	4	•5	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0		2	3	4
2	2	3	4	0	1	2	0	2	4		3
3	3	4	0	1	2	3	0	3		4	2
4	4	0	1	2	3	4	0	4	3	2 (

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 51 For all natural numbers m > 1, the modular-arithmetic structure

$$(\mathbb{Z}_m, 0, +_m, 1, \cdot_m)$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

.

Proposition. Let m be à positive integer. A modular integer 2 in 2 n has a reciplocal off there exist integers i and j such that PROOF. Let m be a pos. int. and z in Zm. (=)) Suppose a hes c reciprocal. What is, There is some z in Zun such That 2. Z=1 (mod m) Equivolutly, x.7-1=m.k for some ut k. and we are done. (=) Assume 2.i+mj=1 for some ints i 2d juick Let t=[i]m. Then, RTP: 2.2=1 (mod m) ...

Integer Linear Combinations

Definition. An integer ℓ is said to be an integer linear combination of two integers a and ℓ whenever there are integers ℓ and ℓ such that $\ell=\ell\cdot a+j\cdot b$.

Proposition. Let m be a positive integer. A modular integer x in Z_m has a reciprocal iff 1 is an integer linear combination of m and x.

Lemma. Let a, b, c be integers.

(c) a r c/b) (=> c divides every integer linear combination of a and b

PROOF Let a,b,c ints.

(=) Assume cla ad clb (=) a=c.p for int p

RTP: c/(ai+bj) for all i, juts. int q,

Consider ai+bj=ip.c+j.q.c=(i.p+j.q).c for arbitrary i and j ints. int.

(=) Because both a and b are int. lin. consof 2,5. Since a= 1. a+0.b and b=0.a+1.b.

Important mathematical jargon: Sets

Very roughly, sets are the mathematicians' data structures. Informally, we will consider a <u>set</u> as a (well-defined, unordered) collection of mathematical objects, called the <u>elements</u> (or <u>members</u>) of the set.

Set membership

The symbol '∈' known as the *set membership* predicate is central to the theory of sets, and its purpose is to build statements of the form

$$x \in A$$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.

Defining sets

	of even primes		{2}
The set	of booleans	is	$\{\mathbf{true},\mathbf{false}\}$
	[-23]		$\{-2, -1, 0, 1, 2, 3\}$

NB:
$$a \in \{x \in A \mid P(x)\}$$

 $\Rightarrow [(a \in A) \land P(e)]$
Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$\{x \in A \mid P(x)\}\$$
, $\{x \in A : P(x)\}\$

Set Equality

Two sets are equal precisely when they have the same elements

Example:

- { x ∈ N : 2/2 ∧ 2 is prime } = { 2 }
- For a positive integer m, $\{x \in \mathbb{Z} : m \mid x = \{x \in \mathbb{Z} \mid x \equiv 0 \text{ (nwdm)} \}$
- { dein: d | 0 } = 10

Equivalent predicates specify equal sets If f(x) = f(x) = f(x) f(x) = f(

Example: For a positive integer m,

{x \in Zm | x has a reciprocal in Zm }

{x \in Zm | 1 is an integer linear combination }

of m and x

SETS OF COMMON DIVISORS

Greatest common divisor

Given a natural number n, the set of its *divisors* is defined by set comprehension as follows

$$D(n) = \{ d \in \mathbb{N} : d \mid n \}$$
.

Example 53

1.
$$D(0) = \mathbb{N}$$

2.
$$D(1224) = \begin{cases} 1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, \\ 72, 102, 136, 153, 204, 306, 408, 612, 1224 \end{cases}$$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the *common divisors* of pairs of natural numbers? That is, the set

$$CD(m,n) = \left\{ d \in \mathbb{N} : d \mid m \wedge d \mid n \right\}$$

for $m, n \in \mathbb{N}$.

Example 54

$$CD(1224,660) = \{1,2,3,4,6,12\}$$

Since CD(n,n) = D(n), the computation of common divisors is as hard as that of divisors. But, what about the computation of the *greatest common divisor*?

Proposition For mand n natural numbers,

(1)
$$CD(m,n) = CD(n,m)$$

(2)
$$CD(m,n\cdot m) = D(m)$$

Corollary For a natural number l,

(1)
$$CD(\ell,\ell) = CD(\ell,0) = D(\ell)$$

(2) CD (1, e) =
$$\{1\}$$

Lemma 56 (Key Lemma) Let \mathfrak{m} and \mathfrak{m}' be natural numbers and let \mathfrak{n} be a positive integer such that $\mathfrak{m} \equiv \mathfrak{m}' \pmod{\mathfrak{n}}$. Then,

CD(m,n) = CD(m',n) . PROOF: Let m,m' be wots. Let n be pos. int.

Assume m=m' (modn) = m-m'= k.n for some

RTP:

{deN: &[m n dln] = {deN. d[m' n dln]},

(=) [HdeN. (d[m n dln) (=) (d[m] n dln)] m'is du int D lin. cons f maan

NB: As an application of the ky lemma, for a natural number m and a positive integer n, since $m \equiv rem(m, n)$ (mdn) it follows that

$$CD(m,n) = CD(n,rem(m,n))$$

Example:

$$CD(34,13) = CD(13,8) = CD(8,5) = CD(5,3)$$

$$= CD(3,2) = CD(2,1) = CD(4,0)$$

$$= D(1) = \{1\}$$

Lemma 58 For all positive integers m and n,

$$\mathrm{CD}(m,n) = \left\{ \begin{array}{ll} \mathrm{D}(n) & \text{, if } n \mid m \\ \\ \mathrm{CD}\big(n,\mathrm{rem}(m,n)\big) & \text{, otherwise} \end{array} \right.$$

Since a positive integer n is the greatest divisor in D(n), the lemma suggests a recursive procedure:

$$\gcd(m,n) = \left\{ \begin{array}{ll} n & \text{, if } n \mid m \\ \\ \gcd\left(n, \operatorname{rem}(m,n)\right) & \text{, otherwise} \end{array} \right.$$

for computing the *greatest common divisor*, of two positive integers m and n. This is

Euclid's Algorithm

```
gcd
```