Numbers Objectives

- Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- To understand and be able to proficiently use the Principle of Mathematical Induction in its yarious forms.

Natural numbers

In the beginning there were the natural numbers

$$
\mathbb{N}: 0,1, \ldots, n, n+1, \ldots
$$

generated from zero by successive increment; that is, put in ML:

```
datatype
    N = zero | succ of N
```

The basic operations of this number system are:

- Addition

- Multiplication

$$
m\left\{\begin{array}{l}
\overbrace{* \cdots \cdots}^{n} \\
\vdots \vdots \cdots \cdots \cdots \\
\vdots \cdots \cdots
\end{array}\right.
$$

The additive structure ($\mathbb{N}, 0,+$) of natural numbers with zero and addition satisfies the following:

- Monoid laws

$$
0+n=n=n+0, \quad(l+m)+n=l+(m+n)
$$

- Commutativity law

$$
\mathrm{m}+\mathrm{n}=\mathrm{n}+\mathrm{m}
$$

and as such is what in the mathematical jargon is referred to as a commutative monoid.

Also the multiplicative structure $(\mathbb{N}, 1, \cdot)$ of natural numbers with one and multiplication is a commutative monoid:

- Monoid laws

$$
1 \cdot \mathrm{n}=\mathrm{n}=\mathrm{n} \cdot 1, \quad(\mathrm{l} \cdot \mathrm{~m}) \cdot \mathrm{n}=\mathrm{l} \cdot(\mathrm{~m} \cdot \mathrm{n})
$$

- Commutativity law

$$
\mathrm{m} \cdot \mathrm{n}=\mathrm{n} \cdot \mathrm{~m}
$$

MONOIDS
A monoid is an algebraic structure with

- a neutral element, say e,
- a binary operation, say *,
satisfying
- neutral element laws: $e_{*} x=x=x_{*} e$
- associativity law: $(x * y) * z=x *(y * 2)$

A monoid is commutative if

- commutativity: $x * y=y * x$ is satisfied.

The additive and multiplicative structures interact nicely in that they satisfy the

- Distributive law

and make the overall structure $(\mathbb{N}, 0,+, 1, \cdot)$ into what in the mathematical jargon is referred to as a commutative semiring.

SEMIRINGS
A semiring is an algebraic structure with - a commutative monoid structure, say $(0, \oplus)$,

- a monord structure, say $(1, \otimes)$,
satisfying The distributive laws

$$
\begin{gathered}
0 \otimes x=0=x \otimes 0 \\
x \otimes(y \oplus z)=(x \otimes y) \oplus(x \otimes z) \\
(y \oplus z) \otimes x=(y \otimes x) \oplus(z \otimes x)
\end{gathered}
$$

A semiring is commutative whenever θ is.

Cancellation

The additive and multiplicative structures of natural numbers further satisfy the following laws.

- Additive cancellation

For all natural numbers k, m, n,

$$
\mathrm{k}+\mathrm{m}=\mathrm{k}+\mathrm{n} \Longrightarrow \mathrm{~m}=\mathrm{n}
$$

- Multiplicative cancellation

For all natural numbers k, m, n,
if $k \neq 0$ then $k \cdot m=k \cdot n \Longrightarrow m=n$.

Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there exists a number y such that $x+y=0$.
2. A number x is said to admit a multiplicative inverse whenever there exists a number y such that $x \cdot y=1$.

INVERSES
For a monoid with a neutral element e and a binary operation $*$, on element x is said to admit an:

- inverse on The left if There exists an element l such that $l * x=e$
- inverse on The right if there exists an element r such That $x * r=e$
- inverse of it admits both left and right in verses

Groups
A group is a monoid in which every element has an inverse

An Abelian group is a group for which the monoid is commutative.

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for nonzero numbers yields two very interesting results:
(i) the integers

$$
\mathbb{Z}: \ldots-n, \ldots,-1,0,1, \ldots, n, \ldots
$$

which then form what in the mathematical jargon is referred to as a commutative ring, and
(ii) the rationals \mathbb{Q} which then form what in the mathematical jargon is referred to as a field.

RINGS
A ring is a semiring $(0, \oplus, 1, \otimes)$ in which the commutative monoid $(0, \oplus)$ is a group
A ring is commetarive of so is the monoid $(1, \otimes)$.

FIELDS
A field is a commutative ring in which every element besides 0 has a reciprocal (that is, on inverse with respect to \otimes).

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n , there exists a unique pair of integers q and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.

Definition 44 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo (m, n) and $\operatorname{rem}(\mathfrak{m}, \mathfrak{n})$.

Proof of Theorem 43:

Proof of Theorem 43:

$$
m=q \cdot n+r
$$

$$
\operatorname{diviter}(q, r)
$$

$$
r<n / \searrow
$$

$$
m=(g+1) \cdot n+(r-n)
$$

$$
(q, r)
$$

$m=0 \cdot n+m$

We hare That
$m=$ fintag of diviter. n + secund arg of hinter always holds.

The Division Algorithm in ML:

```
fun divalg( m , n )
= let
        fun diviter ( q , r )
        \(=\) if \(r<n\) then ( \(q\), r )
        else diviter ( \(q+1\), r-n )
    in
        diviter ( 0 , m )
    end
```

fun quo($\mathrm{m}, \mathrm{n})=\# 1(\operatorname{divalg}(\mathrm{~m}, \mathrm{n}))$
fun rem $(\mathrm{m}, \mathrm{n})=\# 2(\operatorname{divalg}(\mathrm{~m}, \mathrm{n}))$

Theorem 45 For every natural number m and positive natural number n, the evaluation of divalg (m, n) terminates, outputing a pair of natural numbers $\left(q_{0}, r_{0}\right)$ such that $r_{0}<n$ and $m=q_{0} \cdot n+r_{0}$.

Proof:

Proposition 46 Let m be a positive integer. For all natural numbers k and l,

$$
k \equiv l(\bmod \mathfrak{m}) \Longleftrightarrow \operatorname{rem}(k, m)=\operatorname{rem}(l, \mathfrak{m}) .
$$

Proof: Let m be a pritive integer. Let k and l be n attire m berg.
$(\Longrightarrow$ Assmne $k \equiv l(\operatorname{mid} m)$.

$$
R \rightarrow P: \operatorname{rem}(R, m)=\operatorname{ren}(l, m) \text {. }
$$

So
$k-l=q \cdot m$ for ar int. q

$$
\begin{aligned}
k & =q \cdot m+l=q \cdot m+q u \sigma(l, m) \cdot m+\operatorname{rem}(l, m) \\
& =(q+q u \theta(l, m)) \cdot m+\operatorname{rem}(l, m) .
\end{aligned}
$$

$$
\begin{aligned}
& k=(\sim) \cdot m+\|_{0 \leqslant<m}^{\underbrace{\operatorname{ren}(l, m)}_{\operatorname{quo}}} \\
& \Rightarrow \|_{\operatorname{ren}(k, m)} \text { By umiqneness } \\
& (\Leftrightarrow) \ldots \text { Exerase... }
\end{aligned}
$$

