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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,

(M +n)? = mP 4+ nP (mod p) .
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Corollary 34 (The Dropout Lemma) For all natural numbers m and
primes p,

(M4 1) =mP 4+ 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-
bers m and i, and primes p,

(M+1)P = mP + 1 (mod p)
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The Many Dropout Lemma (Proposition 35) gives the fist part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p, p,@P,L)_.—,—{ L{P".’ly

%Wzi(modp), and \U' b\@ e fédL Thi

| (P -\
77@&?1 = 1 (mod p) whenever1i is ncﬁ a n'ﬁultiple of p.

The fact that the first part of Fermat's Little Theorem implies the
second one will be proved later on .
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Btw

1. Fermat’s Little Theorem has applications to:
(a) primality testing?,
(b) the verification of floating-point algorithms, and

(c) cryptographic security.

“For instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that i™ # i (mod m).
— 122 —



Negation

Negations are statements of the form

or, in other words,

or

or

or, in symbols,

not P

P is not the case

P is absurd

P leads to contradiction
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences
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(P<:>Q)
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Theorem 37 For all statements P and Q,
(P = Q) = (Q = —P) .
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Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement —P — false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.
2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy
Assumptions Goal

After using the strategy
Assumptions Goal

contradiction
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Theorem 39 For all statements P and Q,

Q = P) = (P = Q) .
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Lemma 41 A positive real number x is rational iff

1 positive integers m,n :
x=m/n A =(Iprimep: plm A pln)
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