




A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,

n and primes p,

(m+ n)p ≡ mp + np (mod p) .

PROOF:

— 116 —





Corollary 34 (The Dropout Lemma) For all natural numbers m and

primes p,

(m+ 1)p ≡ mp + 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-

bers m and i, and primes p,

(m+ i)p ≡ mp + i (mod p) .

PROOF:
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The Many Dropout Lemma (Proposition 35) gives the fist part of the

following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the

second one will be proved later on .
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Btw

1. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im 6≡ i (mod m).
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Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent

form and use instead this other statement.

Logical equivalences

¬
�

P =⇒ Q
�

⇐⇒ P ∧ ¬Q

¬
�

P ⇐⇒ Q
�

⇐⇒ P ⇐⇒ ¬Q

¬
�

∀x. P(x)
�

⇐⇒ ∃x.¬P(x)
¬
�

P ∧ Q
�

⇐⇒ (¬P) ∨ (¬Q)

¬
�

∃x. P(x)
�

⇐⇒ ∀x.¬P(x)
¬
�

P ∨ Q
�

⇐⇒ (¬P) ∧ (¬Q)

¬
�

¬P
�

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)
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Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

PROOF:
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Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false

Proof pattern:

In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P
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Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

PROOF:
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Lemma 41 A positive real number x is rational iff

∃positive integers m,n :

x = m/n ∧ ¬
�

∃prime p : p | m ∧ p | n
� (†)

PROOF:
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