PROPOSITION

For a positive integer m, the following are equivalent: (1) m=1. (2) For all integers a and b, a=b(modm). (3) 1=0 (mod m).

PROOF: (1) =>(2) Let a ad b be tit. <u>RTP</u>: <u>m=5</u> (msd 1), nhich is The cose become <u>a-b is a metriple of 1.</u> (2) =>(3) Bg instantiation. (3) =>(1) ASTURE 1=0 (mod m)

RTP: M=1 By 285 uption, 1=k.n. for a ntk. So min either 1 or -1 but once et is posible mal.

A little more arithmetic

Corollary 33 (The Freshman's Dream) For all natural numbers m, n and primes p,

 $(\mathbf{m} + \mathbf{n})^p \equiv \mathbf{m}^p + \mathbf{n}^p \pmod{p}$. PROOF: Let mouden be not. ad let p be a prime. $\begin{array}{l} \text{We have} & (m+n)^{p} = \sum_{\substack{i \geq 0 \\ i \geq 0 \\ i \geq 0 \\ i \geq 0 \\ i \leq 1 \end{array}} p_{i} p_{i}$ Recall $\begin{pmatrix} \rho \\ i \end{pmatrix} \equiv 0 \pmod{p}$ 1415p-1

 $a_i \equiv b_i (m d m)$ emme \overline{Z}_i ai $\equiv \overline{Z}_i$ bi (Modm) Ti ai = Ti bo (modm) $(m+n)^{p} = m^{p} + n^{p} + \sum_{i=1}^{r-1} {p \choose i} m^{i} n^{p-i}$ 0 mod (p) O (mod p)

Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$(m+1)^p \equiv m^p + 1 \pmod{p}$$
 .

Proposition 35 (The Many Dropout Lemma) For all natural numbers m and i, and primes p,

$$(m+i)^{p} \equiv m^{p} + i \pmod{p} .$$
PROOF: Let m and i be hat. and p a prime .
Consider

$$(m+i)^{p} = (m+1+1+\dots+1)^{p} + 1$$

$$\equiv (m+1+\dots+1)^{p} + 1$$

$$= (m+1+\dots+1)^{p} + 1$$

 $\equiv (m + 1 + \dots + 1)^{p} + 1 + 1$ $= (m + 1 + \dots + 1)^{p} + 1 + 1$ $= 1 + 1 + \dots + 1 + 1 + 1$ $= 1 + 1 + \dots + 1 + 1 + \dots + 1$ $= 1 + 1 + \dots + 1 + 1 + \dots + 1$ $= 1 + \dots + 1 + \dots + 1 + \dots + 1 + \dots + 1$ $\equiv (m+1+...+1)^{p} + 1+1+1$ i-3 bines 3 bines. $= (m + 1 + \dots + 1)^{p} + 1 + \dots + 1$ i-k times ktines $\equiv m^{p} + (1 + \cdots + 1) = m^{p} + i.$

The Many Dropout Lemma (Proposition 35) gives the fist part of the following very important theorem as a corollary.

Theorem 36 (Fermat's Little Theorem) For all natural numbers i and primes p, p|(lP-i)=i(lP-i)=i(lP-i)p|

The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .

 $i^{p-1} \equiv 1 \pmod{p}$ $i \cdot (i^{p-2})$ 5 modulo p i (which is not a multiple of p) has a reappord!

Btw

- 1. Fermat's Little Theorem has applications to:
 - (a) primality testing^a,
 - (b) the verification of floating-point algorithms, and
 - (c) cryptographic security.

^aFor instance, to establish that a positive integer \mathfrak{m} is not prime one may proceed to find an integer \mathfrak{i} such that $\mathfrak{i}^{\mathfrak{m}} \not\equiv \mathfrak{i} \pmod{\mathfrak{m}}$.

Negation

Negations are statements of the form

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an *equivalent* form and use instead this other statement.

Logical equivalences $\neg(P \Longrightarrow Q) \iff P \land \neg Q$ $\neg (P \iff Q) \iff P \iff \neg Q$ $\neg(\forall x. P(x)) \iff \exists x. \neg P(x)$ $\neg(P \land Q) \iff (\neg P) \lor (\neg Q)$ $\neg(\exists x. P(x)) \iff \forall x. \neg P(x)$ $\neg (\mathsf{P} \lor \mathsf{Q}) \iff (\neg \mathsf{P}) \land (\neg \mathsf{Q})$ $\neg(\neg P) \iff P$ $\neg P \iff (P \Rightarrow false)$ -125 ---

Theorem 37 For all statements P and Q,

 $(P \implies Q) \implies (\neg Q \implies \neg P)$. PROOF: Let P ad a be statements Assur (P=) Q RTP 72=77P Assame 7Q (Q=) plse) R+7: ~P (=) (P=) folse) Assne 3 RTP fold. Fron Q ad 3, we have Q. Fron Ddd G, we have -126 ----

Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg P \implies false$

Proof pattern:

In order to prove

Ρ

- Write: We use proof by contradiction. So, suppose
 P is false.
- 2. Deduce a logical contradiction.
- **3. Write:** This is a contradiction. Therefore, P must be true.

Theorem 39 For all statements P and Q,

 $(\neg Q \implies \neg P) \implies (P \implies Q)$. PROOF: Let P and Q be statuents Assum On R= - P Asome 3p By contradiction, 2880 me 7a. Then, from () and (3), we have of P. From (2) and (4), we have an above dity. RTP Q Hence, a holds.

Lemma 41 A positive real number x is rational iff

To that and assume (f) is not the case field
is.
for all point. m, n.

$$7(2=m/n) \vee (\exists prime p. plm \land pln)$$

(# ps). int. m.n
 $z=m/n \Rightarrow (\exists prime p. plm \land pln)] (#)$
Recall $z=a/b$
By usta histion
 $z=a/b \Rightarrow (\exists prime p. pla \land plb)$
Hunce $\exists prime p. pla \land plb$

So
$$a = p_0 \cdot a_1$$
 and $b = p_0 \cdot b_1$ for a prime po
and int. a_1, b_1
Then $z = a_1/b_1$
By instantiation
 $z = a_1/b_1 = p_1(a_1 \land p_1)b_1$
Hence again.
 $a_1 = p_1 \cdot a_2$ and $b_1 = p_1 \cdot b_2$ for a prime p_1
 $(a = p_0 \cdot a_1 = p_0 \cdot p_1 \cdot a_2)$ and int a_2, b_2
If Iterahug This or guinent " we have

for primes a=po.p. p2. ... pR. akti por pe dd int akt It follows that azzk for all k This is abourd, ad we are done. \times