Proposition
For a positive integer m, the following are equiralent:
(1) $m=1$.
(2) For all integers a and $b, a \equiv b(\bmod m)$.
(3) $1 \equiv 0(\bmod m)$.

PROOF: (1) \Rightarrow (2) Let a ad b be int.
RITP: $a \equiv b$ (mis 1), which in The core becouse $a-b$ is a mitiple of 1 .
(2) $\Rightarrow(3)$ By instantiation.
(3) \Rightarrow (1) Assine $1 \equiv 0(\operatorname{mrd} m)$

RIP: $m=1$
By coscmption, $1=k \cdot m$ for an ut k. so m is either 1 or -1 but since ot is positive $m=1$.

A little more arithmetic
Corollary 33 (The Freshman's Dream) For all natural numbers m, n and primes p ,

$$
(\mathfrak{m}+\mathfrak{n})^{\mathfrak{p}} \equiv \mathfrak{m}^{p}+\mathfrak{n}^{p}(\bmod \mathfrak{p}) .
$$

Proof: Let mande n be nat. ad let p be a prime
We hare
Reesll

$$
(m+n)^{p}=\sum_{D=0}^{p}\binom{p}{i} m^{i} n^{p-1}
$$

$$
\begin{aligned}
& \text { Resell } \\
& \binom{p}{i} \equiv 0(\operatorname{mor} p) \quad n p+\sum_{i=1}^{p-1}\left(\frac{p}{i}\right) m^{i} n^{p-i}+m^{p} \\
& 1 \leq i \leq p-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lemmed } \\
& a_{i} \equiv b_{i}(\bmod m) \\
& \Rightarrow \quad \sum_{i} a_{i} \equiv \sum_{i} b_{i}(\bmod m) \\
& \pi_{i} a_{i} \equiv \pi_{i} b_{0}(\operatorname{modm}) \\
& \overline{(m+n)^{p}}=m^{p}+n^{p}+\sum_{i=1}^{p-1}\left(\begin{array}{c}
p_{i}
\end{array}\right) m^{i} n^{p-i} \\
& \left.\underbrace{111}_{\begin{array}{l}
111 \\
0(\operatorname{mad} p)
\end{array}} 0 \bmod (p) \right\rvert\,
\end{aligned}
$$

Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$
(\mathfrak{m}+1)^{p} \equiv \mathfrak{m}^{p}+1(\bmod p)
$$

Proposition 35 (The Many Dropout Lemma) For all natural numbbers m and i, and primes p,

$$
(\mathfrak{m}+\mathfrak{i})^{\mathfrak{p}} \equiv \mathfrak{m}^{p}+\mathfrak{i}(\bmod \mathfrak{p})
$$

Proof: Let m and i be nat. and p a prime. Consider

$$
\begin{aligned}
& \text { sider } \begin{aligned}
(m+i)^{P} & =(m+\underbrace{i^{1+1+\cdots+1}}_{i-1 \text { times }})^{P} \\
= & (m+\underbrace{1+\cdots+1}_{-119-} P
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv(m+\underbrace{1+\cdots+1}_{i-2 \text { times }})^{P}+\underbrace{1+1}_{2 \text { bines }} \\
& \equiv(m+\underbrace{\underbrace{}_{i+1}+\underbrace{1+1+1}_{3 \text { fines }}}_{i-3 \text { bines }} \\
& \vdots(m+\underbrace{1+\cdots+1}_{i-k \text { times }})^{P}+\underbrace{1+\cdots+1}_{k \text { tines }}
\end{aligned}
$$

$$
\equiv m^{p}+\left(\frac{1+\cdots+1}{0 \text { tines }}=m^{p+i} . \quad \text { for } k=i\right.
$$

The Many Dropout Lemma (Proposition 35) gives the fist part of the following very important theorem as a corollary.

Theorem 36 (Fermat's Little Theorem) For all natural numbers i and primes p,

1. $\mathfrak{i}^{p} \equiv \mathfrak{i}(\bmod p)$, and $P \mid\left(\sum^{P}-i\right)=i\left(E^{P-1}-1\right)$ If by prime fact. Thm
2. $i^{p-1} \equiv 1(\bmod p)$ whenever i is nolt a multiple of p.

The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .
$N B$

$$
i^{p-1} \equiv 1 \quad(\bmod p)
$$

i. $\left(i^{p-2}\right)$
\sum modulo p
i (which in not a multiple of P) has a recupreal!

Btw

1. Fermat's Little Theorem has applications to:
(a) primality testing ${ }^{\text {a }}$,
(b) the verification of floating-point algorithms, and
(c) cryptographic security.
[^0]
Negation

Negations are statements of the form
not P
or, in other words,

$$
\mathrm{P} \text { is not the case }
$$

or
P is absurd
or

> P leads to contradiction
or, in symbols,

$$
\begin{array}{r}
\square \neg \mathrm{P} \\
-124-
\end{array}
$$

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent form and use instead this other statement.

Logical equivalences

$$
\begin{aligned}
\neg(\mathrm{P} \Longrightarrow \mathrm{Q}) & \Longleftrightarrow \mathrm{P} \wedge \neg \mathrm{Q} \\
\neg(\mathrm{P} \Longleftrightarrow \mathrm{Q}) & \Longleftrightarrow \mathrm{P} \Longleftrightarrow \neg \mathrm{Q} \\
\neg(\forall \mathrm{x} \cdot \mathrm{P}(\mathrm{x})) & \Longleftrightarrow \exists \mathrm{x} \cdot \neg \mathrm{P}(\mathrm{x}) \\
\neg(\mathrm{P} \wedge \mathrm{Q}) & \Longleftrightarrow(\neg \mathrm{P}) \vee(\neg \mathrm{Q}) \\
\neg(\exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x})) & \Longleftrightarrow \\
\neg(\mathrm{P} \vee \mathrm{Q}) & \Longleftrightarrow \mathrm{x} \cdot \neg \mathrm{P}(\mathrm{x}) \\
\neg(\neg \mathrm{P}) & \Longleftrightarrow(\neg \mathrm{P}) \wedge(\neg \mathrm{Q}) \\
\neg \mathrm{P} & \Longleftrightarrow \mathrm{P} \\
& \Longleftrightarrow(\mathrm{P} \Rightarrow \text { false })
\end{aligned}
$$

Theorem 37 For all statements P and Q ,

$$
(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longrightarrow(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P})
$$

Proof: Let P ad a be statemerts
Assure ${ }^{(1)} P \Rightarrow Q$
RTP $\neg Q \Rightarrow \neg P$
Assume (2) $\neg Q \Leftrightarrow(Q \Rightarrow$ Alse)
$\frac{R+P: 7 P}{\text { Assmil }} \rightarrow(P \Rightarrow$ false $)$
Assmi ${ }^{(3)} P$
RTP fols.
Fron (1) ad (3), we hare (4) Q. From (2)dd (4), we hare palse.

Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg \mathrm{P} \Longrightarrow$ false

Proof pattern:

In order to prove
P

1. Write: We use proof by contradiction. So, suppose P is false.
2. Deduce a logical contradiction.
3. Write: This is a contradiction. Therefore, P must be true.

Scratch work:

Before using the strategy

Assumptions
Goal
P

After using the strategy

Assumptions

contradiction
$\neg \mathrm{P}$

Theorem 39 For all statements P and Q ,

$$
(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}) \Longrightarrow(\mathrm{P} \Longrightarrow \mathrm{Q})
$$

Proof: Let P and Q be statements
Assume (1),$Q \Rightarrow \neg P$
Assume (2) P
RIP Q
By contradiction, assune $2 a$.
Then, from (1) and (3), we have ${ }^{(4)} P$.
From (2) ad θ, we hare an absurdity.
Hence, ch holds.

Lemma 41 A positive real number x is rational iff \exists positive integers m, n :

$$
x=\mathfrak{m} / n \wedge \neg(\exists \text { prime } p: p|m \wedge p| n)
$$

Proof: (\Leftarrow) Easy.
(\Rightarrow) RIP: $x=a / b$ for int. a and b

$$
\Rightarrow(t)
$$

Assume: $x=a / b$ for int a and b.
RTP: (t)
We proceed by proof by contradiction.

To that end assume (t) in mot the case, That b.
for all point. m, n.

$$
\neg(x=m / n) \vee(\exists \text { prime p. ppm } \wedge p / n)
$$

$\Leftrightarrow[\forall p s \cdot n f \cdot m \cdot n$

$$
x=m / n \Rightarrow(\exists \text { prime p. }]
$$

Recall

$$
x=a / b
$$

By wotatiztion

$$
x=a / b \Rightarrow(\exists \text { pine } p \cdot p / a \wedge p / b)
$$

Hence \exists prime p. $p l_{a} \wedge p \mid b$

So $a=p_{0} \cdot a_{1}$ and $b=p_{0} \cdot b_{1}$ for a prime po and ut. a_{n}, b_{1}

Then

$$
x=a_{1} / b_{1}
$$

By ustatiation

$$
\begin{aligned}
& \text { statidition } \\
& x=a_{1} / b_{1} \Rightarrow\left(\exists p \text { prune } . p\left|a_{1} \wedge p\right| b_{1}\right)
\end{aligned}
$$

Hence again.
$a_{1}=p_{1} \cdot a_{2}$ and $b_{1}=p_{1} \cdot b_{2}$ for a prime p_{1}

$$
\left(a=p_{0} a_{1}=p_{0} \cdot p_{1} \cdot a_{2}\right)
$$

ad int a_{2}, b_{2}
"Ithaking This argument" we hare
$a=p_{0} \cdot p_{1} \cdot p_{2} \cdots p_{R} \cdot a_{k+1}$ for primes po... p_{k}

If follow that ad int a_{k+1}
$a \geqslant 2^{k}$ for aM k
Thin is absurd, ad we are done.

[^0]: ${ }^{\text {a }}$ For instance, to establish that a positive integer m is not prime one may proceed to find an integer i such that $i^{m} \not \equiv i(\bmod m)$.

