Existential quantification

Existential statements are of the form
there exists an individual x in the universe of discourse for which the property $\mathrm{P}(\mathrm{x})$ holds
or, in other words,
for some individual x in the universe of discourse, the property $\mathrm{P}(\mathrm{x})$ holds
or, in symbols,

$$
\begin{aligned}
& \exists x \cdot P(x)
\end{aligned} \Leftrightarrow \exists \exists y \cdot P(y)
$$

$$
\begin{array}{r}
p_{1}+p_{2}+\cdots+p_{n}=n+1 \Rightarrow \exists i=1, \ldots, n . \\
p_{i}>1
\end{array}
$$

Example: The Pigeonhole Principle.
Let n be a positive integer. If $n+1$ letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval $[\mathrm{a}, \mathrm{b}]$. For every y in between $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$, there exists v in between a and b such that $\mathrm{f}(v)=\mathrm{y}$.

Intuition:

The main proof strategy for existential statements:

To prove a goal of the form

$$
\exists x . P(x)
$$

find a witness for the existential statement; that is, a value of x, say w, for which you think $P(x)$ will be true, and show that indeed $P(w)$, i.e. the predicate $P(x)$ instantiated with the value w, holds.

Proof pattern:

In order to prove

$$
\exists x . P(x)
$$

1. Write: Let $w=\ldots$ (the witness you decided on).
2. Provide a proof of $\mathrm{P}(w)$.

Scratch work:

Before using the strategy

Assumptions

Goal
$\exists x . P(x)$

After using the strategy
Assumptions
Goals
$P(w)$
$w=\ldots$ (the witness you decided on)
$-88-$

Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k=i^{2}-j^{2}$.
Proof: Let k be du arbitrary po. int.

RIP: Э nat. iand j. $4 k=i^{2}-j^{2}$. Scratch | Let i | $=k+1$ and $j=k-1$ | $4 k$ | k | i | j |
| ---: | :--- | :--- | :--- | :--- | :--- |
| $i^{2}-j^{2}-j^{2}$ | | | | | |
| So | $=(k+1)^{2}-(k-1)^{2}$ | 4 | 1 | 2 | 0 |
| $4-0$ | | | | | |
| | $=\cdots$ | 2 | 3 | 1 | $9-1$ |
| | $=4 k$ | 12 | 3 | 4 | 2 |
| 16 | 4 | 2 | | | |

$$
\exists x P(x)
$$

The use of existential statements:
To use an assumption of the form $\exists x . P(x)$, introduce a new variable x_{0} into the proof to stand for some individual for which the property $P(x)$ holds. This means that you can now assume $P\left(x_{0}\right)$ true.
Using the existentid statement

$$
P\left(x_{0}\right)
$$

Some non-sense
Assmptions
Let x be arbitany

$$
\text { RTP: }(\exists y \cdot y=0) \Rightarrow x=0
$$ Jy. $y=0$

minsing the exestated staknet

$$
x=0
$$

proper use of axistentid stbent

$$
y_{0}=0
$$

R2P: God

$$
\forall x .(\exists y y=0) \Rightarrow x=0
$$

RTP:

Theorem 24 For all integers l, m, n, if $l \mid m$ and $m \mid n$ then $l \mid n$.
Proof: Let l, m, n be arbitron integers.
Assume $\quad l \mid m \stackrel{\text { by def }}{\Leftrightarrow} \exists$ int $i . l_{i}=m$ (1) and $m / n \Leftrightarrow$ minty. $m g=n$ (2)
RIP $\quad l \mid n \Leftrightarrow d y \nexists k \cdot l_{k}=n$ Let $k=$ io. jo
From (1), we hare io int. $l \cdot i_{0}=m$
From (1), we have jo int. $m \cdot j_{0}=n$
Then $n=m \cdot j o=l \cdot(i 0 . j 0) . \delta o l / n$.

Unique existence

The notation

$$
\exists!x . P(x)
$$

stands for
the unique existence of an x for which the property $P(x)$ holds .

That is,

$$
\exists x . \mathrm{P}(\mathrm{x}) \wedge(\forall \mathrm{y} . \forall z \cdot(\mathrm{P}(\mathrm{y}) \wedge \mathrm{P}(z)) \Longrightarrow \mathrm{y}=\mathrm{z})
$$

Disjunction

Disjunctive statements are of the form
P or Q
or, in other words,

> either P, Q, or both hold
or, in symbols,

The main proof strategy for disjunction:

To prove a goal of the form

$$
P \vee Q
$$

you may

1. try to prove P (if you succeed, then you are done); or
2. try to prove Q (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either P or Q.

Proposition 25 For all integers n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.
Proof: Let n be an arbilvang integer.
Try to show that $n^{2} \equiv 0(\bmod 4) \times$
Try to show that $n^{2} \equiv 1$ (mara 4) x
By cases, consider (1) n is even and (2) n is odd.
CASE 1: $n=2 i$ for some int i.
Then $n^{2}=4 i^{2} \equiv 0(\operatorname{mor} 4)$ and we are done.
CASE 2: $n=2 j+1$ for sine inf j.
Then $n^{2}=(2 j+1)^{2}=4 j^{2}+4 j+1 \equiv 1(\bmod \varphi)$ and we are done. 100 -

The use of disjunction:

$P_{1} \cup P_{2}$
To use a disjunctive assumption

$$
P_{1} \vee P_{2}
$$

to establish a goal Q , consider the following two cases in turn: (i) assume P_{1} to establish Q , and (ii) assume P_{2} to establish Q.

Scratch work:

Before using the strategy

Assumptions
 Goal

Q

$$
P_{1} \vee P_{2}
$$

After using the strategy

Assumptions	Goal	Assumptions	Goal
\vdots	Q		Q
P_{1}		\vdots	
		P_{2}	

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$$
P_{1} \vee P_{2}
$$

write: We prove the following two cases in turn: (i) that assuming P_{1}, we have Q ; and ($\mathfrak{i i}$) that assuming P_{2}, we have Q . Case (\mathfrak{i}): Assume P_{1}. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_{2}. and provide a proof of Q from it and the other assumptions.

$$
a \equiv a(\bmod m)
$$

A little arithmetic
Lemma 27 For all positive integers p and natural numbers m, if $\mathrm{m}=0$ or $\mathrm{m}=\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 1(\bmod \mathrm{p})$.
Proof: Let p be pos.mb. and m nat. nuber.
Assume: $m=0 \vee m=p$.
RIP: $\binom{p}{m}=1(\operatorname{mud} p)$

$$
\binom{p}{m}=\frac{p!}{m!(p-m)!}
$$

Coset (1): Say $m=0$
Then $\binom{p}{0}=1$
and mere dine

CABE 2: Boy $m=p$

$$
\text { Then }\binom{p}{p}=1
$$

and we are done

Lemma 28 For all integers p and m, if p is prime and $0<m<p$ then $\binom{p}{m} \equiv 0(\bmod p)$.
Proof: Let pm bean arbitrary integers.
Assume P is prime. and $0<m<p$.
RIP $\binom{p}{m} \equiv 0(\operatorname{mor} P) \Leftrightarrow\binom{p}{m}$ is a multiple of p.
Since

$$
\binom{p}{m}=\frac{p!}{m!(p-m)!}=p \cdot\left[\frac{(p-1)!}{m!(p-m)!}\right]
$$

We are done provided we show $\frac{(p-1)!}{m!(p-m)!}$ is an integer!
$p \cdot \frac{(p-1)!}{m!(p-m)!}$ is an integer.
Hence m ! $(p-m)$! divides $p \cdot(p-1)$!
As $m<p \quad p-m<p$
By prime factorisation the oren

$$
m!(p-m)!\text { divides }(p-1)!
$$

and $\frac{(p-1)!}{m!(p-m)!}$ is an integer.

Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{p}{m} \equiv 0(\bmod p)$ or $\binom{p}{m} \equiv 1(\bmod p)$.

Proof:

