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4. On induction
4.1. Basic exercises

1. Prove that for all natural numbers n≥ 3, if n distinct points on a circle are joined in consecutive
order by straight lines, then the interior angles of the resulting polygon add up to 180 · (n− 2)
degrees.

2. Prove that, for any positive integer n, a 2n × 2n square grid with any one square removed can
be tiled with L-shaped pieces consisting of 3 squares.

4.2. Core exercises
1. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

(b) Suppose k is a positive integer that is not prime. Then 2k − 1 is not prime.

2. Prove that
∀n ∈ N. ∀x ∈ R. x ≥ −1 =⇒ (1+ x)n ≥ 1+ n · x

3. Recall that the Fibonacci numbers Fn for n ∈ N are defined recursively by F0 = 0, F1 = 1, and
Fn+2 = Fn + Fn+1 for n ∈ N.

a) Prove Cassini’s Identity: For all n ∈ N,

Fn · Fn+2 = Fn+1
2 + (−1)n+1

b) Prove that for all natural numbers k and n,

Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk

c) Deduce that Fn | Fl·n for all natural numbers n and l .

d) Prove that gcd(Fn+2, Fn+1) terminates with output 1 in n steps for all positive integers n.

e) Deduce also that:

(i) for all positive integers n< m, gcd(Fm, Fn) = gcd(Fm−n, Fn),

and hence that:

(ii) for all positive integers m and n, gcd(Fm, Fn) = Fgcd(m,n).
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f) Show that for all positive integers m and n, (Fm · Fn) | Fm·n if gcd(m, n) = 1.

g) Conjecture and prove theorems concerning the following sums for any natural number n:

(i)
∑n

i=0 F2·i

(ii)
∑n

i=0 F2·i+1

(iii)
∑n

i=0 Fi

4.3. Optional exercises
1. Recall the gcd0 function from §3.3.3. Use the Principle of Mathematical Induction from basis 2

to formally establish the following correctness property of the algorithm:

For all natural numbers l ≥ 2, we have that for all positive
integers m, n, if m+ n≤ l then gcd0(m, n) terminates.

2. The set of univariate polynomials (over the rationals) on a variable x is defined as that of
arithmetic expressions equal to those of the form

∑n
i=0 ai · x i , for some n ∈ N and some

coe�cients a0, a1, . . . , an ∈Q.

(a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and p(x) · q(x).

(b) Deduce as a corollary that, for all a, b ∈Q, the linear combination a · p(x) + b · q(x) of
two polynomials p(x) and q(x) is a polynomial.

(c) Show that there exists a polynomial p2(x) such that p2(n) =
∑n

i=0 i2 = 02 + 12 + · · ·+ n2

for every n ∈ N.1

Hint: Note that for every n ∈ N,

(n+ 1)3 =
n
∑

i=0

(i + 1)3 −
n
∑

i=0

i3

(d) Show that, for every k ∈ N, there exists a polynomial pk(x) such that, for all n ∈ N,
pk(n) =
∑n

i=0 ik = 0k + 1k + · · ·+ nk.

Hint: Generalise the hint above, and the similar identity

(n+ 1)2 =
n
∑

i=0

(i + 1)2 −
n
∑

i=0

i2

1Chapter 2.5 of Concrete Mathematics by R.L. Graham, D.E. Knuth and O. Patashnik looks at this in great detail.
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