Discrete Mathematics

Exercises 4

Marcelo Fiore Ohad Kammar Dima Szamozvancev

4. On induction

4.1. Basic exercises

1. Prove that for all natural numbers $n \geq 3$, if n distinct points on a circle are joined in consecutive order by straight lines, then the interior angles of the resulting polygon add up to $180 \cdot(n-2)$ degrees.
2. Prove that, for any positive integer n, a $2^{n} \times 2^{n}$ square grid with any one square removed can be tiled with L-shaped pieces consisting of 3 squares.

4.2. Core exercises

1. Establish the following:
(a) For all positive integers m and n,

$$
\left(2^{n}-1\right) \cdot \sum_{i=0}^{m-1} 2^{i \cdot n}=2^{m \cdot n}-1
$$

(b) Suppose k is a positive integer that is not prime. Then $2^{k}-1$ is not prime.
2. Prove that

$$
\forall n \in \mathbb{N} . \forall x \in \mathbb{R} . x \geq-1 \Longrightarrow(1+x)^{n} \geq 1+n \cdot x
$$

3. Recall that the Fibonacci numbers F_{n} for $n \in \mathbb{N}$ are defined recursively by $F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n}+F_{n+1}$ for $n \in \mathbb{N}$.
a) Prove Cassini's Identity: For all $n \in \mathbb{N}$,

$$
F_{n} \cdot F_{n+2}=F_{n+1}^{2}+(-1)^{n+1}
$$

b) Prove that for all natural numbers k and n,

$$
F_{n+k+1}=F_{n+1} \cdot F_{k+1}+F_{n} \cdot F_{k}
$$

c) Deduce that $F_{n} \mid F_{l \cdot n}$ for all natural numbers n and l.
d) Prove that $\operatorname{gcd}\left(F_{n+2}, F_{n+1}\right)$ terminates with output 1 in n steps for all positive integers n.
e) Deduce also that:
(i) for all positive integers $n<m, \operatorname{gcd}\left(F_{m}, F_{n}\right)=\operatorname{gcd}\left(F_{m-n}, F_{n}\right)$, and hence that:
(ii) for all positive integers m and $n, \operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}$.
f) Show that for all positive integers m and $n,\left(F_{m} \cdot F_{n}\right) \mid F_{m \cdot n}$ if $\operatorname{gcd}(m, n)=1$.
g) Conjecture and prove theorems concerning the following sums for any natural number n :
(i) $\sum_{i=0}^{n} F_{2 \cdot i}$
(ii) $\sum_{i=0}^{n} F_{2 \cdot i+1}$
(iii) $\sum_{i=0}^{n} F_{i}$

4.3. Optional exercises

1. Recall the gcd0 function from §3.3.3. Use the Principle of Mathematical Induction from basis 2 to formally establish the following correctness property of the algorithm:

For all natural numbers $l \geq 2$, we have that for all positive integers m, n, if $m+n \leq l$ then $\operatorname{gcd} 0(m, n)$ terminates.
2. The set of univariate polynomials (over the rationals) on a variable x is defined as that of arithmetic expressions equal to those of the form $\sum_{i=0}^{n} a_{i} \cdot x^{i}$, for some $n \in \mathbb{N}$ and some coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Q}$.
(a) Show that if $p(x)$ and $q(x)$ are polynomials then so are $p(x)+q(x)$ and $p(x) \cdot q(x)$.
(b) Deduce as a corollary that, for all $a, b \in \mathbb{Q}$, the linear combination $a \cdot p(x)+b \cdot q(x)$ of two polynomials $p(x)$ and $q(x)$ is a polynomial.
(c) Show that there exists a polynomial $p_{2}(x)$ such that $p_{2}(n)=\sum_{i=0}^{n} i^{2}=0^{2}+1^{2}+\cdots+n^{2}$ for every $n \in \mathbb{N} .{ }^{1}$

Hint: Note that for every $n \in \mathbb{N}$,

$$
(n+1)^{3}=\sum_{i=0}^{n}(i+1)^{3}-\sum_{i=0}^{n} i^{3}
$$

(d) Show that, for every $k \in \mathbb{N}$, there exists a polynomial $p_{k}(x)$ such that, for all $n \in \mathbb{N}$, $p_{k}(n)=\sum_{i=0}^{n} i^{k}=0^{k}+1^{k}+\cdots+n^{k}$.
Hint: Generalise the hint above, and the similar identity

$$
(n+1)^{2}=\sum_{i=0}^{n}(i+1)^{2}-\sum_{i=0}^{n} i^{2}
$$

[^0]
[^0]: ${ }^{1}$ Chapter 2.5 of Concrete Mathematics by R.L. Graham, D.E. Knuth and O. Patashnik looks at this in great detail.

