On Enumerability

Marcelo Fiore

Definition 1. A set A is said to be enumerable if there exists a surjection $\mathbb{N} \rightarrow A$.
Example 2. The set of integers \mathbb{Z} is enumerable because there exists a surjective function $e: \mathbb{N} \rightarrow \mathbb{Z}$; take for instance the function defined as

$$
e(n)=(-1)^{n \bmod 2}((n+1) \operatorname{div} 2)
$$

for all $n \in \mathbb{N}$.
Example 3. The set of strings $\{0,1\}^{*}$ is enumerable because there exists a surjective function $e: \mathbb{N} \rightarrow\{0,1\}^{*}$; take for instance the function defined as

$$
e(n)=b_{\ell} \ldots b_{0} \quad, \text { where } n+1=2^{\ell+1}+\sum_{k=0}^{\ell} b_{k} 2^{k} \quad\left(0 \leq b_{k} \leq 1, \forall 0 \leq k \leq \ell\right)
$$

for all $n \in \mathbb{N}$.
Lemma 4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjections then $g \circ f: A \rightarrow C$ is a surjection.

Corollary 5. If A is enumerable and there exists a surjection $A \rightarrow B$ then B is enumerable.

Definition 6. We let

$$
\mathcal{P}_{\mathrm{fin}}(A)=\{S \subseteq A \mid S \text { is finite }\}
$$

Example 7. The function $e:\{0,1\}^{*} \rightarrow \mathcal{P}_{\text {fin }}(\mathbb{N})$ defined, for all $b_{\ell} \ldots b_{0} \in\{0,1\}^{*}$, by

$$
e\left(b_{\ell} \ldots b_{0}\right)=\left\{i \in \mathbb{N} \mid b_{i}=1(0 \leq i \leq \ell)\right\}
$$

is surjective. Hence, by Example 3 and Corollary 5, $\mathcal{P}_{\text {fin }}(\mathbb{N})$ is enumerable.
One can also show that $\mathcal{P}_{\text {fin }}(\mathbb{N})$ is enumerable directly. Indeed, the function $e: \mathbb{N} \rightarrow \mathcal{P}_{\text {fin }}(\mathbb{N})$ defined, for all $n \in \mathbb{N}$, by

$$
e(n)=\left\{i \in \mathbb{N} \mid b_{i}=1 \text { where } n=\sum_{k \in \mathbb{N}} b_{k} 2^{k} \quad\left(0 \leq b_{k} \leq 1, \forall k \in \mathbb{N}\right)\right\}
$$

is surjective.

Lemma 8. If A is enumerable then $\mathcal{P}_{\text {fin }}(A)$ is enumerable.
Proof: Let $e: \mathbb{N} \rightarrow A$ be a surjection.
The function $e^{\#}: \mathcal{P}_{\text {fin }}(\mathbb{N}) \rightarrow \mathcal{P}_{\text {fin }}(A)$ defined, for all finite $S \subseteq \mathbb{N}$, by

$$
e^{\#}(S)=\{e(n) \mid n \in S\}
$$

is a surjection; and, by Example 7 and Corollary 5 , we have that $\mathcal{P}_{\text {fin }}(A)$ is enumerable.
Example 9. The cartesian product $\mathbb{N} \times \mathbb{N}$ is enumerable because there exists a surjection $e: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$; take for instance the function defined, for all $n \in \mathbb{N}$, by

$$
e(n)=(k, \ell-k) \quad, \text { where } n=\frac{\ell(\ell+1)}{2}+k \text { with } 0 \leq k \leq \ell .
$$

(Notice that e is surjective because, for every $(i, j) \in \mathbb{N} \times \mathbb{N}$, there exists $n=\frac{(j+i)(j+i+1)}{2}+i \in \mathbb{N}$ such that $e(n)=(i, j)$.)

Lemma 10. If A and B are enumerable then $A \times B$ is enumerable.
In particular, if A is enumerable then, for all $n \in \mathbb{N}, A^{n}$ is enumerable.
Proof: Let $f: \mathbb{N} \rightarrow A$ and $g: \mathbb{N} \rightarrow B$ be surjections.
The function $f \times g: \mathbb{N} \times \mathbb{N} \rightarrow A \times B$ defined, for all $(m, n) \in \mathbb{N}$, by

$$
(f \times g)(m, n)=(f(m), g(n))
$$

is a surjection; and, by Example 9 and Corollary 5, we have that $A \times B$ is enumerable.
Definition 11. For a set I and a family of sets $\left\{A_{i}\right\}_{i \in I}$ we let

$$
\biguplus_{i \in I} A_{i}=\left\{(i, a) \mid i \in I \text { and } a \in A_{i}\right\} .
$$

Lemma 12. For an enumerable set I and a family of enumerable sets $\left\{A_{i}\right\}_{i \in I}$, the set $\biguplus_{i \in I} A_{i}$ is enumerable.

Proof: Let $e: \mathbb{N} \rightarrow I$ be a surjection and, for all $i \in I$, let $e_{i}: \mathbb{N} \rightarrow A_{i}$ be surjections.
The function $\varepsilon: \mathbb{N} \times \mathbb{N} \rightarrow \biguplus_{i \in I} A_{i}$ defined, for all $(m, n) \in \mathbb{N} \times \mathbb{N}$, by

$$
\varepsilon(m, n)=\left(i, e_{i}(n)\right) \quad, \text { where } i=e(m)
$$

is a surjection; and hence, by Example 9 and Corollary 5, we have that $\biguplus_{i \in I} A_{i}$ is enumerable.

Corollary 13. If A is enumerable then A^{*} is enumerable.
Proof: The function $e: \biguplus_{n \in \mathbb{N}} A^{n} \rightarrow A^{*}$ defined, for all $\ell \in \mathbb{N}$ and $a_{1}, \ldots, a_{\ell} \in A$, by

$$
e\left(\ell,\left(a_{1}, \ldots, a_{\ell}\right)\right)=a_{1} \ldots a_{\ell}
$$

is surjective; and hence, by Lemma 12 and Corollary 5 , we have that A^{*} is enumerable.

Lemma 14. For $S \subseteq A$, if S is non-empty and A is enumerable then S is enumerable.
Proof: Let $\emptyset \neq S \subseteq A$, and let $e: \mathbb{N} \rightarrow A$ be surjective.
Define $m: \mathbb{N} \rightarrow \mathbb{N}$ by induction as follows

$$
\begin{array}{ll}
m(0) & =\min \{n \mid e(n) \in S\} \\
m(k+1) & =\min \{n \mid n>m(k) \text { and } e(n) \in S\} \quad(k \in \mathbb{N})
\end{array}
$$

where, by convention, $\min \emptyset=m(0)$.
Then, the function $e^{\prime}: \mathbb{N} \rightarrow S$ defined, for all $k \in \mathbb{N}$, by

$$
e^{\prime}(k)=e(m(k))
$$

is surjective; and hence S is enumerable.
Corollary 15. Non-empty finite sets are enumerable.

