## Randomised Algorithms

Lecture 1: Introduction to Course \& Introduction to Chernoff Bounds

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023


UNIVERSITY OF
CAMBRIDGE

## Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds

1. Introduction © T. Sauerwald

Introduction

## Some stuff you should know...

In this course we will assume some basic knowledge of probability:

- random variable
- computing expectations and variances
- notions of independence
- "general" idea of how to compute probabilities (manipulating, counting and estimating)


You should also be familiar with basic computer science, mathematics knowledge such as:

- graphs
- basic algorithms (sorting, graph algorithms etc.)
- matrices, norms and vectors

Many of the techniques in this course (Markov Chains, Concentration of Measure, Spectral Theory) are very relevant to other popular areas of research and employment such as Data Science and Machine Learning

## Textbooks



- ( $\star$ ) Michael Mitzenmacher and Eli Upfal. Probability and Computing Randomized Algorithms and Probabilistic Analysis, Cambridge University Press, 2nd edition, 2017
- David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms, Cambridge University Press, 2011
- Cormen, T.H., Leiserson, C.D., Rivest, R.L. and Stein, C. Introduction to Algorithms. MIT Press (3rd ed.), 2009
(We will adopt some of the labels (e.g., Theorem 35.6) from this book in Lectures 6-10)

1 Introduction (Lecture)

- Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.
2-3 Concentration (Lectures)

- Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and Applications; Extensions: Hoeffding's Inequality and Method of Bounded Differences; Applications.
4 Markov Chains and Mixing Times (Lecture)
- Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to Stationary Distribution; Variation Distance and Mixing Time
5 Hitting Times and Application to 2-SAT (Lecture)
- Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT Algorithm
Lectures 6-8 introduce linear programming, a (mostly) deterministic but very powerful technique to solve various optimisation problems.
6-7 Linear Programming (Lectures)
- Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming
8 Travelling Salesman Problem (Interactive Demo)
- Hardness of the general TSP problem, Formulating TSP as an integer program; Classical TSP instance from 1954; Branch \& Bound Technique to solve integer programs using linear programs

[^0]We then see how we can efficiently combine linear programming with randomised techniques, in particular, rounding:

9-10 Randomised Approximation Algorithms (Lectures)

- MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program, Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid Algorithm
Lectures 11-12 cover a more advanced topic with ML flavour:
11-12 Spectral Graph Theory and Spectral Clustering (Lectures)
- Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger's Inequality; Clustering and Examples; Analysing Mixing Times


## Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds

1. Introduction © T. Sauerwald

A (Very) Brief Reminder of Probability Theory

## Recap: Random Variables

A random variable $X$ on $(\Omega, \Sigma, \mathbf{P})$ is a function $X: \Omega \rightarrow \mathbb{R}$ mapping each sample "outcome" to a real number.

Intuitively, random variables are the "observables" in our experiment.

- Examples of random variables
- The number of heads in three coin flips $X_{1}, X_{2}, X_{3} \in\{0,1\}$ is:

$$
X_{1}+X_{2}+X_{3}
$$

- The indicator random variable $\mathbf{1}_{\mathcal{E}}$ of an event $\mathcal{E} \in \Sigma$ given by

$$
\mathbf{1}_{\mathcal{E}}(\omega)= \begin{cases}1 & \text { if } \omega \in \mathcal{E} \\ 0 & \text { otherwise }\end{cases}
$$

For the indicator random variable $\mathbf{1}_{\mathcal{E}}$ we have $\mathbf{E}\left[\mathbf{1}_{\mathcal{E}}\right]=\mathbf{P}[\mathcal{E}]$.

- The number of sixes of two dice throws $X_{1}, X_{2} \in\{1,2, \ldots, 6\}$ is

$$
\mathbf{1}_{X_{1}=6}+\mathbf{1}_{x_{2}=6}
$$

## Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from an experiment. The setting of this is the probability space $(\Omega, \Sigma, \mathbf{P})$.

Components of the Probability Space ( $\Omega, \Sigma, \mathbf{P}$ )

- The Sample Space $\Omega$ contains all the possible outcomes $\omega_{1}, \omega_{2}, \ldots$ of the experiment.
- The Event Space $\Sigma$ is the power-set of $\Omega$ containing events, which are combinations of outcomes (subsets of $\Omega$ including $\emptyset$ and $\Omega$ ).
- The Probability Measure $\mathbf{P}$ is a function from $\Sigma$ to $\mathbb{R}$ satisfying
(ii) $0 \leq \mathbf{P}[\mathcal{E}] \leq 1$, for all $\mathcal{E} \in \Sigma$
(ii) $\mathbf{P}[\Omega]=1$
(iii) If $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots \in \Sigma$ are pairwise disjoint $\left(\mathcal{E}_{i} \cap \mathcal{E}_{j}=\emptyset\right.$ for all $i \neq j$ ) then

$$
\mathbf{P}\left[\bigcup_{i=1}^{\infty} \mathcal{E}_{i}\right]=\sum_{i=1}^{\infty} \mathbf{P}\left[\mathcal{E}_{i}\right] .
$$

1. Introduction © T. Sauerwald

A (Very) Brief Reminder of Probability Theory

## Recap: Boole's Inequality (Union Bound)

Union Bound is one of the most basic probability inequalities, yet it is extremely useful and easy to apply! Union Bound

Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ be a collection of events in $\Sigma$. Then

$$
\mathbf{P}\left[\bigcup_{i=1}^{n} \mathcal{E}_{i}\right] \leq \sum_{i=1}^{n} \mathbf{P}\left[\mathcal{E}_{i}\right]
$$

A Proof using Indicator Random Variables:

1. Let $\mathbf{1}_{\mathcal{E}_{i}}$ be the random variable that takes value 1 if $\mathcal{E}_{i}$ holds, 0 otherwise
2. $\mathbf{E}\left[\mathbf{1}_{\mathcal{E}_{i}}\right]=\mathbf{P}\left[\mathcal{E}_{i}\right]$ (Check this)
3. It is clear that $\mathbf{1}_{\mathrm{U}_{i=1}^{n} \mathcal{E}_{i}} \leq \sum_{i=1}^{n} \mathbf{1}_{\mathcal{E}_{i}}$ (Check this)
4. Taking expectation completes the proof.

## Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds

1. Introduction © T. Sauerwald

Basic Examples

## A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G) This kind of "random guessing" will appear often in this course!
Start with $S \leftarrow \emptyset$
: For each $v \in V$, add $v$ to $S$ with probability $1 / 2$
3: Return $S$
Proposition More details on approximation algorithms from Lecture 9 onwards!
RANDMAXCUT( $G$ ) gives a 2-approximation using time $O(n)$.
Proof: Later: learn stronger tools that imply concentration around the expectation!

- We need to analyse the expectation of $e\left(S, S^{c}\right)$ :
$\mathbf{E}\left[e\left(S, S^{c}\right)\right]=\mathbf{E}\left[\sum_{\{u, v\} \in E} \mathbf{1}_{\left\{u \in S, v \in S^{c}\right\} \cup\left\{u \in S^{c}, v \in S\right\}}\right]$
$=\sum_{\{u, v\} \in E} \mathbf{E}\left[\mathbf{1}_{\left\{u \in S, v \in S^{c}\right\} \cup\left\{u \in S^{c}, v \in S\right\}}\right]$
$=\sum_{\{u, v\} \in E} \mathbf{P}\left[\left\{u \in S, v \in S^{c}\right\} \cup\left\{u \in S^{c}, v \in S\right\}\right]$

$$
=2 \sum_{\{u, v\} \in E} \mathbf{P}\left[u \in S, v \in S^{c}\right]=2 \sum_{\{u, v\} \in E} \mathbf{P}[u \in S] \cdot \mathbf{P}\left[v \in S^{c}\right]=|E| / 2 .
$$

- Since for any $S \subseteq V$, we have $e\left(S, S^{C}\right) \leq|E|$, concluding the proof.


## A Randomised Algorithm for MAX-CUT (1/2)

$E(A, B)$ : set of edges with one endpoint in $A \subseteq V$ and the other in $B \subseteq V$.
MAX-CUT Problem

- Given: Undirected graph $G=(V, E)$
- Goal: Find $S \subseteq V$ such that $e\left(S, S^{c}\right):=|E(S, V \backslash S)|$ is maximised.

Applications:

- network design, VLSI design
- clustering, statistical physics

Comments:

- This example will appear again in the course
- MAX-CUT is NP-hard
- It is different from the clustering problem, where we want to find a sparse cut
- Note that the MIN-CUT problem is solvable in polynomial time!

$S=\{a, b, e\}$
$e\left(S, S^{c}\right)=6$

> 1. Introduction © T. Sauerwald

Basic Examples

## Example: Coupon Collector



Source: https://wwu .express.co.uk/life-style/life/567954/Discount-codes-money- saving-vouchers- coupons-mum
This is a very important example in the design and analysis of randomised algorithms.
Coupon Collector Problem $\qquad$
Suppose that there are $n$ coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

Example Sequence for $n=8: 7,6,3,3,3,2,5,4,2,4,1,4,2,1,4,3,1,4,8 \checkmark$

Exercise (Supervision) $\quad \ln$ this course: $\log n=\ln n$

1. Prove it takes $n \sum_{k=1}^{n} \frac{1}{k} \approx n \log n$ expected boxes to collect all coupons
2. Use Union Bound to prove that the probability it takes more than
$n \log n+c n$ boxes to collect all $n$ coupons is $\leq e^{-c}$.
Hint: It is useful to remember that $1-x \leq e^{-x}$ for all $x$

## Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds

1. Introduction © $T$. Sauerwald

Introduction to Chernoff Bounds

## Chernoff Bounds: A Tool for Concentration

- Chernoffs bounds are "strong" bounds on the tail probabilities of sums of independent random variables
- random variables can be discrete (or continuous)
- usually these bounds decrease exponentially as opposed to a polynomial decrease in Markov's or Chebyshev's inequality (see example)
- easy to apply, but requires independence
- have found various applications in:
- Randomised Algorithms

Statistics
Hermann Chernoff (1923-)


- Random Projections and Dimensionality Reduction
- Learning Theory (e.g., PAC-learning)
- Concentration refers to the phenomena where random variables are very close to their mean
- This is very useful in randomised algorithms as it ensures an almost deterministic behaviour
- It gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim
3. Introduction © T. Sauerwald

Introduction to Chernoff Bounds

## Recap: Markov and Chebyshev

- Markov's Inequality

If $X$ is a non-negative random variable, then for any $a>0$,

$$
\mathbf{P}[X \geq a] \leq \mathbf{E}[X] / a
$$

Chebyshev's Inequality
If $X$ is a random variable, then for any $a>0$,

$$
\mathbf{P}[|X-\mathbf{E}[X]| \geq a] \leq \mathbf{V}[X] / a^{2}
$$

- Let $f: \mathbb{R} \rightarrow[0, \infty)$ and increasing, then $f(X) \geq 0$, and thus

$$
\mathbf{P}[X \geq a] \leq \mathbf{P}[f(X) \geq f(a)] \leq \mathbf{E}[f(X)] / f(a)
$$

- Similarly, if $g: \mathbb{R} \rightarrow[0, \infty)$ and decreasing, then $g(X) \geq 0$, and thus

$$
\mathbf{P}[X \leq a] \leq \mathbf{P}[g(X) \geq g(a)] \leq \mathbf{E}[g(X)] / g(a)
$$

Chebyshev's inequality (or Markov) can be obtained by chosing $f(X):=(X-\mu)^{2}$ (or $f(X):=X$, respectively).

Markov and Chebyshev use the first and second moment of the random variable. Can we keep going?

- Yes!

We can consider the first, second, third and more moments! That is the basic idea behind the Chernoff Bounds

## Example: Coin Flips (1/3)

- Consider throwing a fair coin $n$ times and count the total number of heads
- $X_{i} \in\{0,1\}, X=\sum_{i=1}^{n} X_{i}$ and $\mathbf{E}[X]=n \cdot 1 / 2=n / 2$
- The Chernoff Bound gives for any $\delta>0$,

$$
\mathbf{P}[X \geq(1+\delta)(n / 2)] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{n / 2}
$$

- The above expression equals 1 only for $\delta=0$, and then it gives a value strictly less than 1 (check this!)
- The inequality is exponential in $n$, (for fixed $\delta$ ) which is much better than Chebyshev's inequality.

What about a concrete value of $n$, say $n=100$ ?


## Outline

## Randomised Algorithms

Lecture 2: Concentration Inequalities, Application to Balls-into-Bins
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023
UNIVERSITY OF
CAMBRIDGE

How to Derive Chernoff Bounds

Application 1: Balls into Bins

## Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)
Suppose $X_{1}, \ldots, X_{n}$ are independent Bernoulli random variables with parameter $p_{i}$. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
$$

The three main steps in deriving Chernoff bounds for sums of independent random variables $X=X_{1}+\cdots+X_{n}$ are:

1. Instead of working with $X$, we switch to the moment generating function $e^{\lambda X}, \lambda>0$ and apply Markov's inequality $\sim \mathbf{E}\left[e^{\lambda X}\right]$

Proof:

1. For $\lambda>0$,

$$
\mathbf{P}[X \geq(1+\delta) \mu] \underset{e^{\lambda x}}{\leq} \mathbf{P} \text { is incr }\left[e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right] \underset{\text { Markov }}{\leq} e^{-\lambda(1+\delta) \mu} \mathbf{E}\left[e^{\lambda X}\right]
$$

2. $\mathbf{E}\left[e^{\lambda X}\right]=\mathbf{E}\left[e^{\lambda \sum_{i=1}^{n} x_{i}}\right] \underset{\text { indep }}{=} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda x_{i}}\right]$
3. 

$$
\mathbf{E}\left[e^{\lambda x_{i}}\right]=e^{\lambda} p_{i}+\left(1-p_{i}\right)=1+p_{i}\left(e^{\lambda}-1\right) \underset{1+x \leq e^{x}}{\leq} e^{p_{i}\left(e^{\lambda}-1\right)}
$$

## Chernoff Bound: Proof

1. For $\lambda>0$,

$$
\mathbf{P}[X \geq(1+\delta) \mu] \underset{e^{\lambda x} \text { is incr }}{=} \mathbf{P}\left[e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right]_{\text {Markov }}^{\leq} e^{-\lambda(1+\delta) \mu} \mathbf{E}\left[e^{\lambda X}\right]
$$

2. $\mathbf{E}\left[e^{\lambda X}\right]=\mathbf{E}\left[e^{\lambda \sum_{i=1}^{n} x_{i}}\right] \underset{\text { indep }}{=} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}}\right]$
3. 

$$
\mathbf{E}\left[e^{\lambda x_{i}}\right]=e^{\lambda} p_{i}+\left(1-p_{i}\right)=1+p_{i}\left(e^{\lambda}-1\right) \underset{1+x \leq e^{\lambda}}{\leq} e^{p_{i}\left(e^{\lambda}-1\right)}
$$

4. Putting all together

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq e^{-\lambda(1+\delta) \mu} \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}=e^{-\lambda(1+\delta) \mu} e^{\mu\left(e^{\lambda}-1\right)}
$$

5. Choose $\lambda=\log (1+\delta)>0$ to get the result.

## Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too small compared to its mean:

- Chernoff Bounds (General Form, Lower Tail)

Suppose $X_{1}, \ldots, X_{n}$ are independent Bernoulli random variables with parameter $p_{i}$. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \leq(1-\delta) \mu] \leq\left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}
$$

and thus, by substitution, for any $t<\mu$,

$$
\mathbf{P}[X \leq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t}
$$

Exercise on Supervision Sheet
Hint: multiply both sides by -1 and repeat the proof of the Chernoff Bound
2. Concentration © T. Sauerwald

## Outline

How to Derive Chernoff Bounds

Application 1: Balls into Bins

All upper tail bounds hold even under a relaxed independence assumption: For all $1 \leq i \leq n$ and $x_{1}, x_{2}, \ldots, x_{i-1} \in\{0,1\}$,

$$
\mathbf{P}\left[X_{i}=1 \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right] \leq p_{i}
$$



- Balls into Bins Model

You have $m$ balls and $n$ bins. Each ball is allocated in a bin picked independently and uniformly at random.

- A very natural but also rich mathematical model
- In computer science, there are several interpretations:

1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins Model and the Coupon Collector Problem.

Balls into Bins Model
You have $m$ balls and $n$ bins. Each ball is allocated in a bin picked independently and uniformly at random.

## Question 1: How large is the maximum load if $m=2 n \log n$ ?

- Focus on an arbitrary single bin. Let $X_{i}$ the indicator variable which is 1 iff ball $i$ is assigned to this bin. Note that $p_{i}=\mathbf{P}\left[X_{i}=1\right]=1 / n$.
- The total balls in the bin is given by $X:=\sum_{i=1}^{n} X_{i}$. here we could have used
- Since $m=2 n \log n$, then $\mu=\mathbf{E}[X]=2 \log n$ the "nicer" bounds as well!
- By the Chernoff Bound,

$\mathbf{P}[X \geq 6 \log n] \leq e^{-2 \log n}\left(\frac{2 e \log n}{6 \log n}\right)^{6 \log n} \leq e^{-2 \log n}=n^{-2}$

2. Concentration © T. Sauerwald

Application 1: Balls into Bins

## Balls into Bins: Bounding the Maximum Load (3/4)

- Let $\mathcal{E}_{j}:=\{X(j) \geq 6 \log n\}$, that is, bin $j$ receives at least $6 \log n$ balls.
- We are interested in the probability that at least one bin receives at least $6 \log n$ balls $\Rightarrow$ this is the event $\bigcup_{j=1}^{n} \mathcal{E}_{j}$
- By the Union Bound,

$$
\mathbf{P}\left[\bigcup_{j=1}^{n} \mathcal{E}_{j}\right] \leq \sum_{j=1}^{n} \mathbf{P}\left[\mathcal{E}_{j}\right] \leq n \cdot n^{-2}=n^{-1}
$$

- Therefore whp, no bin receives at least $6 \log n$ balls
- By pigeonhole principle, the max loaded bin receives at least $2 \log n$ balls. Hence our bound is pretty sharp.


## whp stands for with high probability:

An event $\mathcal{E}$ (that implicitly depends on an input parameter $n$ ) occurs whp if $\mathbf{P}[\mathcal{E}] \rightarrow 1$ as $n \rightarrow \infty$.
This is a very standard notation in randomised algorithms but it may vary from author to author. Be careful!

Question 2: How large is the maximum load if $m=n$ ?

- Using the Chernoff Bound:

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}(e \mu / t)^{t}
$$

$$
\mathbf{P}[X \geq t] \leq e^{-1}\left(\frac{e}{t}\right)^{t} \leq\left(\frac{e}{t}\right)^{t}
$$

- By setting $t=4 \log n / \log \log n$, we claim to obtain $\mathbf{P}[X \geq t] \leq n^{-2}$.
- Indeed:

$$
\left(\frac{e \log \log n}{4 \log n}\right)^{4 \log n / \log \log n}=\exp \left(\frac{4 \log n}{\log \log n} \cdot \log \left(\frac{e \log \log n}{4 \log n}\right)\right)
$$

- The term inside the exponential is
$\frac{4 \log n}{\log \log n} \cdot(\log (4 / e)+\log \log \log n-\log \log n) \leq \frac{4 \log n}{\log \log n}\left(-\frac{1}{2} \log \log n\right)$,
obtaining that $\mathbf{P}[X \geq t] \leq n^{-4 / 2}=n^{-2}$. This inequality only works for large enough $n$.


## Conclusions

- If the number of balls is $2 \log n$ times $n$ (the number of bins), then to distribute balls at random is a good algorithm
- This is because the worst case maximum load is whp. $6 \log n$, while the average load is $2 \log n$
- For the case $m=n$, the algorithm is not good, since the maximum load is whp. $\Theta(\log n / \log \log n)$, while the average load is 1 .
thus by the Union Bound, no bin receives more than $\Omega(\log n / \log \log n)$ balls with probability at least $1-1 / n$.


For "the discovery and analysis of balanced allocations, known as the power of two choices, and their extensive applications to practice."
"These include i-Google's web index, Akamai's overlay routing network, and highly reliable distributed data storage systems used by Microsoft and Dropbox, which are all based on variants of the power of two choices paradigm. There are many other software systems that use balanced allocations as an important ingredient."

A Better Load Balancing Approach $\qquad$ For any $m \geq n$, we can improve this by sampling twa
and then assign the ball into the bin with lesser load.
$\Rightarrow$ for $m=n$ this gives a maximum load of $\log _{2} \log n+\Theta$ (1) w.p. $1-1 / n$. ,
This is called the power of two choices: It is a common technique to improve the performance of randomised algorithms (covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

> 2. Concentration © T. Sauerwald

Application 1: Balls into Bins

## Simulation


https://www.dimitrioslos.com/balls_and_bins/visualiser.html

## Outline

Application 2: Randomised QuickSort

## Randomised Algorithms

Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions
Thomas Sauerwald (tms41@cam.ac.uk)

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: Moment Generating Functions

## QuickSort: How to Count Comparisons



## Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.
This should be your standard answer in this course $\odot$

Let us analyse QuickSort with random pivots.

1. Assume $A$ consists of $n$ different numbers, w.l.o.g., $\{1,2, \ldots, n\}$
2. Let $H_{i}$ be the deepest level where element $i$ appears in the tree.

Then the number of comparison is $H=\sum_{i=1}^{n} H_{i}$
3. We will prove that exists $C>0$ such that

$$
\mathbf{P}[H \leq C n \log n] \geq 1-n^{-1} .
$$

4. Actually, we will prove sth slightly stronger:

$$
\mathbf{P}\left[\bigcap_{i=1}^{n}\left\{H_{i} \leq C \log n\right\}\right] \geq 1-n^{-1}
$$

## Randomised QuickSort: Analysis (2/4)

- Let $P$ be a path from the root to the deepest level of some element
- A node in $P$ is called good if the corresponding pivot partitions the array into
two subarrays each of size at most $2 / 3$ of the previous one
- otherwise, the node is bad
- Further let $s_{t}$ be the size of the array at level $t$ in $P$.

- Element 2: $(2,8,9,1,7,5,6,3,4) \rightarrow(2,1,5,3,4) \rightarrow(2,5,3,4) \rightarrow(2,3) \rightarrow(2)$

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

## Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of $P$ to the deepest level of element $i$.
- For any level $j \in\{0,1, \ldots, 24 \log n-1\}$, define an indicator variable $X_{j}$ :
- $X_{j}=1$ if the node at level $j$ is bad

- $\mathbf{P}\left[X_{j}=1 \mid X_{0}=x_{0}, \ldots, X_{j-1}=x_{j-1}\right] \leq \frac{2}{3}$
- $X:=\sum_{j=0}^{24 \log n-1} X_{j}$ satisfies relaxed independence assumption (Lecture 2)

Question: But what if the path $P$ does not reach level $j$ ?
Answer: We can then simply define $X_{j}$ as the result of an independent coin flip with probability $2 / 3$.

- We start with $s_{0}=n$
- First Case, good node: $s_{k+1} \leq \frac{2}{3} \cdot s_{k}$. This even holds always,
- Second Case, bad node: $s_{k+1} \leq s_{k}$. i.e., deterministically!
$\Rightarrow$ There are at most $T=\frac{\log n}{\log (3 / 2)}<3 \log n$ many good nodes on any path $P$.
- Assume $|P| \geq C \log n$ for $C:=24$
$\Rightarrow$ number of bad vertices in the first $24 \log n$ levels is more than $21 \log n$. N
Let us now upper bound the probability that this "bad event" happens!


## Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of $P$ to the deepest level of element $i$.
- For any level $j \in\{0,1, \ldots, 24 \log n-1\}$, define an indicator variable $X_{j}$ :
$=X_{j}=1$ if the node at level $j$ is bad
$=X_{j}=0$ if the node at level $j$ is good.
- $\mathbf{P}\left[X_{j}=1 \mid X_{0}=x_{0}, \ldots, X_{j-1}=x_{j-1}\right] \leq \frac{2}{3}$
- $X:=\sum_{j=0}^{24 \log n-1} X_{j}$ satisfies relaxed independence assumption (Lecture 2)


## We can now apply the "nicer" Chernoff Bound!

- We have $\mathbf{E}[X] \leq(2 / 3) \cdot 24 \log n=16 \log n$
- Then, by the "nicer" Chernoff Bounds $\sqrt{\mathbf{P}[X \geq \mathbf{E}[X]+t] \leq e^{-2 t^{2} / n}}$
$\mathbf{P}[X>21 \log n] \leq \mathbf{P}[X>\mathbf{E}[X]+5 \log n] \leq e^{-2(5 \log n)^{2} /(24 \log n)}$

$$
=e^{-(50 / 24) \log n} \leq n^{-2} .
$$

- Hence $P$ has more than $24 \log n$ nodes with probability at most $n^{-2}$.
- As there are in total $n$ paths, by the union bound, the probability that at least one of them has more than $24 \log n$ nodes is at most $n^{-1} . \square$

3. Concentration © T. Sauerwald

Application 2: Randomised QuickSort

## Outline

## Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: Moment Generating Functions

## Randomised QuickSort: Final Remarks

- Well-known: any comparison-based sorting algorithm needs $\Omega(n \log n)$
- A classical result: expected number of comparison of randomised QuickSort is $2 n \log n+O(n)$ (see, e.g., book by Mitzenmacher \& Upfal) N $\qquad$
Supervision Exercise: Our upper bound of $O(n \log n)$ whp also immediately implies a $O(n \log n)$ bound on the expected number of comparisons!
- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time, which is not easy...
- The presented randomised algorithm for QuickSort is much easier to implement!

[^1]Application 2: Randomised QuickSort

## Hoeffding's Extension

- Besides sums of independent bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the $X_{i}$ may be unknown or hard to compute, thus it will be hard to compute the moment-aenerating function.
- Hoeffding's Lemma helps us here: You can always consider

Hoeffding's Extension Lemma
Let $X$ be a random variable with mean 0 such that $a \leq X \leq b$. Then for all $\lambda \in \mathbb{R}$,

$$
\mathbf{E}\left[e^{\lambda X}\right] \leq \exp \left(\frac{(b-a)^{2} \lambda^{2}}{8}\right)
$$

We omit the proof of this lemma!

## Hoeffding Bounds

## Method of Bounded Differences

et $X_{1}, \ldots, X_{n}$ be independent random variable with mean $\mu_{i}$ such that $a_{i} \leq X_{i} \leq b_{i}$. Let $X=X_{1}+\ldots+X_{n}$, and let $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} \mu_{i}$. Then for any $t>0$

$$
\mathbf{P}[X \geq \mu+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

and

$$
\mathbf{P}[X \leq \mu-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Proof Outline (skipped):

- Let $X_{i}^{\prime}=X_{i}-\mu_{i}$ and $X^{\prime}=X_{1}^{\prime}+\ldots+X_{n}^{\prime}$, then $\mathbf{P}[X \geq \mu+t]=\mathbf{P}\left[X^{\prime} \geq t\right]$
- $\mathbf{P}\left[X^{\prime} \geq t\right] \leq e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}^{\prime}}\right] \leq \exp \left[-\lambda t+\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}\right]$
- Choose $\lambda=\frac{4 t}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}$ to get the result.

This is not magic! you just need to optimise $\lambda$ !
3. Concentration © T. Sauerwald

Extensions of Chernoff Bounds

## Method of Bounded Differences

A function $f$ is called Lipschitz with parameters $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ if for all $i=1,2, \ldots, n$,

$$
\left|f\left(x_{1}, x_{2}, \ldots, x_{i-1}, \boldsymbol{x}_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i-1}, \widetilde{\boldsymbol{x}}_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i},
$$

where $x_{i}$ and $\widetilde{x}_{i}$ are in the domain of the $i$-th coordinate.
McDiarmid's inequality
Let $X_{1}, \ldots, X_{n}$ be independent random variables. Let $f$ be Lipschitz with parameters $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. Let $X=f\left(X_{1}, \ldots, X_{n}\right)$. Then for any $t>0$,

$$
\mathbf{P}[X \geq \mu+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

and

$$
\mathbf{P}[X \leq \mu-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

- Notice the similarity with Hoeffding's inequality!
- The proof is omitted here (it requires the concept of martingales).


## Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: Moment Generating Functions

Framework
Suppose, we have independent random variables $X_{1}, \ldots, X_{n}$. We want to study the random variable:

$$
f\left(X_{1}, \ldots, X_{n}\right)
$$

Some examples:

1. $X=X_{1}+\ldots+X_{n}$
2. In balls into bins, $X_{i}$ indicates where ball $i$ is allocated, and $f\left(X_{1}, \ldots, X_{m}\right)$ is the number of empty bins
3. $X_{i}$ indicates if the $i$-th edge is present in a graph, and $f\left(X_{1}, \ldots, X_{m}\right)$ represents the number of connected components of $G$

In all those cases (and more) we can easily prove concentration of $f\left(X_{1}, \ldots, X_{n}\right)$ around its mean by the so-called Method of Bounded Differences.

## Application 3: Balls into Bins (again...)



- Consider again $m$ balls assigned uniformly at random into $n$ bins.
- Enumerate the balls from 1 to $m$. Ball $i$ is assigned to a random bin $X_{i}$
- Let $Z$ be the number of empty bins (after assigning the $m$ balls)
- $Z=Z\left(X_{1}, \ldots, X_{m}\right)$ and $Z$ is Lipschitz with $\mathbf{c}=(1, \ldots, 1)$
(If we move one ball to another bin, number of empty bins changes by $\leq 1$.)
- By McDiarmid's inequality, for any $t \geq 0$,

$$
\mathbf{P}[|Z-\mathbf{E}[Z]|>t] \leq 2 \cdot e^{-2 t^{2} / m}
$$

This is a decent bound, but for some values of $m$ it is far from tight and stronger bounds are possible through a refined analysis.
3. Concentration © T. Sauerwald Applications of Method of Bounded Differences

## Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: Moment Generating Functions

## Application 4: Bin Packing



- We are given $n$ items of sizes in the unit interval $[0,1]$
- We want to pack those items into the fewest number of unit-capacity bins
- Suppose the item sizes $X_{i}$ are independent random variables in $[0,1]$
- Let $B=B\left(X_{1}, \ldots, X_{n}\right)$ be the optimal number of bins
- The Lipschitz conditions holds with $\boldsymbol{c}=(1, \ldots, 1)$. Why?
- Therefore

$$
\mathbf{P}[|B-\mathbf{E}[B]| \geq t] \leq 2 \cdot e^{-2 t^{2} / n}
$$

This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!

Applications of Method of Bounded Differences 17

## Moment Generating Functions

- Moment-Generating Function

The moment-generating function of a random variable $X$ is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R}
$$

Using power series of $e$ and differentiating shows
that $M_{X}(t)$ encapsulates all moments of $X$.

- Lemma

1. If $X$ and $Y$ are two r.v.'s with $M_{X}(t)=M_{Y}(t)$ for all $t \in(-\delta,+\delta)$ for some $\delta>0$, then the distributions $X$ and $Y$ are identical.
2. If $X$ and $Y$ are independent random variables, then

$$
M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)
$$

Proof of 2:
$M_{X+Y}(t)=\mathbf{E}\left[e^{t(X+Y)}\right]=\mathbf{E}\left[e^{t X} \cdot e^{t Y}\right] \stackrel{(!)}{=} \mathbf{E}\left[e^{t X}\right] \cdot \mathbf{E}\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t) \quad \square$

## Randomised Algorithms

Lecture 4: Markov Chains and Mixing Times
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023
UNIVERSITY OF
CAMBRIDGE

## Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)
4. Markov Chains and Mixing Times © T. Sauerwald

Recap of Markov Chain Basics
2

## Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)
We say that $\left(X_{t}\right)_{t=0}^{\infty}$ is a Markov Chain on State Space $\Omega$ with Initial Distribution $\mu$ and Transition Matrix $P$ if:

1. For any $x \in \Omega, \mathbf{P}\left[X_{0}=x\right]=\mu(x)$.
2. The Markov Property holds: for all $t \geq 0$ and any $x_{0}, \ldots, x_{t+1} \in \Omega$,

$$
\begin{aligned}
\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right] & =\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right] \\
& :=P\left(x_{t}, x_{t+1}\right) .
\end{aligned}
$$

From the definition one can deduce that (check!)

- For all $t, x_{0}, x_{1}, \ldots, x_{t} \in \Omega$,

$$
\begin{aligned}
& \mathbf{P}\left[X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{0}=x_{0}\right] \\
& =\mu\left(x_{0}\right) \cdot P\left(x_{0}, x_{1}\right) \cdot \ldots \cdot P\left(x_{t-2}, x_{t-1}\right) \cdot P\left(x_{t-1}, x_{t}\right) .
\end{aligned}
$$

- For all $0 \leq t_{1}<t_{2}, x \in \Omega$,

$$
\mathbf{P}\left[X_{t_{2}}=x\right]=\sum_{y \in \Omega} \mathbf{P}\left[X_{t_{2}}=x \mid X_{t_{1}}=y\right] \cdot \mathbf{P}\left[X_{t_{1}}=y\right]
$$

## What does a Markov Chain Look Like?

Example: the carbohydrate served with lunch in the college cafeteria.


## Stopping and Hitting Times

A non-negative integer random variable $\tau$ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on $X_{0}, \ldots, X_{s}$.
Example - College Carbs Stopping times:
$\checkmark$ "We had rice yesterday" $\sim \tau:=\min \left\{t \geq 1: X_{t-1}=\right.$ "rice" $\}$
$\times$ "We are having pasta next Thursday"
For two states $x, y \in \Omega$ we call $h(x, y)$ the hitting time of $y$ from $x$ :

$$
h(x, y):=\mathbf{E}_{x}\left[\tau_{y}\right]=\mathbf{E}\left[\tau_{y} \mid X_{0}=x\right] \quad \text { where } \tau_{y}=\min \left\{t \geq 1: X_{t}=y\right\} .
$$

Some distinguish between $\tau_{y}^{+}=\min \left\{t \geq 1: X_{t}=y\right\}$ and $\tau_{y}=\min \left\{t \geq 0: X_{t}=y\right\}$
A Useful Identity
Hitting times are the solution to a set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} P(x, z) \cdot h(z, y) \quad \forall x \neq y \in \Omega .
$$

## Transition Matrices and Distributions

The Transition Matrix $P$ of a Markov chain $(\mu, P)$ on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right)
$$

- $\rho^{t}=\left(\rho^{t}(1), \rho^{t}(2), \ldots, \rho^{t}(n)\right)$ : state vector at time $t$ (row vector).
- Multiplying $\rho^{t}$ by $P$ corresponds to advancing the chain one step:

$$
\rho^{t}(y)=\sum_{j \in \Omega} \rho^{t-1}(x) \cdot P(x, y) \quad \text { and thus } \quad \rho^{t}=\rho^{t-1} \cdot P .
$$

- The Markov Property and line above imply that for any $t \geq 0$

$$
\rho^{t}=\rho \cdot P^{t-1} \quad \text { and thus } \quad P^{t}(x, y)=\mathbf{P}\left[X_{t}=y \mid X_{0}=x\right] .
$$

Thus $\rho^{t}(x)=\left(\mu P^{t}\right)(x)$ and so $\rho^{t}=\mu P^{t}=\left(\mu P^{t}(1), \mu P^{t}(2), \ldots, \mu P^{t}(n)\right)$.

- Everything boils down to deterministic vector/matrix computations
$\Rightarrow$ can replace $\rho$ by any (load) vector and view $P$ as a balancing matrix!

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics

## Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

A Markov Chain is irreducible if for every state $x \in \Omega$ there is an integer $k \geq 0$ such that $P^{k}(x, x)>0$.


Finite Hitting Time Theorem
For any states $x$ and $y$ of a finite irreducible Markov Chain $h(x, y)<\infty$.

$$
\text { 4. Markov Chains and Mixing Times © T. Sauerwald } \quad \text { Irreducibililty, Periodicity and Convergence } \quad 9
$$

## Stationary Distribution

A probability distribution $\pi=(\pi(1), \ldots, \pi(n))$ is the stationary distribution of a Markov Chain if $\pi P=\pi$ ( $\pi$ is a left eigenvector with eigenvalue 1 )

College carbs example:

$$
\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right) \cdot\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 3 / 4 \\
3 / 5 & 2 / 5 & 0 \\
P
\end{array}\right)=\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{13}\right)
$$



- A Markov Chain reaches stationary distribution if $\rho^{t}=\pi$ for some $t$.
- If reached, then it persists: If $\rho^{t}=\pi$ then $\rho^{t+k}=\pi$ for all $k \geq 0$.
- Existence and Uniqueness of a Positive Stationary Distribution

Let $P$ be finite, irreducible M.C., then there exists a unique probability distribution $\pi$ on $\Omega$ such that $\pi=\pi P$ and $\pi(x)=1 / h(x, x)>0, \forall x \in \Omega$.

$$
\text { 4. Markov Chains and Mixing Times © T. Sauerwald } \quad \text { Irreducibility, Periodicity and Convergence } 10
$$

## Convergence Theorem

- A Markov Chain is aperiodic if for all $x \in \Omega, \operatorname{gcd}\left\{t \geq 1: P_{x, x}^{t}>0\right\}=1$.
- Otherwise we say it is periodic.


Exercise: Which of the two chains (if any) are aperiodic?

[^2]
## Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step $t$ the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.



## Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. $1 / 4$
- At step $t$ the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.



## Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step $t$ the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.



## Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. $1 / 4$
- At step $t$ the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.



## Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)
4. Markov Chains and Mixing Times © T. Sauerwald

Total Variation Distance and Mixing Times

## Total Variation Distance

The Total Variation Distance between two probability distributions $\mu$ and $\eta$ on a countable state space $\Omega$ is given by

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

Loaded Dice: let $D=\operatorname{Unif}\{1,2,3,4,5,6\}$ be the law of a fair dice:

$$
\begin{aligned}
& \|D-A\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{3}\right|+4\left|\frac{1}{6}-\frac{1}{12}\right|\right)=\frac{1}{3} \\
& \|D-B\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{4}\right|+4\left|\frac{1}{6}-\frac{1}{8}\right|\right)=\frac{1}{6} \\
& \|D-C\|_{t v}=\frac{1}{2}\left(3\left|\frac{1}{6}-\frac{1}{8}\right|+\left|\frac{1}{6}-\frac{9}{24}\right|\right)=\frac{1}{6} .
\end{aligned}
$$

Thus

$$
\|D-B\|_{t v}=\|D-C\|_{t v} \quad \text { and } \quad\|D-B\|_{t v},\|D-C\|_{t v}<\|D-A\|_{t v} .
$$

So $A$ is the least "fair", however $B$ and $C$ are equally "fair" (in TV distance).

## How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice $A, B, C$ :

| $x$ | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}[A=x]$ | $1 / 3$ | $1 / 12$ | $1 / 12$ | $1 / 12$ | $1 / 12$ | $1 / 3$ |
| $\mathbf{P}[B=x]$ | $1 / 4$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $1 / 4$ |
| $\mathbf{P}[C=x]$ | $1 / 6$ | $1 / 6$ | $1 / 8$ | $1 / 8$ | $1 / 8$ | $9 / 24$ |

- Question 1: Which dice is the least fair? Most of you choose $A$. Why?
- Question 2: Which dice is the most fair? Dice $B$ and $C$ seem "fairer" than $A$ but which is fairest?
We need a formal "fairness measure" to compare probability distributions!



## TV Distances and Markov Chains

Let $P$ be a finite Markov Chain with stationary distribution $\pi$.

- Let $\mu$ be a prob. vector on $\Omega$ (might be just one vertex) and $t \geq 0$. Then

$$
P_{\mu}^{t}:=\mathbf{P}\left[X_{t}=\cdot \mid X_{0} \sim \mu\right],
$$

is a probability measure on $\Omega$.

- For any $\mu$,

$$
\left\|P_{\mu}^{t}-\pi\right\|_{t v} \leq \max _{x \in \Omega}\left\|P_{x}^{t}-\pi\right\|_{t v} .
$$

Convergence Theorem (Implication for TV Distance)
For any finite, irreducible, aperiodic Markov Chain

$$
\lim _{t \rightarrow \infty} \max _{x \in \Omega}\left\|P_{x}^{t}-\pi\right\|_{t v}=0
$$

We will see a similar result later after introducing spectral techniques!

## Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov Chains converge to stationarity.
Question: How fast do they converge?

- Mixing Time

The Mixing time $\tau_{x}(\epsilon)$ of a finite Markov Chain $P$ with stationary distribution $\pi$ is defined as

$$
\tau_{x}(\epsilon)=\min \left\{t:\left\|P_{x}^{t}-\pi\right\|_{t v} \leq \epsilon\right\},
$$

Total Variation Distance and Mixing Times
and,

$$
\tau(\epsilon)=\max _{x} \tau_{x}(\epsilon)
$$

- This is how long we need to wait until we are " $\varepsilon$-close" to stationarity
- We often take $\varepsilon=1 / 4$, indeed let $t_{\text {mix }}:=\tau(1 / 4)$


## Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

$$
\begin{array}{lll}
\text { 4. Markov Chains and Mixing Times © T. Sauerwald } & \text { Total Variation Distance and Mixing Times } & { }^{18} \\
\hline
\end{array}
$$

## What is Card Shuffling?



Source: wikipedia
Here we will focus on one shuffling scheme which is easy to analyse.
How long does it take to shuffle a deck of 52 cards?
How quickly do we converge to the uniform distribution over all $n$ ! permutations?

His research revealed beautiful connections between Markov Chains and Algebra.

Persi Diaconis (Professor of Statistics and former Magician)
Source: www. soundcloud. com
4. Markov Chains and Mixing Times © T. Sauerwald

Application 1: Card Shuffling
19

## The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of $n$ cards)
: For $t=1,2, \ldots$
2: $\quad$ Pick $i \in\{1,2, \ldots, n\}$ uniformly at random
3: $\quad$ Take the top card and insert it behind the $i$-th card
This is a slightly informal definition, so let us look at a small example...



## Even if we know which set of cards come after 8, every permutation is equally likely!


4. Markov Chains and Mixing Times © T. Sauerwald

Application 1: Card Shuffling

## Analysis of Riffle-Shuffle

Riffle Shuffle

1. Split a deck of $n$ cards into two piles (thus the size of each portion will be Binomial)
2. Riffle the cards together so that the card drops from the left (or right) pile with probability proportional to the number of remaining cards





```
    TRAILING THE DOvETAIL SHUFFLE TO ITS LAIR
                By Dave Bayerr and Persi Diaconis
            Columbia University and Harvard University
    We analye the most commonly used method for shuffling cards. The
```




```
    n cards
    the
```

| t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left\\|P^{t}-\pi\right\\|_{t v}$ | 1.000 | 1.000 | 1.000 | 1.000 | 0.924 | 0.614 | 0.334 | 0.167 | 0.085 | 0.043 |

Figure: Total Variation Distance for $t$ riffle shuffles of 52 cards

## Analysing the Mixing Time (Intuition)


$\rightarrow$ deck of cards is perfectly mixed after the last card "8" reaches the top and is inserted to a random position!

- How long does it take for the last card " $n$ " to become top card?
- At the last position, card " $n$ " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " $n$ " moves up with probability $\frac{2}{n}$
- At the second position, card " $n$ " moves up with probability $\frac{n-1}{n}$
- One final step to randomise card " $n$ " (with probability 1)

> This is a "reversed" coupon collector process with $n$ cards, which takes $n \log n$ in expectation.

$$
\text { Using the so-called coupling method, one could prove } t_{\text {mix }} \leq n \log n
$$

$$
\begin{array}{ll}
\hline \text { 4. Markov Chains and Mixing Times © T. Sauerwald } \quad \text { Application 1: Card Shuffling }
\end{array}
$$

## Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

## A Markov Chain for Sampling Independent Sets (1/2)


$S=\{1,4\}$ is an independent set $\checkmark$

Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

How can we take a sample from the space of all independent sets?
Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!
4. Markov Chains and Mixing Times © T. Sauerwald Application 2: Markov Chain Monte Carlo (non-examin.)

26

## A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
: Let $X_{0}$ be an arbitrary independent set in $G$

## : For $t=1,2, \ldots$ :

Pick a vertex $v \in V(G)$ uniformly at random
If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
else $X_{t+1} \leftarrow X_{t}$

Remark

- This is a local definition (no explicit definition of $P$ !)
- This chain is irreducible (every independent set is reachable)
- This chain is aperiodic (Check!)
- The stationary distribution is uniform, since $P_{u, v}=P_{v, u}$ (Check!)

Key Question: What is the mixing time of this Markov Chain? not covered here, see the textbook by Mitzenmacher and Upfal

## A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let $X_{0}$ be an arbitrary independent set in $G$
: For $t=1,2, \ldots$ :
Pick a vertex $v \in V(G)$ uniformly at random If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$ else $X_{t+1} \leftarrow X_{t}$


$x_{1}=\{4\}$

$X_{1}=\{1,4,8\}$

$X_{1}=\{1,4\}$
4. Markov Chains and Mixing Times © T. Sauerwald Application 2: Markov Chain Monte Carlo (non-examin.)
27

## Randomised Algorithms

Lecture 5: Random Walks, Hitting Times and Application to 2-SAT
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 202

## Outline

Application 2: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT
5. Hitting Times © T. Sauerwald

Application 2: Ehrenfest Chain and Hypercubes
2

## Analysis of the Mixing Time

## Ehrenfest Mode

A simple model for the exchange of molecules between two boxes

- We have $d$ particles labelled $1,2, \ldots, d$
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d} .
$$



Let us now enlarge the state space by looking at each particle individually!
Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version)

- At each step $t=0,1,2$..
- Pick a random coordinate in [d] - With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version) - At each step $t=0,1,2 \ldots$

- Pick a random coordinate in [d]
- Set coordinate to $\{0,1\}$ uniformly.

These two chains are equivalent!

Example of a Random Walk on a 4-Dimensional Hypercube
Total Variation Distance of Random Walk on Hypercube $(d=22)$

## Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE


N
Fig. 1. The variation distance $V$ as a function of $N$, for $n=10^{12}$.
Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures \& Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d=10^{12}$
(Minor Remark: This random walk is with a loop probability of $1 /(d+1)$ )
- The variation distance exhibits a so-called cut-off phenomena:
- Distance remains close to its maximum value 1 until step $\frac{1}{4} n \log n-\Theta(n)$
- Then distance moves close to 0 before step $\frac{1}{4} n \log n+\Theta(n)$


5. Hitting Times © T. Sauerwald Application 2: Ehrenfest Chain and Hypercubes

## Outline

Application 2: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

## Random Walks on Graphs

A Simple Random Walk (SRW) on a graph $G$ is a Markov chain on $V(G)$ with
$P(u, v)=\left\{\begin{array}{ll}\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\ 0 & \text { if }\{u, v\} \notin E .\end{array} \quad\right.$ and $\quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}$
Recall: $h(u, v)=\mathbf{E}_{u}\left[\min \left\{t \geq 1: X_{t}=v\right\}\right]$ is the hitting time of $v$ from $u$.


## Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $P=(P+I) / 2$,

$$
\widetilde{P}_{u, v}=\left\{\begin{array}{ll}
\frac{1}{2 \operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
\frac{1}{2} & \text { if } u=v, \\
0 & \text { otherwise }
\end{array} . \quad \begin{array}{c}
P-\text { SRW matrix } \\
1 \text { - Identity matrix. }
\end{array}\right.
$$

Fact: For any graph $G$ the LRW on $G$ is aperiodic.


SRW on $C_{4}$, Periodic


LRW on $C_{4}$, Aperiodic

$$
\begin{array}{ll}
\hline \text { 5. Hitting Times © T. Sauerwald } \quad \text { Random Walks on Graphs, Hitting Times and Cover Times }
\end{array}
$$

Will a random walk always return to the origin?

Infinite 3D Grid

"A drunk man will find his way home, but a drunk bird may get lost forever."

[^3]For animation, see full slides.
The $n$-path $P_{n}$ is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.


- Proposition


## Random Walk on a Path (2/2)

- Proposition

For the SRW on $P_{n}$ we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.
Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V .
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property
$f(0)=1+f(1) \quad$ and $\quad f(k)=1+\frac{f(k-1)}{2}+\frac{f(k+1)}{2} \quad$ for $1 \leq k \leq n-1$.
System of $n$ independent equations in $n$ unknowns, so has a unique solution.
Thus it suffices to check that $f(k)=n^{2}-k^{2}$ satisfies the above. Indeed

$$
f(0)=1+f(1)=1+n^{2}-1^{2}=n^{2}
$$

and for any $1 \leq k \leq n-1$ we have,

$$
f(k)=1+\frac{n^{2}-(k-1)^{2}}{2}+\frac{n^{2}-(k+1)^{2}}{2}=n^{2}-k^{2}
$$

For the SRW on $P_{n}$ we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.
5. Hitting Times © T. Sauerwald

Random Walks on Paths and Grids

## Outline

Application 2: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

## SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

$$
\text { SAT: }\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right)
$$

Solution: $x_{1}=$ True, $\quad x_{2}=$ False, $\quad x_{3}=$ False $\quad$ and $\quad x_{4}=$ True.

- If each clause has $k$ literals we call the problem $k$-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
$\rightarrow$ Model checking and hardware/software verification
$\rightarrow$ Design of experiments
$\rightarrow$ Classical planning
$\rightarrow$...

> 5. Hilting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

## 2-SAT

Randomised-2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment

## : Repeat up to $2 n^{2}$ times

Pick an arbitrary unsatisfied clauses
Choose a random literal and switch its value
If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let $A_{i}$ be the variable assignment at step $i$.
- Let $\alpha$ be any solution and $X_{i}=\mid$ variable values shared by $A_{i}$ and $\alpha \mid$.

Example 2 : (Another) Solution Found

$$
\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right)
$$

$$
\alpha=(\mathrm{T}, \mathrm{~F}, \mathrm{~F}, \mathrm{~T})
$$



## 2-SAT

## RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

## : Repeat up to $2 n^{2}$ times

Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let $A_{i}$ be the variable assignment at step $i$.
- Let $\alpha$ be any solution and $X_{i}=\mid$ variable values shared by $\boldsymbol{A}_{i}$ and $\alpha \mid$.

Example 1: Solution Found

$$
\begin{gathered}
\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \\
\mathrm{T} \\
\mathrm{~F}
\end{gathered} \mathrm{~F} \quad \mathrm{~T} \quad \mathrm{~T} \quad \mathrm{~T} \quad \mathrm{~T} \quad \mathrm{~T} \quad \mathrm{~T} \quad \mathrm{~F} .
$$



0
$\alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

| $t$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | F | F | F | F |
| 1 | F | T | F | F |
| 2 | T | T | F | F |
| 3 | T | T | F | T |

SAT and a Randomised Algorithm for 2-SAT
18

## 2-SAT and the SRW on the Path

- Expected iterations of (2) in Randomised-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most $n^{2}$.

Proof: Fix any solution $\alpha$, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).
Assume (pessimistically) that $X_{0}=0$ (none of our initial guesses is right).
The stochastic process $X_{i}$ is complicated to describe in full; however by (i) - (iii) we can bound it by $Y_{i}$ (SRW on the $n$-path from 0 ). This gives
$\mathbf{E}[$ time to find sol $] \leq \mathbf{E}_{0}\left[\min \left\{t: X_{t}=n\right\}\right] \leq \mathbf{E}_{0}\left[\min \left\{t: Y_{t}=n\right\}\right]=h(0, n)=n^{2}$. Proposition -Running for $2 n^{2}$ time and using Markov's inequality yields: Provided a solution exists, RANDOMISED-2-SAT will return a valid solution in $O\left(n^{2}\right)$ time with probability at least $1 / 2$.

Boosting Lemma
Suppose a randomised algorithm succeeds with probability (at least) $p$. Then for any $C \geq 1,\left\lceil\frac{C}{p} \cdot \log n\right\rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1-n^{-C}$.

Proof: Recall that $1-p \leq e^{-p}$ for all real $p$. Let $t=\left\lceil\frac{C}{p} \log n\right\rceil$ and observe $\mathbf{P}[t$ runs all fail $] \leq(1-p)^{t}$

$$
\begin{aligned}
& \leq e^{-p t} \\
& \leq n^{-c}
\end{aligned}
$$

thus the probability one of the runs succeeds is at least $1-n^{-C}$.

There is a $O\left(n^{2} \log n\right)$-time algorithm for 2-SAT which succeeds w.h.p.

## Randomised Algorithms

Lecture 6: Linear Programming: Introduction
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 202

Introduction



- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation convex optimisation, integer programming and semi-definite programming
we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)


## Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

## Outline

## Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

## A Simple Example of a Linear Optimisation Problem

－Laptop
－selling price to retailer：1，000 GBP
－glass： 4 units
－copper： 2 units
＂rare－earth elements： 1 unit
Linear Programming（informal definition）
－maximise or minimise an objective，given limited resources （competing constraint）
－constraints are specified as（in）equalities
－objective function and constraints are linear
－Smartphone
－selling price to retailer：1，000 GBP
－glass： 1 unit
－copper： 1 unit
－rare－earth elements： 2 units
－You have a daily supply of：
－glass： 20 units
－copper： 10 units
－rare－earth elements： 14 units
－（and enough of everything else．．．）

[^4]How to maximise your daily earnings？

6．Linear Programming © T．Sauerwald A Simple Example of a Linear Program 6

## Finding the Optimal Production Schedule


－Linear Equality：$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$
－Linear Inequality：$f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq b$
$\square$
－Linear－Progamming Problem：either minimise or maximise a linear function subject to a set of linear constraints

Question：Which aspect did we ignore in the formulation of the linear program？

## Finding the Optimal Production Schedule

## Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.
6. Linear Programming © T. Sauerwald

A Simple Example of a Linear Program
8.2

Formulating Problems as Linear Programs

## Maximum Flow

- Maximum Flow Problem
- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from $s$ to $t$ which satisfies the capacity constraints and flow conservation

- Maximum Flow as LP
maximise
subject to
$\sum_{v \in V} f_{s v}$
$-\quad \sum_{v \in V} f_{v s}$

$$
\begin{aligned}
f_{u v} & \leq & c(u, v) & \text { for each } u, v \in V \\
\sum_{v \in V} f_{v u} & = & \sum_{v \in V} f_{u v} & \text { for each } u \in V \backslash\{s, t\} \\
f_{u v} & \geq & 0 & \text { for each } u, v \in V .
\end{aligned}
$$

## Minimum-Cost Flow

Extension of the Maximum Flow Problem
Minimum-Cost-Flow Problem


- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of $d$ units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from $s$ to $t$ with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

Optimal Solution with total cost:
$\sum_{(u, v) \in E} a(u, v) f_{u v}=(2 \cdot 2)+(5 \cdot 2)+(3 \cdot 1)+(7 \cdot 1)+(1 \cdot 3)=27$

(a)

(b)

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by $c$ and the costs by $a$. Vertex $s$ is the source and vertex $t$ is the sink, and we wish to send 4 units of flow from $s$ to $t$. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from $s$ to $t$. For each edge, the flow and capacity are written as flow/capacity

[^5]Formulating Problems as Linear Programs

## Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

## Minimum Cost Flow as a LP

Minimum Cost Flow as LP

## minimise $\quad \sum_{(u, v) \in E} a(u, v) f_{u v}$

subject to

$$
\begin{aligned}
f_{u v} & \leq c(u, v) & & \text { for } u, v \in V \\
\sum_{v \in V} f_{v u}-\sum_{v \in V} f_{u v} & =0 & & \text { for } u \in V \backslash\{s, t\} \\
\sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} & =d, & & \\
f_{u v} & \geq 0 & & \text { for } u, v \in V
\end{aligned}
$$

## Real power of Linear Programming comes from the ability to solve new problems!

6. Linear Programming © T. Sauerwald

Formulating Problems as Linear Programs

## Standard and Slack Forms



Standard Form (Matrix-Vector-Notation)
maximise
subject to

$$
\begin{aligned}
c^{T} x & \underbrace{\text { Inner product of two vectors }}_{\text {Matrix-vector product }} \\
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

## Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with $\geq$ instead of $\leq$ ).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.
6. Linear Programming © T. Sauerwald

Standard and Slack Forms

## Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.


## Converting into Standard Form (1/5)

## Reasons for a LP not being in standard form

1. The objective might be a minimisation rather than maximisation.

2. Linear Programming © T. Sauerwald Standard and Slack Forms 17

## Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints
$2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

Replace each equality $\downarrow$ by two inequalities.
maximise
subject to

| $x_{1}+$ | $x_{2}^{\prime}$ | - | $x_{2}^{\prime \prime}$ | $\leq$ | 7 |  |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | + | $x_{2}^{\prime}$ | - | $x_{2}^{\prime \prime}$ | $\geq$ | 7 |
| $x_{1}-2$ | $2 x_{2}^{\prime}$ | + | $2 x_{2}^{\prime \prime}$ | $\leq$ | 4 |  |
| $x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime}$ |  |  | $\geq$ | 0 |  |  |

## Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with $\geq$ instead of $\leq$ ).


Negate respective inequalities.
maximise subject to

6. Linear Programming © T. Sauerwald Standard and Slack Forms 20

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Introducing Slack Variables
- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable $s$ by

- Denote slack variable of the $i$-th inequality by $x_{n+i}$

6. Linear Programming © T. Sauerwald

Standard and Slack Forms

## Converting Standard Form into Slack Form (2/3)

## Converting into Standard Form (5/5)



It is always possible to convert a linear program into standard form.
maximise
subject to


## Basic and Non-Basic Variables



Use variable $z$ to denote objective function and omit the nonnegativity constraints



Basic Variables: $B=\{4,5,6\}$
Non-Basic Variables: $N=\{1,2,3\}$

Slack Form (Formal Definition)
Slack form is given by a tuple ( $N, B, A, b, c, v$ ) so that

$$
\begin{aligned}
z & =v+\sum_{j \in N} c_{j} x_{j} \\
x_{i} & =b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } i \in B,
\end{aligned}
$$

and all variables are non-negative.
Variables/Coefficients on the right hand side are indexed by $B$ and $N$.
6. Linear Programming © T. Sauerwald

Standard and Slack Forms
25

## Slack Form (Example)

$z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3}$
$x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3}$
$x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3}$
$x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}$
$B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

- 

$$
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right), \quad c=\left(\begin{array}{l}
c_{3} \\
c_{5} \\
c_{6}
\end{array}\right)=\left(\begin{array}{l}
-1 / 6 \\
-1 / 6 \\
-2 / 3
\end{array}\right)
$$

- $v=28$


## Outline

## Randomised Algorithms

Lecture 7: Linear Programming: Simplex Algorithm
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023
UNIVERSITY OF
CAMBRIDGE

## Simplex Algorithm: Introduction

Simplex Algorithm

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination


## Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0 , and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)
7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example

## Extended Example: Conversion into Slack Form

Conversion into slack form
$z=3 x_{1}+r x_{2}+2 x_{3}$
$x_{4}=30-x_{1}-x_{2}-3 x_{3}$
$x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3}$
$x_{6}=36-4 x_{1}-x_{2}-2 x_{3}$

Extended Example: Iteration 1

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example
5.1

## Extended Example: Iteration 2

Increasing the value of $x_{3}$ would increase the objective value.
$z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4}$
$x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}$
$x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4}$
$x_{5}=6-\frac{3 x_{2}}{2}-2 x_{3}+\frac{x_{6}}{2}$
$\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=(9,0,0,21,6,0)$ with objective value 27

## Extended Example: Iteration 1

Increasing the value of $x_{1}$ would increase the objective value.


The third constraint is the tightest and limits how much we can increase $x_{1}$.
Switch roles of $x_{1}$ and $x_{6}$ :

- Solving for $x_{1}$ yields:

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

- Substitute this into $x_{1}$ in the other three equations

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example
5.2

## Extended Example: Iteration 2



The third constraint is the tightest and limits how much we can increase $x_{3}$.


## Switch roles of $x_{3}$ and $x_{5}$ :

- Solving for $x_{3}$ yields:

$$
x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}-\frac{x_{6}}{8} .
$$

- Substitute this into $x_{3}$ in the other three equations


## Extended Example: Iteration 3

Increasing the value of $x_{2}$ would increase the objective value.
$z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16}$
$x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16}$
$x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8}$
$x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}$

Basic solution: $\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=\left(\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0,0\right)$ with objective value $\frac{111}{4}=27.75$
Extended Example: Iteration 3


The second constraint is the tightest and limits how much we can increase $x_{2}$.

## Switch roles of $x_{2}$ and $x_{3}$ :

- Solving for $x_{2}$ yields:

$$
x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} .
$$

- Substitute this into $x_{2}$ in the other three equations

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example

## Extended Example: Iteration 4



Extended Example: Alternative Runs (1/2)

| $z$ | $=$ |  |  | $3 x_{1}$ | + | $x_{2}$ | + | $2 x_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\chi_{4}$ | $=$ | 30 | - | $x_{1}$ | - | $x_{2}$ | - | $3 x_{3}$ |
| $x_{5}$ | $=$ | 24 | - | $2 x_{1}$ | - | $2 x_{2}$ | - | $5 x_{3}$ |
| $x_{6}$ | $=$ | 36 | - | $\begin{aligned} & 4 x_{1} \\ & 1 \\ & 5 \\ & 5 \end{aligned}$ |  | $\begin{gathered} x_{2} \\ \text { es of } \lambda \end{gathered}$ | and $x$ | $2 x_{3}$ |
| $z$ | $=$ | 12 | + | $2 x_{1}$ | - | $\frac{x_{3}}{2}$ | - | $\frac{x_{5}}{2}$ |
| $x_{2}$ | $=$ | 12 | - | $x_{1}$ | - | $\frac{5 x_{3}}{2}$ | - | $\frac{x_{5}}{2}$ |
| $\chi_{4}$ | $=$ | 18 | - | $x_{2}$ | - | $\frac{x_{3}}{2}$ | + | $\frac{x_{5}}{2}$ |
| $x_{6}$ | $=$ | 24 | - | $\begin{aligned} & 3 x_{1} \\ & 1 \\ & \vdots \\ & i \end{aligned}$ |  | $\frac{x_{3}}{2}$ <br> s of |  |  |
| $z$ | $=$ | 28 | - | $\frac{x_{3}}{6}$ | - | $\frac{x_{5}}{6}$ | - | $\frac{2 x_{6}}{3}$ |
| $x_{1}$ | $=$ | 8 | + | $\frac{x_{3}}{6}$ | + | $\frac{x_{5}}{6}$ | - | $\frac{x_{6}}{3}$ |
| $x_{2}$ | $=$ | 4 | - | $\frac{8 x_{3}}{3}$ | - | $\frac{2 x_{5}}{3}$ | + | $\frac{x_{6}}{3}$ |
| $x_{4}$ | $=$ | 18 | - | $\frac{x_{3}}{2}$ | + | $\frac{x_{5}}{2}$ |  |  |

## Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

Extended Example: Alternative Runs (2/2)

| $z$ | $=$ |  |  | $3 x_{1}$ | $+$ | $x_{2}$ | + | $2 x_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}$ | $=$ | 30 | - | $x_{1}$ | - | $x_{2}$ | - | $3 x_{3}$ |
| $\chi_{5}$ | $=$ | 24 | - | $2 x_{1}$ | - | $2 x_{2}$ | - | $5 x_{3}$ |
| $x_{6}$ | $=$ | 36 | - | $4 x_{1}$ | - | $x_{2}$ | - | $2 x_{3}$ |

$\underset{\downarrow}{1}$ Switch roles of $x_{3}$ and $x_{5}$

| $z$ | $=\frac{48}{5}+\frac{11 x_{1}}{5}+\frac{x_{2}}{5}-\frac{2 x_{5}}{5}$ |
| :--- | :--- |
| $x_{4}$ | $=\frac{78}{5}+\frac{x_{1}}{5}+\frac{x_{2}}{5}+\frac{3 x_{5}}{5}$ |
| $x_{3}$ | $=\frac{24}{5}-\frac{2 x_{1}}{5}-\frac{2 x_{2}}{5}-\frac{x_{5}}{5}$ |
| $x_{6}$ | $=\frac{132}{5}-\frac{16 x_{1}}{5}-\frac{x_{2}}{5}+\frac{2 x_{3}}{5}$ |

Switch roles of $x_{1}$ and $x_{6} \ldots \ldots$ Switch roles of $x_{2}$ and $x_{3}$
$\rightarrow$

| $z$ | $=$ | $\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16}$ | $z$ | $=28$ | $-\frac{x_{3}}{6}$ | - | $\frac{x_{5}}{6}$ | $-\frac{2 x_{6}}{3}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{1}$ | $=$ | $\frac{33}{4}$ | $-\frac{x_{2}}{16}+\frac{x_{5}}{8}$ | $-\frac{5 x_{6}}{16}$ | $x_{1}$ | $=8$ | $+\frac{x_{3}}{6}$ | $+\frac{x_{5}}{6}$ | - | $\frac{x_{6}}{3}$ |
| $x_{3}$ | $=$ | $\frac{3}{2}$ | $-\frac{3 x_{2}}{8}-$ | $\frac{x_{5}}{4}+\frac{x_{6}}{8}$ | $x_{2}$ | $=4$ | $-\frac{8 x_{3}}{3}$ | $-\frac{2 x_{5}}{3}$ | + | $\frac{x_{6}}{3}$ |
| $x_{4}$ | $=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}$ | $x_{4}$ | $=18$ | $-\frac{x_{3}}{2}$ | $+\frac{x_{5}}{2}$ |  |  |  |  |  |

$$
\begin{equation*}
\text { 7. Linear Programming © T. Sauerwald } \quad \text { Simplex Algorithm by Example } \tag{8}
\end{equation*}
$$

## The Pivot Step Formally

Pivot( $N, B, A, b, c, v, l, e)$
$1 / /$ Compute the coefficients of the equation for new basic variable $x_{e}$.
2 let $\hat{A}$ be a new $m \times n$ matrix
$3 \hat{b}_{e}=b_{l} / a_{l e}$
$\left.\begin{array}{l}4 \text { for each } j \in N-\{e\} \text { Need that } a_{l e} \neq 0! \\ \hat{a}_{e j}=a_{l j} / a_{l e}\end{array}\right\}\left\{\begin{array}{l}\text { Rewrite "tight" equation } \\ \text { for enterring variable } x_{e} .\end{array}\right.$
$6 \hat{a}_{e l}=1 / a_{l e}$ $\square$
// Compute the coefficients of the remaining constraints.
for each $i \in B-\{l\}$
$\widehat{b}_{i}=b_{i}-a_{i} \widehat{b}_{e}$
for each $j \in N-\{e\}$

$$
\hat{a}_{i j}=a_{i j}-a_{i e} \hat{a}_{e j}
$$

$$
\hat{a}_{i l}=-a_{i e} \hat{a}_{e l}
$$


// Compute the objective function.
$\hat{v}=v+c_{e} \hat{b}_{e}$
5 for each $j \in N-\{e\}$
6
7 $\begin{gathered}\hat{c}_{l}=-c_{e} \hat{a}_{j l} \\ \hat{a}_{e l}\end{gathered}$
// Compute new sets of basic and nonbasic variables.
$\widehat{N}=N-\{e\} \cup\{l\}$
$\widehat{B}=B-\{l\} \cup\{e\}$
$\}\left\{\begin{array}{c}\text { Update non-basic } \\ \text { and basic variables }\end{array}\right.$

## Effect of the Pivot Step (extra material, non-examinable)

## Formalizing the Simplex Algorithm: Questions

Consider a call to $\operatorname{Pivot}(N, B, A, b, c, v, I, e)$ in which $a_{l e} \neq 0$. Let the values returned from the call be ( $\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v}$ ), and let $\bar{x}$ denote the basic solution after the call. Then

1. $\bar{x}_{j}=0$ for each $j \in \widehat{N}$.
2. $\bar{x}_{e}=b_{l} / a_{l e}$.
3. $\bar{x}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$ for each $i \in \widehat{B} \backslash\{e\}$.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

$$
x_{i}=\widehat{b}_{i}-\sum_{j \in \widehat{N}} \widehat{a}_{i j} x_{j},
$$

we have $\bar{x}_{i}=\widehat{b}_{i}$ for each $i \in \widehat{B}$. Hence $\bar{x}_{e}=\widehat{b}_{e}=b_{l} / a_{l e}$.
3. After substituting into the other constraints, we have

$$
\bar{x}_{i}=\widehat{b}_{i}=b_{i}-a_{i e} \widehat{b}_{e}
$$

Details of the Simplex Algorithm

## The formal procedure Simplex

$\operatorname{Simplex}(A, b, c)$

$$
(N, B, A, b, c, \nu)=\operatorname{InitiALIZE-Simplex}(A, b, c)
$$

let $\Delta$ be a new vector of length $m$
while some index $j \in N$ has $c_{j}>0$
choose an index $e \in N$ for which $c_{e}>0$
for each index $i \in B$
if $a_{i e}>0$
$\Delta_{i}=b_{i} / a_{i e}$
else $\Delta_{i}=\infty$
choose an index $l \in B$ that minimizes $\Delta_{i}$
if $\Delta_{l}==\infty$
return "unbounded"

## Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
2. for each $i \in B$, we have $b_{i} \geq 0$,
3. the basic solution associated with the (current) slack form is feasible.

Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if SImplex returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

## Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)
7. Linear Programming © T. Sauerwald

Finding an Initial Solution

## Geometric Illustration



Finding an Initial Solution
maximise $2 x_{1}-x_{2}$
subject to
$\begin{array}{rlll}2 x_{1}-x_{2} & \leq & 2 \\ x_{1}-5 x_{2} & \leq & -4 \\ x_{1}, x_{2} & \geq & 0\end{array}$
Conversion into slack form
$z=2 x_{1}-x_{2}$
$x_{3}=2-2 x_{1}+x_{2}$

Basic solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,2,-4)$ is not feasible!
7. Linear Programming © T. Sauerwald Finding an Intitial Solution

## Formulating an Auxiliary Linear Program

maximise $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program
maximise
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11
Let $L_{\text {aux }}$ be the auxiliary LP of a linear program $L$ in standard form. Then $L$ is feasible if and only if the optimal objective value of $L_{\text {aux }}$ is 0 .

Proof.

- " $\Rightarrow$ ": Suppose $L$ has a feasible solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$
- $\bar{x}_{0}=0$ combined with $\bar{x}$ is a feasible solution to $L_{\text {aux }}$ with objective value 0 .
- Since $\bar{x}_{0} \geq 0$ and the objective is to maximise $-x_{0}$, this is optimal for $L_{\text {aux }}$
- " $\Leftarrow$ ": Suppose that the optimal objective value of $L_{\text {aux }}$ is 0
- Then $\bar{x}_{0}=0$, and the remaining solution values $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$ satisfy $L . \quad \square$ 7. Linear Programming © T. Sauerwald Finding an Initial Solution
- Let us illustrate the role of $x_{0}$ as "distance from feasibility"
- We'll also see that increasing $x_{0}$ enlarges the feasible region
- Let us now modify the original linear program so that it is not feasible
$\Rightarrow$ Hence the auxiliary linear program has only a solution for a sufficiently large $x_{0}>0$ !


## Geometric Illustration



For the animation see the full slides.

## Example of Initialize-Simplex (1/3)



## InitiALIZE-Simplex

## nitialize-Simplex $(A, b, c)$

$$
\begin{aligned}
& \text { Test solution with } N=\{1,2, \ldots, n\}, B=\{n+1, n+ \\
& 2, \ldots, n+m\}, \bar{x}_{i}=b_{i} \text { for } i \in B, \bar{x}_{i}=0 \text { otherwise. }
\end{aligned}
$$

1 let $k$ be the index of the minimum $b_{i}$
2 if $b_{k} \geq 0$
$/ /$ is the initial basic solution feasible?
3 return $(\{1,2, \ldots, n\},\{n+1, n+2, \ldots, n+m\}, A, b, c, 0)$
form $L_{\text {aux }}$ by adding $-x_{0}$ to the left-hand side
and setting the objective function to $-x_{0}$
and setting the objective function to $-x_{0}$
let ( $N, B, A, b, c, v$ ) be the resulting slack form for $L_{\text {aux }}$ $\qquad$
$\qquad$
$l=n+k$
// $L_{\text {aux }}$ has $n+1$ nonbasic variables and $m$ basic variable that $x_{\ell}$ has the most negative value. Pivot step with $x_{\ell}$ leaving and $x_{0}$ entering.
$8(N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0) \quad$ Pivot step with $\times 1$
9 // The basic solution is now feasible for $L_{\text {aux. }}$.
rate the while loop
to $L_{\text {ax }}$ is found
1 if the optimal solution to $L_{\text {aux }}$ sets $\bar{x}_{0}$ to 0
1 if the optimal solution
if $\bar{x}_{0}$ is basic
f $\bar{x}_{0}$ is basic
perform one (degenerate) pivot to make it nonbasic


14 from the final slack form of $L_{\text {aux }}$, remove $x_{0}$ from the constraints and
restore the original objective function of $L$, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

> return the modified final slack form

16 else return "infeasible"
7. Linear Programming © T. Sauerwald

Finding an Initial Solution

## Example of InitiALIZE-SIMPLEX (2/3)

$\begin{array}{llrlllll}z & = & & & & & & \\ x_{3} & = & 2 & - & 2 x_{1} & + & x_{2} & + \\ x_{4} & = & -4 & - & x_{1} & + & 5 x_{2} & + \\ x_{0}\end{array}$
Pivot with $x_{0}$ entering and $x_{4}$ leaving

| $z$ | $=$ | -4 | - | $x_{1}$ | + | $5 x_{2}$ | - |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| $x_{4}$ |  |  |  |  |  |  |  |
| $x_{0}$ | $=$ | 4 | + | $x_{1}$ | - | $5 x_{2}$ | + |
| $x_{4}$ |  |  |  |  |  |  |  |
| $x_{3}$ | $=$ | 6 | - | $x_{1}$ | - | $4 x_{2}$ | + |
| $x_{4}$ |  |  |  |  |  |  |  |

Basic solution $(4,0,0,6,0)$ is feasible!
Pivot with $x_{2}$ entering and $x_{0}$ leaving

| $z$ | $=$ |
| :--- | :--- |
| $x_{2}$ | $=\frac{4}{5}-\frac{x_{0}}{5}$ |
| $x_{3}$ | $=\frac{14}{5}+\frac{x_{1}}{5}+\frac{x_{0}}{5}$ |
| 5 |  |

$$
\text { Optimal solution has } x_{0}=0 \text {, hence the initial problem was feasible! }
$$

## Example of Initialize-Simplex (3/3)

## Fundamental Theorem of Linear Programming


$2 x_{1}-x_{2}=2 x_{1}-\left(\frac{4}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5}\right)$
Set $x_{0}=0$ and express objective function by non-basic variables


Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program $L$, given in standard form, either

1. has an optimal solution with a finite objective value,
2. is infeasible, or

3 . is unbounded.

If $L$ is infeasible, Simplex returns "infeasible". If $L$ is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)
If a linear program $L$ has no feasible solution, then InItialize-Simplex returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

$$
\begin{array}{lll}
\text { 7. Linear Programming © T. Sauerwald } & \text { Finding an Initial Solution } & 26
\end{array}
$$

## Workflow for Solving Linear Programs



## Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)


Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

## Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

## Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged


## Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each $b_{i}$ by $\widehat{b}_{i}=b_{i}+\epsilon_{i}$, where $\epsilon_{i} \gg \epsilon_{i+1}$ are all small.

Assuming Initialize-Simplex returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set $B$ of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

## Outline

## Randomised Algorithms

Lecture 8: Solving a TSP Instance using Linear Programming
Introduction

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

## The Traveling Salesman Problem (TSP)

[^6]
## Outline

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of $G$ with minimum cost.

Solution space consists of at most $n$ ! possible tours
Actually the right number is $(n-1)!/ 2$

$2+4+1+1=8$

Special Instances

- Metric TSP: costs satisfy triangle inequality: $\left\{\begin{array}{l}\text { Even this version is } \\ \text { NP hard (Ex. 35.2-2) }\end{array}\right.$

$$
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w)
$$

- Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance


8. Solving TSP via Linear Programming © T. Sauerwald

Examples of TSP Instances



[^7] 6

## The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM*
G. DANTZIG, R. FULKERSON, and S. JOHNSON The Rand Corporation, Santa Monica, California (Received August 9, 1954)

## It is shown that a certain tour of 49 cities, one in each of the 48 states and

 Washg. C ,$T$ HE TRAVELING-SALESMAN PROBLEM might be described as follows: Find the shortest route (tour) for a salesman starting from a given city, visiting each of a specified group of cities, and then returning to the original point of departure. More generally, given an $n$ by $n$ symmetric matrix $D=\left(d_{I J}\right)$, where $d_{I J}$ represents the 'distance' from $I$ to $J$, arrange the points in a cyclic order in such a way that the sum of the $d_{I J}$ between consecutive points is minimal. Since there are only a finite number of possibilities (at most $1 / 2(n-1)!$ ) to consider, the problem is to devise a method of picking out the optimal arrangement which is reasonably efficient for fairly large values of $n$. Although algorithms have been devised for problems of similar nature, e.g., the optimal assignment problem, ${ }^{3,7,8}$ little is known about the traveling-salesman problem. We do not claim that this note alters the situation very much; what we shall do is outline a way of approaching the problem that sometimes, at least, enables one to find an optimal path and prove it so. In particular, it will be hown that a certain aranement of , taken from an atlas.

1. Manchester, N. H
2. Montpelier, Vt.
3. Detroit, Mich.
4. Cleveland, Ohio
5. Charleston, W. Va
6. Louisville, Ky.
7. Indianapolis
8. Milwaukee, Wi
9. Minneapolis, Minn
10. Pierre, S. D
11. Bismarck, N. D
12. Helena, Mont.
13. Seattle, Wash.
14. Portland, Ore
15. Boise, Idaho
16. Salt Lake City, Utah
17. Carson City, Nev. 19. Los Angeles, Calif 20. Phoenix, Ariz. 21. Santa Fe, N. M 22. Denver, Colo. 23. Cheyenne, Wyo 24. Omaha, Neb. 25. Des Moines, Iowa 26. Kansas City, Mo 27. Topeka, Kans 28. Oklahoma City, Okla. 29. Dallas, Tex 30. Little Rock, Ark 31. Memphis, Tenn. 32. Jackson, Miss.
18. New Orleans, La.
19. Birmingham, Ala. 35. Atlanta, Ga. 36. Jacksonville, Fla. 37. Columbia, S. C. 38. Raleigh, N. C. 39. Richmond, Va. 40. Washington, D. C
20. Boston, Mass.
21. Boston, Mass A. Baltimore, Md. B. Wilmington, Del
C. Philadelphia, Penn
D. Newark, N. J
E. New York, N. Y.
F. Hartford, Conn.
G. Providence, R. I.

## Solution of this TSP problem

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

## Road Distances

Hence this is an instance of the Metric TSP, but not Euclidean TSP.


## Modelling TSP as a Linear Program Relaxation

## Outline

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{gathered}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i)=2 \quad \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) \leq 1 \quad \text { for each } 1 \leq j<i \leq 42 \\
\text { Constraints } x(i, j) \in\{0,1\} \text { are not allowed in a LP! }
\end{gathered}
$$

## Branch \& Bound to solve an Integer Program:

As long as solution of LP has fractional $x(i, j) \in(0,1)$ : - Add $x(i, j)=0$ to the LP, solve it and recurse

- Add $x(i, j)=1$ to the LP, solve it and recurse
- Return best of these two solutions
- If solution of LP integral, return objective value than the solution of a LP, no need to explore branch further!

In the following, there are a few different runs of the demo. In the example class, we choose a different branching variable in iteration $7\left(x_{16,17}\right)$ and found the optimal very quickly.

Introduction

Examples of TSP Instances

Demonstration
8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration
14

Iteration 1: Eliminate Subtour 1, 2, 41, 42
Objective value: -641.000000 , 861 variables, 945 constraints, 1809 iterations


## Iteration 2: Eliminate Subtour 3-9

Objective value: -676.000000 , 861 variables, 946 constraints, 1802 iterations


## Iteration 4: Eliminate Cut 11-23

Objective value: $-682.500000,861$ variables, 948 constraints, 1492 iterations


Iteration 3: Eliminate Subtour 24, 25, 26, 27
Objective value: -681.000000 , 861 variables, 947 constraints, 1984 iterations


Iteration 5: Eliminate Subtour 13-23
Objective value: $-686.000000,861$ variables, 949 constraints, 2446 iterations


Iteration 6: Eliminate Cut 13-17
Objective value: -694.500000 , 861 variables, 950 constraints, 1690 iterations


Iteration 8: Branch 2a $x_{17,13}=0$
Objective value: $-698.000000,861$ variables, 952 constraints, 1878 iterations


Iteration 7: Branch 1a $x_{18,15}=0$
Objective value: $-697.000000,861$ variables, 951 constraints, 2212 iterations


Iteration 9: Branch 2b $x_{17,13}=1$
Objective value: -699.000000 , 861 variables, 953 constraints, 2281 iterations


Iteration 10: Branch 1b $x_{18,15}=1$ Objective value: -700.000000 , 861 variables, 954 constraints, 2398 iterations


## Branch \& Bound Overview

1: LP solution 641
$\downarrow$ Eliminate Subtour 1, 2, 41, 42
2: LP solution 676
$\downarrow$ Eliminate Subtour 3 - 9
3: LP solution 681
$\downarrow$ Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
$\downarrow$ Eliminate Cut 11 - 23
5: LP solution 686
$\downarrow$ Eliminate Subtour 10, 11, 12
6: LP solution 694.5
$\downarrow$ Eliminate Cut 13-17


[^8]Demonstration

## Iteration 11: Branch \& Bound terminates

Objective value: -701.000000 , 861 variables, 953 constraints, 2506 iterations


Iteration 8: Objective 697


## Solving Progress (Alternative Branch 1)

## 1: LP solution 641

$\downarrow$ Eliminate Subtour 1, 2, 41, 42
2: LP solution 676
Eliminate Subtour 3-9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
$\downarrow$ Eliminate Cut 13-17
5: LP solution 686
$\downarrow$ Eliminate Subtour 10, 11, 12
6: LP solution 686
$\downarrow$ Eliminate Subtour 13-23
7: LP solution 688
Eliminate Subtour 11-23

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Alternative Branch 1a: $x_{18,15}=1$, Objective 701 (Valid Tour)


Alternative Branch 1: $x_{18,15}$, Objective 697


Alternative Branch 1b: $x_{18,15}=0$, Objective 698


## Solving Progress (Alternative Branch 1)

1: LP solution 641
$\downarrow$ Eliminate Subtour 1, 2, 41, 42

## 2: LP solution 676

$\downarrow$ Eliminate Subtour 3-9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
$\downarrow$ Eliminate Cut 13-17
5: LP solution 686
$\downarrow$ Eliminate Subtour 10,11, 12 6: LP solution 686
$\downarrow$ Eliminate Subtour 13-23
7: LP solution 688
$\downarrow$ Eliminate Subtour 11 - 23

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

## Alternative Branch 2: $x_{27,22}$, Objective 697



Solving Progress (Alternative Branch 2)
1: LP solution 641
$\downarrow$ Eliminate Subtour 1, 2, 41, 42
2: LP solution 676
Eliminate Subtour 3 - 9
3: LP solution 681
$\downarrow$ Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
$\downarrow$ Eliminate Cut $13-17$
5: LP solution 686
Eliminate Subtour 10, 11, 12
6: LP solution 686
$\downarrow$ Eliminate Subtour 13-23
7: LP solution 688
$\downarrow$ Eliminate Subtour 11-23

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

Alternative Branch 2a: $x_{27,22}=1$, Objective 708 (Valid tour)


Alternative Branch 2b: $x_{27,22}=0$, Objective 697.75
Solving Progress (Alternative Branch 2)
1: LP solution 641
$\downarrow$ Eliminate Subtour 1, 2, 41, 42

## 2: LP solution 676

$\downarrow$ Eliminate Subtour 3 - 9
3: LP solution 681
$\downarrow$ Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
$\downarrow$ Eliminate Cut 13 - 17
5: LP solution 686
$\downarrow$ Eliminate Subtour 10, 11, 12 6: LP solution 686

Eliminate Subtour 13-23
7 7: LP solution 688
$\downarrow$ Eliminate Subtour 11 - 23

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Alternative Branch 3: $x_{27,24}$, Objective 697


## Alternative Branch 3a: $x_{27,24}=1$, Objective 697.75



## Solving Progress (Alternative Branch 3)



Not only do we have to explore (and branch further in) both subtrees, but also the optimal tour is in the subtree with larger LP solution!

6: LP solution 686
$\downarrow$ Eliminate Subtour 13-23
7: LP solution 688
$\downarrow$ Eliminate Subtour 11-23


## Alternative Branch 3b: $x_{27,24}=0$, Objective 698



## Conclusion (1/2)

- How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!
- Should the search tree be explored by BFS or DFS? BFS may be more attractive, even though it might need more memory.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one might pose of a theoretical nature concerning the traveling-salesman problem; however, we hope that the feasibility of attacking problems involving a moderate number of points has been successfully demonstrated, and that perhaps some of the ideas can be used in problems of similar nature.

- Eliminate Subtour 1, 2,41,42
- Eliminate Subtour 3-9
- Eliminate Subtour 10, 11, 12
- Eliminate Subtour 11 - 23
- Eliminate Subtour 13-23
- Eliminate Cut 13-17
- Eliminate Subtour 24, 25, 26, 27


## THE 49-CITY PROBLEM*

The optimal tour $\bar{x}$ is shown in Fig. 16. The proof that it is optimal is given in Fig. 17. To make the correspondence between the latter and its programming problem clear, we will write down in addition to 42 relations in non-negative variables (2), a set of 25 relations which suffice to prove that $D(x)$ is a minimum for $\bar{x}$. We distinguish the following subsets of the 42 cities:

$$
\begin{array}{ll}
S_{1}=\{1,2,41,42\} & S_{5}=\{13,14, \cdots, 23\} \\
S_{2}=\{3,4, \cdots, 9\} & S_{6}=\{13,14,15,16,17 \\
S_{3}=\{1,2, \cdots, 9,29,30, \cdots, 42\} & S_{7}=\{24,25,26,27\} . \\
S_{4}=\{11,12, \cdots, 23\} &
\end{array}
$$

$\leftarrow \rightarrow$ C en.wikipedia.org/wik/CPLEX
$\underset{\text { Whe free neycrlopedia }}{\text { Wind }}$

Main page
Contents Featured content Current events Donate to Wikipe Wikipedia store Wikipedia st

## Iteraction

Help
About Wikipedia
Community portal Community portal
Recent changes Contact page

Tools What links here Related changes Spload ile

## CPLEX

## From Wikipedia, the free encyclopedia

BM ILOG CPLEX Optimization Studio (often informally referred to simply as CPLEX) is an optimization software package. In 2004, the work on CPLEX earned the first INFORMS Impact Prize.
The CPLEX Optimizer was named for the simplex method as implemented in the C programming language, athough today it also supports other types of mathematical optimization and offers interfaces other han just C . It was originally developed by Robert E . xixy and was offered commercially starting in 1988 by
CPLEX Optimization Inc., which was acquired by ILOG in 1997; ILOG was subsequently acquired by BM in January 2009.19. CPLEX continues to be actively developed under IBM.
The IBM ILOG CPLEX Optimizer solves integer programming problems, very large ${ }^{[2]}$ linear programming problems using either primal or dual variants of the simplex method or the barrier interior

Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.0 with Simplex, Mixed Integer \& Barrier Optimizers
5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21 Copyright IBM Corp. 1988, 2014. All Rights Reserved.
Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.
CPLEX> read tsp.lp
Problem 'tsp.lp' read.
Read time $=0.00 \mathrm{sec} .(0.06$ ticks $)$
CPLEX> primopt
Tried aggregator 1 time
LP Presolve eliminated 1 rows and 1 columns.
Reduced LP has 49 rows, 860 columns, and 2483 nonzeros.
Presolve time $=0.00 \mathrm{sec} .(0.36$ ticks $)$

| Iteration $\log$ |  |  |  |  |
| :--- | ---: | :--- | :--- | ---: |
| Iteration: | 1 |  | Infeasibility | $=$ |
| Iteration: | 26 | Objective | $=$ | 33.999999 |
| Iteration: | 90 | Objective | $=$ | 1510.000000 |
| Iteration: | 155 | Objective | $=$ | 923.000000 |
|  |  |  | 711.000000 |  |

Primal simplex - Optimal: Objective $=6.9900000000 \mathrm{e}+02$ Solution time $=0.00 \mathrm{sec}$. Iterations $=168(25)$ Sotution time $=0.00 \mathrm{sec}$. Iterations $=168(25)$
Deterministic time $=1.16$ ticks $(288.86$ ticks $/ \mathrm{sec})$

## CPLEX>



## Outline

## Randomised Algorithms

Lecture 9: Approximation Algorithms: MAX-CNF and Vertex-Cover
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover
9. Approximation Algorithms © T. Sauerwald

## Outline

## Randomised Approximation

MAX-3-CNF
Randomised Approximation Schemes $\square$
not covered here...
An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$-approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon>0$, the runtime is polynomial in $n$. (For example, $O\left(n^{2 / \epsilon}\right)$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1 / \epsilon$ and $n$. For example, $O\left((1 / \epsilon)^{2} \cdot n^{3}\right)$.


## MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.
MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

$$
\Omega
$$

$$
\left(x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0 \text { and } x_{5}=1 \text { satisfies } 3 \text { (out of } 4\right. \text { clauses) }
$$

Idea: What about assigning each variable uniformly and independently at random?

| 9. Approximation Algorithms © T. Sauerwald | MAX-3-CNF | 5 |
| :--- | :--- | :--- |

## Interesting Implications

Theorem 35.6
Given an instance of MAX-3-CNF with $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$ and $m$ clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.


## Analysis

## Theorem 35.6

Given an instance of MAX-3-CNF with $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$ and $m$ clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause $i$,

$$
\begin{array}{rlrl} 
& \mathbf{P} \text { [clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & \mathbf{P} \text { [clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{array}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,



## Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$ and $m$ clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$


Greedy-3-CNF $(\phi, n, m)$
for $j=1,2, \ldots, n$
Compute $\mathbf{E}\left[Y \mid x_{1}=v_{1} \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
Compute $\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=0\right]$
Let $x_{j}=v_{j}$ so that the conditional expectation is maximized
: return the assignment $v_{1}, v_{2}, \ldots, v_{n}$
9. Approximation Algorithms © T. Sauerwald $\quad$ MAX-3-CNF 8

## Analysis of Greedy-3-CNF $(\phi, n, m)$

This algorithm is deterministic.
Theorem
Greedy-3-CNF $(\phi, n, m)$ is a polynomial-time 8/7-approximation.

## Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over $2^{n-j+1}$ assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least $7 / 8 \cdot m$ clauses computable in $O(1)$
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right]$

$$
\geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
$$

$$
\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m
$$

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

## Run of Greedy-3-CNF $(\varphi, n, m)$

$1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$


Run of Greedy-3-CNF $(\varphi, n, m)$
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge$ $\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

9. Approximation Algorithms © $\mathbb{T}$. Sauewald

MAX-3-CNF
10.1

## Run of Greedy-3-CNF $(\varphi, n, m)$

$1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)$


## Run of Greedy-3-CNF $(\varphi, n, m)$

$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

## Run of Greedy-3-CNF $(\varphi, n, m)$

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge$ $\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$


Run of Greedy-3-CNF $(\varphi, n, m)$
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF
10.5

## MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$ and $m$ clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem
$\operatorname{Greedy}-3-\operatorname{CNF}(\phi, n, m)$ is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)
For any $\epsilon>0$, there is no polynomial time $8 / 7-\epsilon$ approximation algorithm of MAX3-CNF unless $P=N P$.

Essentially there is nothing smarter than just guessing!

## Outline

## Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in \bar{V}^{\prime}$.

Weighted Vertex Cover
9. Approximation Algorithms © T . Sauerwald

Weighted Vertex Cover

## A Greedy Approach working for Unweighted Vertex Cover

Approx-VERTEX-Cover (G)
$1 \quad C=\emptyset$
$E^{\prime}=G . E$
while $E^{\prime} \neq \emptyset$
let $(u, v)$ be an arbitrary edge of $E^{\prime}$
$C=C \cup\{u, \nu\}$
remove from $E^{\prime}$ every edge incident on either $u$ or $v$
return $C$

## The Weighted Vertex-Cover Problem

This is (still) an NP-hard problem.


## Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

## A Greedy Approach working for Unweighted Vertex Cover

APprox-VERTEX-Cover ( $G$ )
$1 \quad C=\emptyset$
$2 E^{\prime}=G . E$
while $E^{\prime} \neq \emptyset$
let $(u, v)$ be an arbitrary edge of $E^{\prime}$
$C=C \cup\{u, \nu\}$
remove from $E^{\prime}$ every edge incident on either $u$ or $v$ return $C$

## A Greedy Approach working for Unweighted Vertex Cover

## APPROX-VERTEX-Cover $(G)$

$C=\emptyset$
$E^{\prime}=G . E$
while $E^{\prime} \neq \emptyset$
let $(u, v)$ be an arbitrary edge of $E^{\prime}$
$C=C \cup\{u, \nu\}$
remove from $E^{\prime}$ every edge incident on either $u$ or $v$
return $C$

9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

## The Algorithm

## Approx-Min-Weight-VC $(G, w)$

## $C=\emptyset$

compute $\bar{x}$, an optimal solution to the linear program
for each $v \in V$
if $\bar{x}(\nu) \geq 1 / 2$ $C=C \cup\{v\}$
return $C$

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2 -approximation algorithm for the minimum-weight vertex-cover problem.
is polynomial-time because we can solve the linear program in polynomial time

## Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.


## Example of Approx-Min-Weight-VC



## Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness)

- Let $C^{*}$ be an optimal solution to the minimum-weight vertex cover problem
- Let $z^{*}$ be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set $C$ covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
$\Rightarrow$ at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge $(u, v)$
- Step 2: The computed set $C$ satisfies $w(C) \leq 2 z^{*}$ :

$$
w\left(C^{*}\right) \geq z^{*}=\sum_{v \in V} w(v) \bar{x}(v) \geq \sum_{v \in V: \bar{x}(v) \geq 1 / 2} w(v) \cdot \frac{1}{2}=\frac{1}{2} w(C)
$$



## Outline

## Randomised Algorithms

Lecture 10: Approximation Algorithms: Set-Cover and MAX-k-CNF
Thomas Sauerwald (tms41@cam.ac.uk)
ent 2023
圈 UNIVERSITY OF

The Weighted Set-Covering Problem


Remarks

$\begin{array}{llllll}S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6}\end{array}$ c: $2 \begin{array}{llllll}2 & 3 & 5 & 1 & 2\end{array}$

Weighted Set Cover

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)
10. Approximation Algorithms ©T. Sauewald

Weighted Set Cover

## Setting up an Integer Program



Exercise: Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)

- generalisation of the weighted vertex-cover problem
- models resource allocation problems


## Setting up an Integer Program

0-1 Integer Program
minimize

$$
\sum_{S \in \mathcal{F}} c(S) y(S)
$$

subject to

$$
\begin{aligned}
\sum_{S \in \mathcal{F}: x \in S} y(S) & \geq 1 \\
y(S) & \in\{0,1\}
\end{aligned}
$$

for each $x \in X$
for each $S \in \mathcal{F}$

Linear Program
minimize

$$
\sum_{S \in \mathcal{F}} c(S) y(S)
$$

subject to

$$
\begin{aligned}
\sum_{S \in \mathcal{F}: x \in S} y(S) & \geq 1
\end{aligned} \quad \text { for each } x \in X
$$

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover 4


The strategy employed for Vertex-Cover would take all 6 sets!
Even worse: If all $\bar{y}$ 's were below $1 / 2$, we would not even return a valid cover!

| 10. Approximation Algorithms © T. Sauerwald | Weighted Set Cover | 5 |
| :--- | :--- | :--- |

## Randomised Rounding

|  | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $S_{5}$ | $S_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $c:$ | 2 | 3 | 3 | 5 | 1 | 2 |
| $\bar{y}():$. | $1 / 2$ | $1 / 2$ | $1 / 2$ | $1 / 2$ | 1 | $1 / 2$ |

## Idea: Interpret the $\bar{y}$-values as probabilities for picking the respective set.

Lemma

- The expected cost satisfies

$$
\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)
$$

- The probability that an element $x \in X$ is covered satisfies

$$
\mathbf{P}\left[x \in \bigcup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}
$$

- Therefore, $\mathbf{E}[y(S)]=\bar{y}(S)$.


## Proof of Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set $S$ being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that $x$ is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C}$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S) .
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{aligned}
\mathbf{P}[x \notin \cup S \in \mathcal{C} S]=\prod_{S \in \mathcal{F}: x \in \mathcal{S}} \mathbf{P}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-\bar{y}(S)} \\
& =e^{-\sum_{S \in \mathcal{F}}: x \in S} \overline{\bar{y}(S)} \leq e^{-1}
\end{aligned}
$$

10. Approximation Algorithms © T. Sauerwald
Weighted Set Cover

## The Final Step

## Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set $S$ being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that $x$ is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets $\mathcal{C}$.

Weighted Set Cover-LP $(X, \mathcal{F}, c)$
compute $\bar{y}$, an optimal solution to the linear program
$\mathcal{C}=\emptyset$
repeat $2 \ln n$ times
for each $S \in \mathcal{F}$
let $\mathcal{C}=\mathcal{C} \cup\{S\}$ with probability $\bar{y}(S)$
: return $\mathcal{C}$
clearly runs in polynomial-time
10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover
8

## Analysis of Weighted Set Cover-LP

- With probability at least $1-\frac{1}{n}$, the returned $\operatorname{set} \mathcal{C}$ is a valid cover of $X$.
- The expected approximation ratio is $2 \ln (n)$.

By Markov's inequality, $\mathbf{P}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2$.

- Step 1: The probability that $\mathcal{C}$ is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\begin{gathered}
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right] \\
\underset{\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n} .}{ } . .
\end{gathered}
$$

- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} C(S) \cdot \bar{y}(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)$


## Outline

Weighted Set Cover

## MAX-CNF

Recall:

## MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)
10. Approximation Algorithms © T. Sauerwald

MAX-CNF

## Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

## Analysis

For any clause $i$ which has length $\ell$,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

## Proof:

- First statement as in the proof of Theorem 35.6. For clause $i$ not to be satisfied, all $\ell$ occurring variables must be set to a specific value.
- As before, let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m} \frac{1}{2}=\frac{1}{2} \cdot m
$$

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T

## Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!


- In the corresponding LP each $\in\{0,1\}$ is replaced by $\in[0,1]$
- Let $(\bar{y}, \bar{z})$ be the optimal solution of the LP
- Obtain an integer solution $y$ through randomised rounding of $\bar{y}$


## Analysis of Randomised Rounding

Lemma
For any clause $i$ of length $\ell$,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause $i$ appear non-negated (otherwise replace every occurrence of $x_{j}$ by $\overline{X_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}[$ clause $i$ is satisfied $]=1-\prod_{j=1}^{\ell} \mathbf{P}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)$

> Arithmetic vs. geometric mean:
> $\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}}$.

$$
\} \geq 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)}{\ell}\right)^{\ell}
$$

$$
=1-\left(1-\frac{\sum_{j=1}^{\ell} \bar{y}_{j}}{\ell}\right)^{\ell} \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

10. Approximation Algorithms © T. Sauerwald

MAX-CNF

## Analysis of Randomised Rounding

For any clause $i$ of length $\ell$,
$\mathbf{P}[$ clause $i$ is satisfied $] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}$.

Theorem
Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let $\ell_{i}$ be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot \bar{z}_{i} \geq \sum_{i=1}^{m}\left(1-\frac{1}{e}\right) \cdot \bar{z}_{i} \geq\left(1-\frac{1}{e}\right) \cdot$ OPT

$$
\text { By Lemma Since }(1-1 / x)^{x} \leq 1 / e \quad \begin{array}{r}
\text { LP solution at least } \\
\text { as good as optimum }
\end{array}
$$

## Analysis of Randomised Rounding

Lemma
For any clause $i$ of length $\ell$,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

$$
\Rightarrow \quad g(z) \geq \beta_{\ell} \cdot z \quad \text { for any } z \in[0,1]
$$

- Therefore, $\mathbf{P}$ [clause $i$ is satisfied $] \geq \beta_{\ell} \cdot \bar{z}_{i}$.


10. Approximation Algorithms © T. Sauerwald

MAX-CNF

## Approach 3: Hybrid Algorithm

## Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

## Hybrid-MAX-CNF $(\varphi, n, m)$

: Let $b \in\{0,1\}$ be the flip of a fair coin
: If $b=0$ then perform random guessing
If $b=1$ then perform randomised rounding
4: return the computed solution


Algorithm sets each variable $x_{i}$ to TRUE with prob. $\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \bar{y}_{i}$. Note, however, that variables are not independently assigned!

## Analysis of Hybrid Algorithm

## MAX-CNF Conclusion

HYBRID-MAX-CNF $(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

## Proof:

- It suffices to prove that clause $i$ is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause $i$ of length $\ell$ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF $(\varphi, n, m)$ satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)
- $\Rightarrow$ HYBRID-MAX-CNF $(\varphi, n, m)$ satisfies it with prob. at least $3 / 4 \cdot \bar{z}_{i}$


10. Approximation Algorithms © T. Sauerwald

MAX-CNF

## Outline

## Weighted Set Cover

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)

Summary

- Since $\alpha_{2}=\beta_{2}=3 / 4$, we cannot achieve a better approximation ratio than $4 / 3$ by combining Algorithm $1 \& 2$ in a different way
- The 4/3-approximation algorithm can be easily derandomised
- Idea: use the conditional expectation trick for both Algorithm 1 \& 2 and output the better solution
- The 4/3-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!

> 10. Approximation Algorithms © T. Sauerwald MAX-CNF

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Approx-Tsp-Tour(G, c)
select a vertex $r \in G . V$ to be a "root" vertex
compute a minimum spanning tree $T_{\text {min }}$ for $G$ from root $r$
using MST-PRIM(G, $c, r$ )
: let $H$ be a list of vertices, ordered according to when they are first visited
in a preorder walk of $T_{\text {min }}$
6: return the hamiltonian cycle $H$
$\sim$
Runtime is dominated by MST-PRIM, which is $\Theta\left(V^{2}\right)$.

Remember: In the Metric-TSP problem, $G$ is a complete graph.

## Run of Approx-Tsp-Tour



1. Compute MST $T_{\text {min }}$

## Run of Approx-Tsp-TOUR



1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

## Run of Approx-Tsp-TOUR



1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }}$
3. Approximation Algorithms © T. Sauemwald Appendix: An Approximation Algorithm of TSP (non-examin.)

## Run of Approx-Tsp-TOUR



1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk $\checkmark$

## Run of Approx-Tsp-Tour



1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\min } \checkmark$
3. Return list of vertices according to the preorder tree walk $\checkmark$
4. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

## Approximate Solution: Objective 921



## Run of Approx-Tsp-TOUR



1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\min } \checkmark$
3. Return list of vertices according to the preorder tree walk $\checkmark$
4. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

Optimal Solution: Objective 699


## Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour $H^{*}$ and remove an arbitrary edge
$\Rightarrow$ yields a spanning tree $T$ and $c\left(T_{\min }\right) \leq c(T) \leq c\left(H^{*}\right)$ exploiting that all edge costs are non-negative!

solution $H$ of Approx-Tsp spanning tree $T$ as a subset of $H^{*}$

[^9]
## Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof

- Consider the optimal tour $H^{*}$ and remove an arbitrary edge
$\Rightarrow$ yields a spanning tree $T$ and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let $W$ be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
$\Rightarrow$ Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$



Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)$
optimal solution $H^{*}$
10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

## Christofides Algorithm

Theorem 35.2 $\qquad$
APPROX-TSP-TOUR is a polynomial-time 2 -approximation for the traveling-salesman problem with the triangle inequality.

## Can we get a better approximation ratio?

Christofides( $G, c$ )

1. select a vertex $r \in G . V$ to be a "root" vertex

2: compute a minimum spanning tree $T_{\text {min }}$ for $G$ from root $r$
3: using MST-PRIM ( $G, c, r$ )
4: compute a perfect matching $M_{\text {min }}$ with minimum weight in the complete graph
5: $\quad$ over the odd-degree vertices in $T_{\text {min }}$
6: let $H$ be a list of vertices, ordered according to when they are first visited
7: $\quad$ in a Eulearian circuit of $T_{\text {min }} \cup M_{\text {min }}$
8: return the hamiltonian cycle $H$
Theorem (Christofides'76)
There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Walk $W=(a, b, c, \not b, h, \nprec, \notin, d, e, f, \notin, g, \notin, \not \subset, a)$
optimal solution $\mathrm{H}^{*}$


Origin of Graph Theory


Source: Wikipedia Seven Bridges at Königsberg 1737

## Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem
11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering

## Graphs Nowadays: Clustering



Goal: Use spectrum of graphs (unstructured data) to extract clustering (communitites) or other structural information.

## Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
- ...
- Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
- Geometric Clustering: partition points in a Euclidean space
- $k$-means, $k$-medians, $k$-centres, etc.
- Graph Clustering: partition vertices in a graph - modularity, conductance, min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering

## Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

## Graphs and Matrices

## Graphs

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths
-...

$\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
- Eigenvalues

Eigenvectors

- Inverse
- Determinant
- Matrix-powers
- ...

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering

## Adjacency Matrix

Adjacency matrix
Let $G=(V, E)$ be an undirected graph. The adjacency matrix of $G$ is the $n$ by $n$ matrix $\mathbf{A}$ defined as

$$
\mathbf{A}_{u, v}= \begin{cases}1 & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise }\end{cases}
$$



$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Properties of $\mathbf{A}$

- The sum of elements in each row/column $i$ equals the degree of the corresponding vertex $i, \operatorname{deg}(i)$
- Since $G$ is undirected, $\mathbf{A}$ is symmetric


## Eigenvalues and Graph Spectrum of $A$

— Eigenvalues and Eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of $\mathbf{M}$ if and only if there exists $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call $x$ an eigenvector of $\mathbf{M}$ corresponding to the eigenvalue $\lambda$.
An undirected graph $G$ is $d$-regular if every degree is $d$, i.e., every vertex has exactly $d$ connections.
Graph Spectrum
Let $\mathbf{A}$ be the adjacency matrix of a $d$-regular graph $G$ with $n$ vertices. Then, A has $n$ real eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and $n$ corresponding orthonormal eigenvectors $f_{1}, \ldots, f_{n}$. These eigenvalues associated with their multiplicities constitute the spectrum of $G$.

For symmetric matrices: algebraic multiplicity = geometric multiplicity
11. Spectral Graph Theory © T. Sauerwald

Matrices, Spectrum and Structure
9

Bonus: Can you find a short-cut to $\operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I})$ ?
Exercise: What are the Eigenvalues and Eigenvectors?


$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Solution:

- The three eigenvalues are $\lambda_{1}=\lambda_{2}=-1, \lambda_{3}=2$.
- The three eigenvectors are (for example):

$$
f_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad f_{2}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right), \quad f_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

$$
\text { 11. Spectral Graph Theory © T. Sauerwald } \quad \text { Matrices, Spectrum and Structure }
$$

## Laplacian Matrix

## Example 1

Bonus: Can you find a short-cut to $\operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I})$ ?
Exercise: What are the Eigenvalues and Eigenvectors?


$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$Laplacian Matrix

Let $G=(V, E)$ be a $d$-regular undirected graph. The (normalised) Laplacian matrix of $G$ is the $n$ by $n$ matrix $\mathbf{L}$ defined as

$$
\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}
$$

where I is the $n \times n$ identity matrix.


$$
\mathbf{L}=\left(\begin{array}{cccc}
1 & -1 / 2 & 0 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 & -1 / 2 \\
-1 / 2 & 0 & -1 / 2 & 1
\end{array}\right)
$$

Properties of L :

- The sum of elements in each row/column equals zero
- $\mathbf{L}$ is symmetric


## Eigenvalues and Graph Spectrum of L

Correspondence between Adjacency and Laplacian Matrix
$\mathbf{A}$ and $\mathbf{L}$ have the same eigenvectors.

Exercise: Proof this correspondence. Hint: Use that $\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}$.

## Useful Facts of Graph Spectrum

## Lemma

Let $L$ be the Laplacian matrix of an undirected, regular graph $G=(V, E)$ with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$

1. $\lambda_{1}=0$ with eigenvector 1
2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G
3. $\lambda_{n} \leq 2$
4. $\lambda_{n}=2$ iff there exists a bipartite connected component.

The proof of these properties is based on a powerful characterisation of eigenvalues/vectors!

## Eigenvalues and eigenvectors

 $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that$$
\mathbf{M} x=\lambda x
$$

We call $x$ an eigenvector of $\mathbf{M}$ corresponding to the eigenvalue $\lambda$.

## Graph Spectrum

 orthonormal eigenvectors $f_{1}, \ldots, f_{n}$.11. Spectral Graph Theory © T. Sauerwald

## A Min-Max Characterisation of Eigenvalues and Eigenvectors

## Courant-Fischer Min-Max Formula

 Then,$$
\lambda_{k}=\min _{\substack{x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, x^{(i)} \perp x^{(j)}}} \max _{i \in\{1, \ldots, k\}} \frac{\boldsymbol{x}^{(i)^{T}} \mathbf{M} \boldsymbol{x}^{(i)}}{\boldsymbol{x}^{(i)^{T}} \boldsymbol{x}^{(i)}}
$$

$$
\lambda_{1}=\min _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{x^{T} \mathbf{M} x}{x^{T} x}
$$

minimised by an eigenvector $f_{1}$ for $\lambda_{1}$

Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of $\mathbf{M}$ if and only if there exists

Let $\mathbf{L}$ be the Laplacian matrix of a $d$-regular graph $G$ with $n$ vertices Then, $\mathbf{L}$ has $n$ real eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and $n$ corresponding

Matrices, Spectrum and Structure
13

Let $\mathbf{M}$ be an $n$ by $n$ symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

The eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ minimise such expression.

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \backslash\{0\} \\ x \perp f_{1}}} \frac{x^{\top} \mathbf{M} x}{x^{\top} x}
$$

minimised by $f_{2}$

## Quadratic Forms of the Laplacian

Lemma
Let $\mathbf{L}$ be the Laplacian matrix of a $d$-regular graph $G=(V, E)$ with $n$ vertices. For any $x \in \mathbb{R}^{n}$,

$$
x^{T} \mathbf{L} x=\sum_{\{u, v\} \in E} \frac{\left(x_{u}-x_{v}\right)^{2}}{d} .
$$

Proof:

$$
\begin{aligned}
x^{T} \mathbf{L} x & =x^{T}\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) x=x^{T} x-\frac{1}{d} x^{\top} \mathbf{A} x \\
& =\sum_{u \in V} x_{u}^{2}-\frac{2}{d} \sum_{\{u, v\} \in E} x_{u} x_{v} \\
& =\frac{1}{d} \sum_{\{u, v\} \in E}\left(x_{u}^{2}+x_{v}^{2}-2 x_{u} x_{v}\right) \\
& =\sum_{\{u, v\} \in E} \frac{\left(x_{u}-x_{v}\right)^{2}}{d} .
\end{aligned}
$$

## Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

## Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Embedding onto Line
Coordinates given by $x$


The coordinates in the vector $\mathbf{x}$ indicate how similar/dissimilar vertices are. Edges between dissimilar vertices are penalised quadratically.

$$
\begin{equation*}
\text { 11. Spectral Graph Theory © T. Sauerwald } \quad \text { Matrices, Spectrum and Structure } \tag{17}
\end{equation*}
$$

## A Simplified Clustering Problem

Partition the graph into connected components so that any pair of vertices in the same component is connected, but vertices in different components are not.


We could obviously solve this easily using DFS/BFS, but let's see how we can tackle this using the spectrum of L !

## Example 2

$\triangle$
Exercise: What are the Eigenvectors with Eigenvalue 0 of $\mathbf{L}$ ?


## Example 2

$\triangle$
Exercise: What are the Eigenvectors with Eigenvalue 0 of $\mathbf{L}$ ?


Solution:

- The two smallest eigenvalues are $\lambda_{1}=\lambda_{2}=0$.
- The corresponding two eigenvectors are

Thus we can easily solve the simplified clustering prob-
lem by computing the eigenvectors with eigenvalue 0


## Proof of Lemma, 2nd statement (non-examinable)

Let us generalise and formalise the previous example!
Proof (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow$ " $c c(G) \leq$ mult $(0)$ ). We will show:
$G$ has exactly $k$ connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi_{c_{i}} \in\{0,1\}^{n}$ such that $\chi_{c_{i}}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$ 's are orthogonal
- $\chi_{c_{i}}^{\top} L \chi c_{i}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi c_{i}(u)-\chi c_{i}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " ~ c c(G) \geq \operatorname{mult}(0))$. We will show:
$\lambda_{1}=\cdots=\lambda_{k}=0 \Rightarrow G$ has at least $k$ connected comp. $C_{1}, \ldots, C_{k}$

- there exist $f_{1}, \ldots, f_{k}$ orthonormal such that $\sum_{\{u, v\} \in E}\left(f_{i}(u)-f_{i}(v)\right)^{2}=0$
- $\Rightarrow f_{1}, \ldots, f_{k}$ constant on connected components
- as $f_{1}, \ldots, f_{k}$ are pairwise orthogonal, $G$ must have $k$ different connected components.


## Outline

## Randomised Algorithms

Lecture 12: Spectral Graph Clustering

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023


Appendix: Relating Spectrum to Mixing Times (non-examinable)

## Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same piece have, on average, more connections among each other than with
12. Clustering © T. Sauerwald

Conductance, Cheeger's Inequality and Spectral Clustering
2

## Conductance

## Conductance

Let $G=(V, E)$ be a $d$-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of $S$ is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph $G$ is


- $\phi(S)=\frac{5}{9}$
- $\phi(G) \in[0,1]$ and $\phi(G)=0$ iff $G$ is disconnected
- If $G$ is a complete graph, then $e(S, V \backslash S)=|S| \cdot(n-|S|)$ and $\phi(G) \approx 1 / 2$.


$$
\phi(G)=0 \Leftrightarrow G \text { is disconnected } \Leftrightarrow \lambda_{2}(G)=0
$$

What is the relationship between $\phi(G)$ and $\lambda_{2}(G)$ for connected graphs?
12. Clustering $\odot \mathrm{T}$. Sauerwald Conductance, Cheeger's Inequality and Spectral Clustering

## Relating $\lambda_{2}$ and Conductance

Cheeger's inequality
Let $G$ be a $d$-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}} .
$$

## Spectral Clustering:

1. Compute the eigenvector $x$ corresponding to $\lambda_{2}$
2. Order the vertices so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (embed $V$ on $\mathbb{R}$ )
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance

- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2 \lambda_{2}} \leq 2 \sqrt{\phi(G)}$
- no constant factor worst-case guarantee, but usually works well in practice (see examples later!)
- very fast: can be implemented in $O(|E| \log |E|)$ time

1D Grid (Path)
2D Grid
3D Grid


$$
\lambda_{2} \sim n^{-2}
$$

$$
\lambda_{2} \sim n^{-1}
$$

$$
\lambda_{2} \sim n^{-2 / 3}
$$

$$
\phi \sim n^{-1}
$$

$$
\phi \sim n^{-1 / 2}
$$

$$
\phi \sim n^{-1 / 3}
$$

Random Graph (Expanders)


Binary Tree


$$
\begin{aligned}
\lambda_{2} & \sim(\log n)^{-1} & \lambda_{2} & =\Theta(1) \\
\phi & \sim(\log n)^{-1} & \phi & =\Theta(1)
\end{aligned}
$$

Conductance, Cheeger's hequadity and Spectral Clustering

## Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):

- By the Courant-Fischer Formula,

Optimisation Problem: Embed vertices on a line such that sum of squared distances is minimised

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{\top} \mathbf{L} x}{x^{\top} x}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}{\sum_{u} x_{u}^{2}} .
$$

- Let $S \subseteq V$ be the subset for which $\phi(G)$ is minimised. Define $y \in \mathbb{R}^{n}$ by:

$$
y_{u}= \begin{cases}\frac{1}{|S|} & \text { if } u \in S, \\ -\frac{1}{|V \backslash S|} & \text { if } u \in V \backslash S .\end{cases}
$$

- Since $y \perp 1$, it follows that

$$
\begin{aligned}
\lambda_{2} & \leq \frac{1}{d} \cdot \frac{\sum_{u \sim v}\left(y_{u}-y_{v}\right)^{2}}{\sum_{u} y_{u}^{2}}=\frac{1}{d} \cdot \frac{|E(S, V \backslash S)| \cdot\left(\frac{1}{|S|}+\frac{1}{|V \backslash S|}\right)^{2}}{\frac{1}{|S|}+\frac{1}{|V \backslash S|}} \\
& =\frac{1}{d} \cdot|E(S, V \backslash S)| \cdot\left(\frac{1}{|S|}+\frac{1}{|V \backslash S|}\right) \\
& \leq \frac{1}{d} \cdot \frac{2 \cdot|E(S, V \backslash S)|}{|S|}=2 \cdot \phi(G) .
\end{aligned}
$$

## Outline

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)
Let us now look at an example of a non-regular graph!

## Illustration on a small Example


$\lambda_{2}=1-\sqrt{5} / 3 \approx 0.25$
$v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}$


Sweep: 4
Conductance: 0.166
12. Clustering © T. Sauerwald Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

## The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of $G=(V, E, w)$ is the $n$ by $n$ matrix

$$
\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}
$$

where $\mathbf{D}$ is a diagonal $n \times n$ matrix s.t. $\mathbf{D}_{u u}=\operatorname{deg}(u)=\sum_{\{u, v\} \in E} w(u, v)$, and $\mathbf{A}$ is the weighted adjacency matrix of $G$.


$$
\mathbf{L}=\left(\begin{array}{cccc}
1 & -16 / 25 & 0 & -9 / 20 \\
-16 / 25 & 1 & -9 / 20 & 0 \\
0 & -9 / 20 & 1 & -7 / 16 \\
-9 / 20 & 0 & -7 / 16 & 1
\end{array}\right)
$$

- $\mathbf{L}_{u v}=\frac{w(u, v)}{\sqrt{d_{u} d_{v}}}$ for $u \neq v$
- $L$ is symmetric
- If $G$ is $d$-regular, $\mathbf{L}=\mathbf{I}-\frac{1}{d} \cdot \mathbf{A}$


## Conductance and Spectral Clustering (General Version)

Conductance (General Version)
Let $G=(V, E, w)$ and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of $S$ is

$$
\phi(S):=\frac{w\left(S, S^{C}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}},
$$

where $w\left(S, S^{c}\right):=\sum_{u \in S, v \in S^{c}} w(u, v)$ and $\operatorname{vol}(S):=\sum_{u \in S} d(u)$. Moreover, the conductance (edge expansion) of $G$ is

$$
\phi(G):=\min _{\emptyset \neq S \subsetneq V} \phi(S)
$$

## Spectral Clustering (General Version):

1. Compute the eigenvector $x$ corresponding to $\lambda_{2}$ and $y=\mathbf{D}^{-1 / 2} x$.
2. Order the vertices so that $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$ (embed $V$ on $\mathbb{R}$ )
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance
4. Clustering © T. Sauerwald Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

## Drawing the 2D-Embedding

## Stochastic Block Model and 1D-Embedding

$$
\begin{aligned}
G= & (V, E) \text { with clusters } S_{1}, S_{2} \subseteq V, 0 \leq q<p \leq 1 \\
& \mathbf{P}[\{u, v\} \in E]= \begin{cases}p & \text { if } u, v \in S_{i}, \\
q & \text { if } u \in S_{i}, v \in S_{j}, i \neq j .\end{cases}
\end{aligned}
$$

## Here:

- $\left|S_{1}\right|=80$,

$$
\left|S_{2}\right|=120
$$

- $p=0.08$
- $q=0.01$

Number of Vertices: 200
Number of Edges:
Eigenvalue 1 : $-1.1968431479565368 \mathrm{e}-16$
Eigenvalue $2: 0.1543784937248489$
Eigenvalue $3: 0.37049909753568877$
Eigenvalue 4 : 0.39770640242147404
Eigenvalue 5 : 0.4316114413430584
Eigenvalue $6: 0.44379221120189777$
Eigenvalue 7 : 0.4564011652684181
Eigenvalue 8 : 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue $10: 0.4814019607292904$


- Step: 78
- Threshold: -0.0268
- Partition Sizes: 78/122
- Cut Edges: 84
- Conductance: 0.1448


| 12. Clustering © T. Sauerwald | Illustrations of Spectral Clustering and Extension to Non-Regular Graphs | 18 |
| :--- | :--- | :--- |

## How to Choose the Cluster Number $k$

- If $k$ is unknown:
- small $\lambda_{k}$ means there exist $k$ sparsely connected subsets in the graph (recall: $\lambda_{1}=\ldots=\lambda_{k}=0$ means there are $k$ connected components)
- large $\lambda_{k+1}$ means all these $k$ subsets have "good" inner-connectivity properties
$\Rightarrow$ choose smallest $k \geq 2$ so that the spectral gap $\lambda_{k+1}-\lambda_{k}$ is "large"
- In the latter example $\lambda=\{0,0.20,0.22,0.43,0.45, \ldots\} \Longrightarrow k=3$.
- In the former example $\lambda=\{0,0.15,0.37,0.40,0.43, \ldots\} \Longrightarrow k=2$.
- For $k=2$ use sweep-cut extract clusters. For $k \geq 3$ use embedding in $k$-dimensional space and apply $k$-means (geometric clustering)


## Summary: Spectral Clustering



- Given any graph (adjacency matrix)
- Graph Spectrum (computable in poly-time)
- $\lambda_{2}$ (relates to connectivity)
- $\lambda_{n}$ (relates to bipartiteness)

12. Clustering © T. Sauerwald Illustrations of Spectral Clustering and Extension to Non-Regular Graphs 21

## Relation between Clustering and Mixing

- Which graph has a "cluster-structure"?
- Which graph mixes faster?

- Cheeger's Inequality
- relates $\lambda_{2}$ to conductance
- unbounded approximation ratio
- effective in practice


## Outline

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)
12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable)

## Convergence of Random Walk

Recall: If the underlying graph $G$ is connected, undirected and $d$-regular, then the random walk converges towards the station ary distribution $\pi=(1 / n, \ldots, 1 / n)$, which satisfies $\pi \mathbf{P}=\pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Consider a lazy random walk on a connected, undirected and $d$-regular graph. Then for any initial distribution $x$,

$$
\left\|x \mathbf{P}^{t}-\pi\right\|_{2} \leq \lambda^{t}
$$

with $1=\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}$ as eigenvalues and $\lambda:=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$ $\Rightarrow$ This implies for $t=\mathcal{O}\left(\frac{\log n}{\log (1 / \lambda)}\right)=\mathcal{O}\left(\frac{\log n}{1-\lambda}\right)$,
due to laziness, $\lambda_{n} \geq 0$

$$
\left\|x \mathbf{P}^{t}-\pi\right\|_{t v} \leq \frac{1}{4} .
$$

## Proof of Lemma

- Express $x$ in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$ :

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since $x$ is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.
$\Rightarrow$

$$
\begin{aligned}
\|x \mathbf{P}-\pi\|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2}
\end{aligned}
$$



- Hence $\left\|x \mathbf{P}^{t}-\pi\right\|_{2}^{2} \leq \lambda^{2 t} \cdot\|x-\pi\|_{2}^{2} \leq \lambda^{2 t} \cdot 1 . \quad \underbrace{\|x-\pi\|_{2}^{2}+\|\pi\|_{2}^{2}=\|x\|_{2}^{2} \leq 1}$ 12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable)


## The End..

Thank you and Best Wishes for the Exam!

圊 Fan R.K. Chung
Graph Theory in the Information Age.
Notices of the AMS, vol. 57, no. 6, pages 726-732, 2010.
Fan R.K. Chung
Spectral Graph Theory.
Volume 92 of CBMS Regional Conference Series in Mathematics, 1997.
囯 S. Hoory, N. Linial and A. Widgerson.
Expander Graphs and their Applications.
Bulletin of the AMS, vol. 43, no. 4, pages 439-561, 2006.

- Daniel Spielman.

Chapter 16, Spectral Graph Theory
Combinatorial Scientific Computing, 2010.
Ruca Trevisan.
Lectures Notes on Graph Partitioning, Expanders and Spectral Methods, 2017.
https://lucatrevisan.github.io/books/expanders-2016.pdf

$$
\text { 12. Clustering © T. Sauerwald } \quad \text { Appendix: Relating Spectrum to Mixing Times (non-examinable) }
$$


[^0]:    1. Introduction © T . Sauerwald
[^1]:    3. Concentration © T. Sauerwald
[^2]:    4. Markov Chains and Mixing Times $\odot T$. Sauerwald
[^3]:    But for any regular (finite) graph, the expected return time to $u$ is $1 / \pi(u)=n$

[^4]:    6．Linear Programming © T．Sauerwald

[^5]:    6. Linear Programming © T. Sauerwald
[^6]:    8. Solving TSP via Linear Programming © T. Sauerwald
[^7]:    8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances
[^8]:    8. Solving TSP via Linear Programming © T. Sauerwald
[^9]:    10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)
