Randomised Algorithms

Lecture 6: Linear Programming: Introduction

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

What are Linear Programs?

Linear Programming (informal definition)

- maximise or minimise an objective, given limited resources (competing constraint)
- constraints are specified as (in)equalities
- objective function and constraints are linear

A Simple Example of a Linear Optimisation Problem

- Laptop

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP
- glass: 4 units

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit

A Simple Example of a Linear Optimisation Problem

- Laptop
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit

A Simple Example of a Linear Optimisation Problem

- Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units

A Simple Example of a Linear Optimisation Problem

- Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:

A Simple Example of a Linear Optimisation Problem

- Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
- glass: 20 units

A Simple Example of a Linear Optimisation Problem

- Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:

- glass: 20 units
- copper: 10 units

A Simple Example of a Linear Optimisation Problem

- Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units

图同

A Simple Example of a Linear Optimisation Problem

- Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units
- (and enough of everything else...)

A Simple Example of a Linear Optimisation Problem

- Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units
- (and enough of everything else...)

줌

How to maximise your daily earnings?

The Linear Program
Linear Program for the Production Problem
maximise $\quad x_{1}+x_{2}$
subject to

$$
\begin{aligned}
& 4 x_{1}+x_{2} \leq 20 \\
& 2 x_{1}+ x_{2} \\
& \leq 10 \\
& x_{1}+2 \leq x_{2} \\
& x_{1}, x_{2} \\
& \geq 14 \\
&
\end{aligned}
$$

The Linear Program

Linear Program for the Production Problem

maximise $\quad x_{1}+x_{2}$
subject to

$4 x_{1}+x_{2}$	≤ 20
$2 x_{1}+$	x_{2}
\leq	10
$x_{1}+2 x_{2}$	≤ 14
x_{1}, x_{2}	
\geq	

The solution of this linear program yields the optimal production schedule.

The Linear Program

Linear Program for the Production Problem

maximise $\quad x_{1}+x_{2}$
subject to

$4 x_{1}+x_{2}$	≤ 20
$2 x_{1}+$	x_{2}
\leq	10
$x_{1}+2 x_{2}$	≤ 14
x_{1}, x_{2}	
\geq	0

The solution of this linear program yields the optimal production schedule.
Formal Definition of Linear Program

The Linear Program

Linear Program for the Production Problem

maximise $\quad x_{1}+x_{2}$
subject to

$4 x_{1}+x_{2}$	≤ 20
$2 x_{1}+$	x_{2}
\leq	10
$x_{1}+2 x_{2}$	≤ 14
x_{1}, x_{2}	
\geq	0

The solution of this linear program yields the optimal production schedule.
Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .
$$

The Linear Program

Linear Program for the Production Problem

maximise $\quad x_{1}+x_{2}$
subject to

$4 x_{1}+x_{2}$	≤ 20
$2 x_{1}+x_{2}$	≤ 10
$x_{1}+2 x_{2}$	≤ 14
x_{1}, x_{2}	
\geq	

The solution of this linear program yields the optimal production schedule.
Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .
$$

- Linear Equality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$
- Linear Inequality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq b$

The Linear Program

Linear Program for the Production Problem

maximise $\quad x_{1}+x_{2}$
subject to

$4 x_{1}+x_{2}$	≤ 20
$2 x_{1}+x_{2}$	≤ 10
$x_{1}+2 x_{2}$	≤ 14
x_{1}, x_{2}	
\geq	

The solution of this linear program yields the optimal production schedule.
Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .
$$

- Linear Equality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$
- Linear Inequality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geqq b$

The Linear Program

Linear Program for the Production Problem

maximise $\quad x_{1}+x_{2}$
subject to

$4 x_{1}+x_{2}$	≤ 20
$2 x_{1}+$	x_{2}
\leq	10
$x_{1}+2 x_{2}$	≤ 14
x_{1}, x_{2}	
\geq	

The solution of this linear program yields the optimal production schedule.
Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

- Linear Equality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$
- Linear Inequality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geqq b$

Linear Constraints

- Linear-Progamming Problem: either minimise or maximise a linear function subject to a set of linear constraints

Finding the Optimal Production Schedule

maximise	x_{1}	+	x_{2}	
subject to				
	$4 x_{1}$	+	x_{2}	≤ 20
	$2 x_{1}+$	x_{2}	≤ 10	
	$x_{1}+$	$2 x_{2}$	≤ 14	
	x_{1}, x_{2}		≥ 0	

Finding the Optimal Production Schedule

$\operatorname{maximise}$	x_{1}	+	x_{2}
subject to			

Any setting of x_{1} and x_{2} satisfying all constraints is a feasible solution

Finding the Optimal Production Schedule

Finding the Optimal Production Schedule

Question: Which aspect did we ignore in the formulation of the linear program?

Finding the Optimal Production Schedule

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Shortest Paths

__ Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Exercise: How can we translate the SPSP problem into a linear program?

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Shortest Paths as LP
subject to

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Shortest Paths as LP
subject to

$$
\begin{aligned}
& d_{v} \leq d_{u}+w(u, v) \quad \text { for each edge }(u, v) \in E \\
& d_{s}=0
\end{aligned}
$$

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Shortest Paths as LP
maximise $\quad d_{t}$
subject to

$$
\begin{aligned}
d_{v} & \leq d_{u}+w(u, v) \quad \text { for each edge }(u, v) \in E \\
d_{s} & =0
\end{aligned}
$$

Shortest Paths

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Shortest Paths

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Shortest Paths

$$
\begin{aligned}
& p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right) \text { such that } \\
& w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right) \text { is minimised. }
\end{aligned}
$$

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow as LP
maximise $\quad \sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s}$
subject to

$$
\begin{array}{rlrl}
f_{u v} & \leq & c(u, v) & \\
\text { for each } u, v \in V \\
\sum_{v \in V} f_{v u} & = & \sum_{v \in V} f_{u v} & \text { for each } u \in V \backslash\{s, t\} \\
f_{u v} & \geq & 0 & \text { for each } u, v \in V .
\end{array}
$$

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from s to t with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from s to t with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

(a)

(b)

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from s to t with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

Optimal Solution with total cost:

$$
\sum_{(u, v) \in E} a(u, v) f_{u v}=(2 \cdot 2)+(5 \cdot 2)+(3 \cdot 1)+(7 \cdot 1)+(1 \cdot 3)=27
$$

(a)

(b)

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise

$$
\sum_{(u, v) \in E} a(u, v) f_{u v}
$$

subject to

$$
\begin{aligned}
f_{u v} & \leq c(u, v) & & \text { for } u, v \in V \\
\sum_{v \in V} f_{v u}-\sum_{v \in V} f_{u v} & =0 & & \text { for } u \in V \backslash\{s, t\}, \\
\sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} & =d, & & \\
f_{u v} & \geq 0 & & \text { for } u, v \in V .
\end{aligned}
$$

Minimum Cost Flow as a LP

$$
\begin{aligned}
& \text { — Minimum Cost Flow as LP } \\
& \begin{array}{lrlrl}
\text { minimise } \\
\text { subject to }
\end{array} \\
& \qquad \begin{array}{rlrl}
\sum_{(u, v) \in E} a(u, v) f_{u v} & & \\
f_{u v} & \leq c(u, v) & & \text { for } u, v \in V, \\
\sum_{v \in V} f_{v u}-\sum_{v \in V} f_{u v} & =0 & & \text { for } u \in V \backslash\{s, t\}, \\
\sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} & =d, & & \\
f_{u v} & \geq 0 & & \text { for } u, v \in V .
\end{array}
\end{aligned}
$$

Real power of Linear Programming comes from the ability to solve new problems!

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Standard and Slack Forms

Standard Form

$$
\begin{array}{ll}
\text { maximise } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& \text { for } i=1,2, \ldots, m \\
x_{j} \geq 0 & \text { for } j=1,2, \ldots, n
\end{array}
$$

Standard and Slack Forms

Standard Form

$$
\begin{array}{ll}
\text { maximise } & \sum_{j=1}^{n} c_{j} x_{j}<\underbrace{}_{\text {Objective Function }} \\
\text { subject to } \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{array}
$$

Standard and Slack Forms

Standard and Slack Forms

Standard and Slack Forms

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

minimise	$-2 x_{1}$	+			
subject to					
	x_{1}	+	x_{2}	$=$	7
	χ_{1}	-	$2 x_{2}$	\leq	4
	χ_{1}			\geq	0

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

minimise	$-2 x_{1}$	+			
subject to					
	x_{1}	+	x_{2}	$=$	7
	x_{1}	-	$2 x_{2}$	\leq	4
	x_{1}			\geq	0
		N	Negate objective function		ve function
maximise	$2 x_{1}$	-	$3 x_{2}$		
subject to					
	x_{1}	+	x_{2}	$=$	7
	x_{1}	-	$2 x_{2}$	\leq	4
	x_{1}				0

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

$$
\begin{array}{lcl}
\operatorname{maximise} & 2 x_{1}-3 x_{2} & \\
\text { subject to } & & \\
& x_{1}+2 x_{2}=7 \\
& x_{1}-2 x_{2} \leq 4 \\
& x_{1} & \\
& \geq 0 \\
\hline
\end{array}
$$

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

$$
\begin{aligned}
& \text { maximise } 2 x_{1}-3 x_{2} \\
& \text { subject to } \\
& \text { Replace } x_{2} \text { by two non-negative } \\
& \text { variables } x_{2}^{\prime} \text { and } x_{2}^{\prime \prime}
\end{aligned}
$$

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
maximise
subject to

Replace x_{2} by two non-negative variables x_{2}^{\prime} and $x_{2}^{\prime \prime}$
maximise $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

$$
\begin{array}{lccccc}
\begin{array}{l}
\operatorname{maximise} \\
\text { subject to }
\end{array} & 2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} & \\
& \begin{array}{|ccrrr}
x_{1} & + & x_{2}^{\prime} & - & x_{2}^{\prime \prime} \\
& x_{1}-2 & 2 x_{2}^{\prime} & + & 2 x_{2}^{\prime \prime} \\
& x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} & & & \geq \\
& & & \geq
\end{array}
\end{array}
$$

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.
maximise $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

Replace each equality by two inequalities.

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with \geq instead of \leq).

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).
maximise $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

$x_{1}+$	x_{2}^{\prime}	-	$x_{2}^{\prime \prime}$	\leq	7
$x_{1}+$	x_{2}^{\prime}	-	$x_{2}^{\prime \prime}$	\geq	7
$x_{1}-22 x_{2}^{\prime}$	$+2 x_{2}^{\prime \prime}$	\leq	4		
$x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime}$			\geq	0	

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

$$
\begin{aligned}
& \text { maximise } 2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
& \text { subject to } \\
& \text { Negate respective inequalities. }
\end{aligned}
$$

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Converting into Standard Form (5/5)

maximise	$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$		
subject to							
	x_{1}	+	x_{2}	-	x_{3}	\leq	7
	$-x_{1}$	-	x_{2}	+	x_{3}	\leq	-7
	x_{1}	-	$2 x_{2}$	+	$2 x_{3}$	\leq	4
	x_{1}, x_{2}, x_{3}			\geq	0		

Converting into Standard Form (5/5)

Converting into Standard Form (5/5)

It is always possible to convert a linear program into standard form.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

> For the simplex algorithm, it is more convenient to work with equality constraints.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by

$$
s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}
$$

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by

$$
\begin{aligned}
& s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& s \geq 0
\end{aligned}
$$

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by
s measures the slack between the two sides of the inequality.

$$
\begin{aligned}
& s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& s \geq 0
\end{aligned}
$$

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by
s measures the slack between the two sides of the inequality.

$$
\left\{\begin{array}{l}
s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
s \geq 0
\end{array}\right.
$$

- Denote slack variable of the i-th inequality by x_{n+i}

Converting Standard Form into Slack Form (2/3)

$$
\begin{array}{lclllll}
\operatorname{maximise} & 2 x_{1} & - & 3 x_{2} & + & 3 x_{3} & \\
\text { subject to } & & & & & & \\
& x_{1} & + & x_{2} & - & x_{3} & \leq \\
& -x_{1} & - & x_{2} & + & x_{3} & \leq \\
& x_{1} & -7 \\
& x_{1}, x_{2} & + & 2 x_{3} & \leq & 4 \\
& x_{1}, x_{3} & & & \geq & 0
\end{array}
$$

Converting Standard Form into Slack Form (2/3)

maximise	$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$		
subject to							
	x_{1}	+	x_{2}	-	x_{3}	\leq	7
	$-x_{1}$	-	x_{2}	+	x_{3}	\leq	-7
	x_{1}	-	$2 x_{2}$	+	$2 x_{3}$	\leq	4
	x_{1}, x_{2}, x_{3}				\geq	0	

Converting Standard Form into Slack Form (2/3)

subject to

$$
x_{4}=7-x_{1}-x_{2}+x_{3}
$$

Converting Standard Form into Slack Form (2/3)

subject to

$$
\begin{array}{rlrllllll}
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + & x_{3} \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - & x_{3}
\end{array}
$$

Converting Standard Form into Slack Form (2/3)

maximise	$2 x_{1}$	-	$3 x_{2}$	$+$	$3 x_{3}$		
	x_{1}	+	x_{2}	-	x_{3}	\leq	7
	$-x_{1}$	-	χ_{2}	$+$	x_{3}	\leq	-7
	x_{1}	-	$2 x_{2}$	+	$2 x_{3}$	\leq	4
		X2				\geq	0
			\downarrow	trod	ice s	ck	riabl

subject to

$$
\begin{array}{rrrrrlrlr}
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + & x_{3} \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - & x_{3} \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - & 2 x_{3}
\end{array}
$$

maximise subject to	$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$		
	x_{1}	$+$	x_{2}	-	x_{3}	\leq	7
	$-x_{1}$	-	x_{2}	+	x_{3}	\leq	-7
	x_{1}	-	$2 x_{2}$	+	$2 x_{3}$	\leq	4
		χ_{2}				\geq	0
				Introduce slack variables			

subject to

$$
\begin{array}{rcrrrlrlr}
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + & x_{3} \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - & x_{3} \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & & \geq & 0 & &
\end{array}
$$

Converting Standard Form into Slack Form (2/3)

Converting Standard Form into Slack Form (3/3)

| maximise | $2 x_{1}$ | - | $3 x_{2}$ | + | $3 x_{3}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| subject to | | | | | | | | |

Use variable z to denote objective function and omit the nonnegativity constraints.

Converting Standard Form into Slack Form (3/3)

$$
\begin{aligned}
& \text { maximise } 2 x_{1}-3 x_{2}+3 x_{3} \\
& \text { subject to }
\end{aligned}
$$

> Use variable z to denote objective function and omit the nonnegativity constraints.

Converting Standard Form into Slack Form (3/3)

maximise $2 x_{1}-3 x_{2}+3 x_{3}$
subject to

Use variable z to denote objective function and omit the nonnegativity constraints.

z	$=$			$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+	x_{3}
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-	x_{3}
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-	$2 x_{3}$

This is called slack form.

Basic and Non-Basic Variables

z	$=$			$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+	x_{3}
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-	x_{3}
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-	$2 x_{3}$

Basic and Non-Basic Variables

Basic and Non-Basic Variables

Basic and Non-Basic Variables

Slack Form (Formal Definition)
Slack form is given by a tuple (N, B, A, b, c, v) so that

$$
\begin{aligned}
& z=v+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } i \in B
\end{aligned}
$$

and all variables are non-negative.

Basic and Non-Basic Variables

$$
\begin{array}{rlrllrlr}
z & = & & 2 x_{1} & - & 3 x_{2} & + & 3 x_{3} \\
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - \\
2 x_{3}
\end{array}
$$

Basic Variables: $B=\{4,5,6\}$
Non-Basic Variables: $N=\{1,2,3\}$

Slack Form (Formal Definition)
Slack form is given by a tuple (N, B, A, b, c, v) so that

$$
\begin{aligned}
& z=v+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } i \in B
\end{aligned}
$$

and all variables are non-negative.
Variables/Coefficients on the right hand side are indexed by B and N.

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

$$
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right)
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
\begin{gathered}
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right) \\
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right), \quad c=\left(\begin{array}{l}
c_{3} \\
c_{5} \\
c_{6}
\end{array}\right)=\left(\begin{array}{l}
-1 / 6 \\
-1 / 6 \\
-2 / 3
\end{array}\right)
\end{gathered}
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
\begin{gathered}
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right) \\
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right), \quad c=\left(\begin{array}{l}
c_{3} \\
c_{5} \\
c_{6}
\end{array}\right)=\left(\begin{array}{l}
-1 / 6 \\
-1 / 6 \\
-2 / 3
\end{array}\right)
\end{gathered}
$$

- $v=28$

