Introduction to Probability

Session 13: Example Class
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Plan for Today

3 worked out examples:

1. Application of Central Limit Theorem
2. Bias and MSE of Estimators
3. Local Maxima ("Best-so-far Candidates") in the Secretary Problem And plenty of time to answer your questions!

Example 1

Assume that an unknown fraction p of voters support a particular candidate. We poll $n=100$ random voters and record by $\bar{X}_{n}:=\frac{1}{n} \cdot\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ the fraction of polled voters that support the candidate. Using the CLT, find an ϵ so that $\mathbf{P}\left[\left|\bar{X}_{n}-p\right| \leq \epsilon\right] \geq 0.95$.

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. samples from $\operatorname{Exp}(\lambda)$. We would like to estimate the unknown mean $1 / \lambda$. Let $T_{1}:=\bar{X}_{n}=\frac{1}{n} \cdot\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ be the sample mean.

1. Define $M_{n}:=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. What is the distribution of M_{n} ?
2. Find an unbiased estimator T_{2} for $1 / \lambda$ based on M_{n}.
3. Which of the two estimators T_{1} or T_{2} is preferable?

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. samples from $\operatorname{Exp}(\lambda)$. We would like to estimate the unknown mean $1 / \lambda$. Let $T_{1}:=\bar{X}_{n}=\frac{1}{n} \cdot\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ be the sample mean.

1. Define $M_{n}:=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. What is the distribution of M_{n} ?
2. Find an unbiased estimator T_{2} for $1 / \lambda$ based on M_{n}.
3. Which of the two estimators T_{1} or T_{2} is preferable?

Reminder: Secretary Problem

unknown permutation:
$4,7,8,6,18,11,3,5,9,13,17,2,20,14,12,15,10,16,19,1$.
value

Example 3

Consider the secretary problem, where the ranking of the n candidates is a random permutation. What is the expected number of "best-so-far" candidates?

