Introduction to Probability

Session 13: Example Class

Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Easter 2023

Plan for Today

3 worked out examples:

- 1. Application of Central Limit Theorem
- 2. Bias and MSE of Estimators
- 3. Local Maxima ("Best-so-far Candidates") in the Secretary Problem And plenty of time to answer your questions!

Intro to Probability

2

Example 1

Assume that an unknown fraction p of voters support a particular candidate. We poll n=100 random voters and record by $\overline{X}_n:=\frac{1}{n}\cdot(X_1+X_2+\cdots+X_n)$ the fraction of polled voters that support the candidate. Using the CLT, find an ϵ so that $\mathbf{P}\left[\left|\overline{X}_n-p\right|\leq\epsilon\right]\geq0.95$.

Answer

Intro to Probability

Example 2 [source: Dekking et al., Exercise 20.3]

Suppose X_1, X_2, \ldots, X_n are i.i.d. samples from $Exp(\lambda)$. We would like to estimate the unknown mean $1/\lambda$. Let $T_1 := \overline{X}_n = \frac{1}{n} \cdot (X_1 + X_2 + \ldots + X_n)$ be the sample mean.

- 1. Define $M_n := \min(X_1, X_2, \dots, X_n)$. What is the distribution of M_n ?
- 2. Find an unbiased estimator T_2 for $1/\lambda$ based on M_n .
- 3. Which of the two estimators T_1 or T_2 is preferable?

Answer

Example 2 [source: Dekking et al., Exercise 20.3]

Suppose X_1, X_2, \ldots, X_n are i.i.d. samples from $Exp(\lambda)$. We would like to estimate the unknown mean $1/\lambda$. Let $T_1 := \overline{X}_n = \frac{1}{n} \cdot (X_1 + X_2 + \ldots + X_n)$ be the sample mean.

- 1. Define $M_n := \min(X_1, X_2, \dots, X_n)$. What is the distribution of M_n ?
- 2. Find an unbiased estimator T_2 for $1/\lambda$ based on M_n .
- 3. Which of the two estimators T_1 or T_2 is preferable?

Answer

Reminder: Secretary Problem

Intro to Probability 5

Consider the secretary problem, where the ranking of the n candidates is a random permutation. What is the expected number of "best-so-far" candidates?

Intro to Probability