Introduction to Probability

Session 13: Example Class
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Plan for Today

3 worked out examples:

1. Application of Central Limit Theorem
2. Bias and MSE of Estimators
3. Local Maxima ("Best-so-far Candidates") in the Secretary Problem And plenty of time to answer your questions!

Example 1

Assume that an unknown fraction p of voters support a particular candidate. We poll $n=100$ random voters and record by $\bar{X}_{n}:=\frac{1}{n} \cdot\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ the fraction of polled voters that support the candidate. Using the CLT, find an ϵ so that $\mathbf{P}\left[\left|\bar{X}_{n}-p\right| \leq \epsilon\right] \geq 0.95$.

- Clearly, $\mu=\mathbf{E}\left[X_{i}\right]=p$ and $\sigma^{2}=\mathbf{V}\left[X_{i}\right]=p(1-p)$ are finite.
- We have

$$
\mathbf{P}\left[\left|\bar{X}_{n}-p\right| \geq \epsilon\right]=\mathbf{P}\left[\bar{X}_{n}-p>\epsilon\right]+\mathbf{P}\left[\bar{X}_{n}-p \leq-\epsilon\right] \stackrel{!}{\leq} 0.05
$$

- Remark: For simplicity (and as $n \geq 100$) we skip the continuity correction here
- $\bar{X}_{n}-p$ has already mean zero, only remains to scale it to get a r.v. with variance 1:

$$
\begin{aligned}
\mathbf{P}\left[\bar{X}_{n}-p \geq \epsilon\right] & =\mathbf{P}\left[\left(\bar{X}_{n}-p\right) \cdot \sqrt{n} / \sigma \geq \frac{\sqrt{n} \cdot \epsilon}{\sigma}\right] \\
& \stackrel{(\mathrm{CLT})}{\approx} 1-\Phi\left(\frac{\sqrt{n} \cdot \epsilon}{\sigma}\right) \stackrel{!}{=} 0.025
\end{aligned}
$$

- Rearranging gives $\frac{\sqrt{n} \cdot \epsilon}{\sigma}=\Phi^{-1}(0.975)=1.96$
- $\sigma=\sqrt{p(1-p)}$, but p is unknown \leadsto assume σ is as large as possible, i.e., $\sigma=1 / 2$:

$$
\epsilon \geq 1.96 \cdot \frac{\sigma}{\sqrt{n}}=1.96 \cdot \frac{1}{20} \quad \Rightarrow \quad \epsilon \approx 0.098
$$

- We also have $\mathbf{P}\left[\bar{X}_{n}-p \leq-\epsilon\right] \approx \Phi\left(-\frac{\sqrt{n} \cdot \epsilon}{\sigma}\right)=1-\Phi\left(\frac{\sqrt{n} \cdot \epsilon}{\sigma}\right)$, hence for the same choice of ϵ, we have $\mathbf{P}\left[\bar{X}_{n}-p \leq-\epsilon\right] \leq 0.025$.

Example 2 [source: Dekking et al., Exercise 20.3]

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. samples with distribution $\operatorname{Exp}(\lambda)$. We would like to estimate the unknown mean $1 / \lambda$. Let $T_{1}:=\bar{X}_{n}=\frac{1}{n} \cdot\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ be the sample mean.

1. Define $M_{n}:=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. What is the distribution of M_{n} ?
2. Find an unbiased estimator T_{2} for $1 / \lambda$ based on M_{n}.
3. Which of the two estimators T_{1} or T_{2} is preferable?
4. We have for $x \geq 0$,

$$
\begin{aligned}
\mathbf{P}\left[M_{n} \geq x\right] & =\mathbf{P}\left[\cap_{i=1}^{n}\left(X_{i} \geq x\right)\right] \\
& =\prod_{i=1}^{n} \mathbf{P}\left[X_{i} \geq x\right] \\
& =\left(\mathbf{P}\left[X_{1} \geq x\right]\right)^{n} \\
& =\left(e^{-\lambda \cdot x}\right)^{n} \\
& =e^{-(\lambda \cdot n) \cdot x} .
\end{aligned}
$$

Hence $M_{n} \sim \operatorname{Exp}(\lambda \cdot n)$. Thus $\mathbf{E}\left[M_{n}\right]=1 /(\lambda \cdot n)$.

Example 2 [source: Dekking et al., Exercise 20.3]

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. samples with distribution $\operatorname{Exp}(\lambda)$. We would like to estimate the unknown mean $1 / \lambda$. Let $T_{1}:=\bar{X}_{n}=\frac{1}{n} \cdot\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ be the sample mean.

1. Define $M_{n}:=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. What is the distribution of M_{n} ?
2. Find an unbiased estimator T_{2} for $1 / \lambda$ based on M_{n}.
3. Which of the two estimators T_{1} or T_{2} is preferable?
4. Recall $\mathbf{E}\left[M_{n}\right]=1 /(\lambda \cdot n)$. Hence an unbiased estimator for $1 / \lambda$ is:

$$
T_{2}:=n \cdot M_{n} .
$$

Example 2 [source: Dekking et al., Exercise 20.3]

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. samples with distribution $\operatorname{Exp}(\lambda)$. We would like to estimate the unknown mean $1 / \lambda$. Let $T_{1}:=\bar{X}_{n}=\frac{1}{n} \cdot\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ be the sample mean.

1. Define $M_{n}:=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. What is the distribution of M_{n} ?
2. Find an unbiased estimator T_{2} for $1 / \lambda$ based on M_{n}.
3. Which of the two estimators T_{1} or T_{2} is preferable?
4. Recall $\mathbf{E}\left[M_{n}\right]=1 /(\lambda \cdot n)$. Hence an unbiased estimator for $1 / \lambda$ is:

$$
T_{2}:=n \cdot M_{n} .
$$

3. Both T_{1} and T_{2} are unbiased, therefore by the bias-variance decomposition:
$\operatorname{MSE}\left[T_{1}\right]=\underbrace{\left(\mathbf{E}\left[T_{1}\right]-\frac{1}{\lambda}\right)^{2}}_{=0}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]=\frac{1}{n^{2}} \cdot\left(n \cdot \mathbf{V}\left[X_{1}\right]\right)=\frac{1}{n} \cdot \frac{1}{\lambda^{2}}$
$\operatorname{MSE}\left[T_{2}\right]=\cdots=\mathbf{V}\left[T_{2}\right]=n^{2} \cdot \mathbf{V}\left[M_{n}\right]=n^{2} \cdot \frac{1}{(\lambda n)^{2}}=\frac{1}{\lambda^{2}}$
$\Rightarrow T_{1}$ is a better estimator than $T_{2}($ for $n>1)$

Reminder: Secretary Problem

unknown permutation:
$4,7,8,6,18,11,3,5,9,13,17,2,20,14,12,15,10,16,19,1$.
value

Example 3

Consider the secretary problem, where the ranking of the n candidates is a random permutation. What is the expected number of "best-so-far" candidates?
\qquad

- Let I_{k} be an indicator random variable which is one iff the k-th secretary is "best-so-far"
- Side Remark: It turns out that the set of random variables $I_{1}, I_{2}, \ldots, I_{n}$ are independent, but this requires a proof (see Exercise Sheet) and we won't need it here!
- We have $\mathbf{P}\left[I_{k}=1\right]=1 / k$, as the ranking of the first k secretaries is a random permutation over k elements
- Hence with $I:=\sum_{k=1}^{n} I_{k}$, we have

$$
\begin{aligned}
\mathbf{E}[I]=\sum_{k=1}^{n} \mathbf{E}\left[I_{k}\right] & =\sum_{k=1}^{n} \mathbf{P}\left[I_{k}=1\right] \\
& =\sum_{k=1}^{n} 1 / k \approx \log (n)
\end{aligned}
$$

- This solves the question, but in relation to the optimal algorithm presented in Lec. 12, we can also see from the above derivation that:

$$
\sum_{k=n / e+1}^{n} \mathbf{E}\left[I_{k}\right]=\sum_{k=n / e+1}^{n} \frac{1}{k}=\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=n / e}^{n} \frac{1}{k} \approx \log (n)-\log (n / e)=\log (e)=1
$$

\Rightarrow expected number of "best-so-far" candidates among $\{n / e+1, \ldots, n\}$ is exactly one.

Example 3

Consider the secretary problem, where the ranking of the n candidates is a random permutation. What is the expected number of "best-so-far" candidates?

Extension: What happens if the n candidates arrive according to a "worst-case" permutation?

- Let I_{k} be an indicator random variable which is one iff the k-th secretary is "best-so-far"
- Side Remark: It turns out that the set of random variables $I_{1}, I_{2}, \ldots, I_{n}$ are independent, but this requires a proof (see Exercise Sheet) and we won't need it here!
- We have $\mathbf{P}\left[I_{k}=1\right]=1 / k$, as the ranking of the first k secretaries is a random permutation over k elements
- Hence with $I:=\sum_{k=1}^{n} I_{k}$, we have

$$
\begin{aligned}
\mathbf{E}[I]=\sum_{k=1}^{n} \mathbf{E}\left[I_{k}\right] & =\sum_{k=1}^{n} \mathbf{P}\left[I_{k}=1\right] \\
& =\sum_{k=1}^{n} 1 / k \approx \log (n)
\end{aligned}
$$

- This solves the question, but in relation to the optimal algorithm presented in Lec. 12, we can also see from the above derivation that:

$$
\sum_{k=n / e+1}^{n} \mathbf{E}\left[I_{k}\right]=\sum_{k=n / e+1}^{n} \frac{1}{k}=\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=n / e}^{n} \frac{1}{k} \approx \log (n)-\log (n / e)=\log (e)=1
$$

\Rightarrow expected number of "best-so-far" candidates among $\{n / e+1, \ldots, n\}$ is exactly one.

