Introduction to Probability

Lecture 11: Estimators (Part II)
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Outline

Recap

Estimating Population Sizes

Mean Squared Error

Estimating Population Sizes through Collisions

Recap: Unbiased Estimators and Bias

Definition

An estimator T is called an unbiased estimator for a parameter θ if

$$
\mathbf{E}[T]=\theta
$$

irrespective of the value θ. The bias is defined as

$$
\mathbf{E}[T]-\theta=\mathbf{E}[T-\theta]
$$

Source: Edwin Leuven (Point Estimation)

Recap: Unbiased Estimators and Bias

Definition

An estimator T is called an unbiased estimator for a parameter θ if

$$
\mathbf{E}[T]=\theta
$$

irrespective of the value θ. The bias is defined as

$$
\mathbf{E}[T]-\theta=\mathbf{E}[T-\theta] .
$$

Source: Edwin Leuven (Point Estimation)

- How can we measure the accuracy of an estimator? $~$ bias and mean-squared error
- If there are several unbiased estimators, which one to choose? ~ mean-squared error (or variance)

Outline

Recap

Estimating Population Sizes

Mean Squared Error

Estimating Population Sizes through Collisions

Estimating Population Sizes (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N=\theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over $\{1,2, \ldots, N\}$

Estimating Population Sizes (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N=\theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over $\{1,2, \ldots, N\}$
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

Estimating Population Sizes (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N=\theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over $\{1,2, \ldots, N\}$
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

$$
7,3,10,46,14
$$

Estimating Population Sizes (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N=\theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over $\{1,2, \ldots, N\}$
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

$$
7,3,10,46,14
$$

Warning

- As before, we denote the samples $X_{1}, X_{2}, \ldots, X_{n}$

Estimating Population Sizes (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N=\theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over $\{1,2, \ldots, N\}$
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

$$
7,3,10,46,14
$$

Warning

- As before, we denote the samples $X_{1}, X_{2}, \ldots, X_{n}$
- Since sampling is without replacement, these are:

Estimating Population Sizes (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N=\theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over $\{1,2, \ldots, N\}$
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

$$
7,3,10,46,14
$$

Warning

- As before, we denote the samples $X_{1}, X_{2}, \ldots, X_{n}$
- Since sampling is without replacement, these are:
- they are not independent! (but identically distributed)

Estimating Population Sizes (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N=\theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over $\{1,2, \ldots, N\}$
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

$$
7,3,10,46,14
$$

Warning

- As before, we denote the samples $X_{1}, X_{2}, \ldots, X_{n}$
- Since sampling is without replacement, these are:
" they are not independent! (but identically distributed)
- their number must satisfy $n \leq N$

First Estimator Based on Sample Mean
Example 1
Construct an unbiased estimator using the sample mean.

First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator using the sample mean.

- The sample mean is

$$
\bar{X}_{n}=
$$

First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator using the sample mean.

- The sample mean is

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator using the sample mean.

- The sample mean is

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} .
$$

- Linearity of expectation applies (even for dependent random var.!):

First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator using the sample mean.

- The sample mean is

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

- Linearity of expectation applies (even for dependent random var.!):

$$
\mathbf{E}\left[\bar{X}_{n}\right]=\frac{n \cdot \mathbf{E}\left[X_{1}\right]}{n}=\mathbf{E}\left[X_{1}\right]
$$

First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator using the sample mean.

- The sample mean is

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

- Linearity of expectation applies (even for dependent random var.!):

$$
\begin{aligned}
\mathbf{E}\left[\bar{X}_{n}\right] & =\frac{n \cdot \mathbf{E}\left[X_{1}\right]}{n}=\mathbf{E}\left[X_{1}\right] \\
& =\sum_{i=1}^{N} i \cdot \frac{1}{N}
\end{aligned}
$$

First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator using the sample mean.

- The sample mean is

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

- Linearity of expectation applies (even for dependent random var.!):

$$
\begin{aligned}
\mathbf{E}\left[\bar{X}_{n}\right] & =\frac{n \cdot \mathbf{E}\left[X_{1}\right]}{n}=\mathbf{E}\left[X_{1}\right] \\
& =\sum_{i=1}^{N} i \cdot \frac{1}{N}=\frac{N+1}{2} .
\end{aligned}
$$

First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator using the sample mean.

- The sample mean is

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

- Linearity of expectation applies (even for dependent random var.!):

$$
\begin{aligned}
\mathbf{E}\left[\bar{X}_{n}\right] & =\frac{n \cdot \mathbf{E}\left[X_{1}\right]}{n}=\mathbf{E}\left[X_{1}\right] \\
& =\sum_{i=1}^{N} i \cdot \frac{1}{N}=\frac{N+1}{2} .
\end{aligned}
$$

- Thus we obtain an unbiased estimator by

$$
T_{1}:=2 \cdot \bar{X}_{n}-1 .
$$

Example: Odd Behaviour of T_{1}

- Suppose $n=5$

Example: Odd Behaviour of T_{1}

- Suppose $n=5$
- Let the sample be

$$
7,3,10,46,14
$$

Example: Odd Behaviour of T_{1}

- Suppose $n=5$
- Let the sample be

$$
7,3,10,46,14
$$

- The estimator returns:

$$
T_{1}=2 \cdot \bar{X}_{n}-1=
$$

Example: Odd Behaviour of T_{1}

- Suppose $n=5$
- Let the sample be

$$
7,3,10,46,14
$$

- The estimator returns:

$$
T_{1}=2 \cdot \bar{X}_{n}-1=2 \cdot \frac{80}{5}-1=
$$

Example: Odd Behaviour of T_{1}

- Suppose $n=5$
- Let the sample be

$$
7,3,10,46,14
$$

- The estimator returns:

$$
T_{1}=2 \cdot \bar{X}_{n}-1=2 \cdot \frac{80}{5}-1=31
$$

Example: Odd Behaviour of T_{1}

- Suppose $n=5$
- Let the sample be

$$
7,3,10,46,14
$$

- The estimator returns:

$$
T_{1}=2 \cdot \bar{X}_{n}-1=2 \cdot \frac{80}{5}-1=31
$$

This estimator will often unnecessarily underestimate the true value N.

Example: Odd Behaviour of T_{1}

- Suppose $n=5$
- Let the sample be

$$
7,3,10,46,14
$$

- The estimator returns:

$$
T_{1}=2 \cdot \bar{X}_{n}-1=2 \cdot \frac{80}{5}-1=31
$$

This estimator will often unnecessarily underestimate the true value N.

It is possible (but difficult!) to prove $\mathbf{P}\left[T_{1}<\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)\right] \approx 0.5$

Example: Odd Behaviour of T_{1}

- Suppose $n=5$
- Let the sample be

$$
7,3,10,46,14
$$

- The estimator returns:

$$
\begin{equation*}
T_{1}=2 \cdot \bar{X}_{n}-1=2 \cdot \frac{80}{5}-1=31 \tag{:}
\end{equation*}
$$

This estimator will often unnecessarily underestimate the true value N.

It is possible (but difficult!) to prove $\mathbf{P}\left[T_{1}<\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)\right] \approx 0.5$

- Achieving unbiasedness alone is not a good strategy
- Improvement: find an estimator which always returns a value at least $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Rearrange the other 14 points equi-spaced between 0 and 84 .

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

Intuition: Constructing an Estimator based on Maximum

- Suppose $N=100$ and $n=15$
- Our samples are:

$$
9,82,39,35,20,51,54,62,81,29,84,59,3,34,55
$$

How much should we add to the maximum?

Rearrange the other 14 points equi-spaced between 0 and 84 .

$\max \left(X_{1}, \ldots, X_{n}\right)+\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{n-1}$ This suggests $84+6=90$ as the estimator!

Deriving the Estimator Based on Maximum

Example 2

Construct an unbiased estimator using $\max \left(X_{1}, \ldots, X_{n}\right)$

Deriving the Estimator Based on Maximum

Example 2

Construct an unbiased estimator using $\max \left(X_{1}, \ldots, X_{n}\right)$

Answer

- Calculate expectation of the maximum (for details see Dekking et al.)

$$
\mathbf{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Deriving the Estimator Based on Maximum

Example 2

Construct an unbiased estimator using $\max \left(X_{1}, \ldots, X_{n}\right)$

Answer

- Calculate expectation of the maximum (for details see Dekking et al.)

$$
\mathbf{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Deriving the Estimator Based on Maximum

Example 2

Construct an unbiased estimator using $\max \left(X_{1}, \ldots, X_{n}\right)$

- Calculate expectation of the maximum (for details see Dekking et al.)

$$
\mathbf{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Deriving the Estimator Based on Maximum

Example 2

Construct an unbiased estimator using $\max \left(X_{1}, \ldots, X_{n}\right)$

Answer

- Calculate expectation of the maximum (for details see Dekking et al.)

$$
\mathbf{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\ldots=\frac{n}{n+1} \cdot N+\frac{n}{n+1}=\frac{n}{n+1} \cdot(N+1)
$$

Deriving the Estimator Based on Maximum

Example 2

Construct an unbiased estimator using $\max \left(X_{1}, \ldots, X_{n}\right)$

- Calculate expectation of the maximum (for details see Dekking et al.)

$$
\mathbf{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\ldots=\frac{n}{n+1} \cdot N+\frac{n}{n+1}=\frac{n}{n+1} \cdot(N+1)
$$

Equi-spaced configuration would suggest $\max \left(X_{1}, \ldots, X_{n}\right) \approx \frac{n-1}{n} \cdot N$

- Hence we obtain an unbiased estimator by

$$
T_{2}:=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1
$$

Empirical Analysis of the two Estimators

Figure: Histogram of 2000 values for T_{1} and T_{2}, when $N=1000$ and $n=10$.

Empirical Analysis of the two Estimators

Figure: Histogram of 2000 values for T_{1} and T_{2}, when $N=1000$ and $n=10$.

Empirical Analysis of the two Estimators

Figure: Histogram of 2000 values for T_{1} and T_{2}, when $N=1000$ and $n=10$.
Can we find a quantity that captures the superiority of T_{2} over T_{1} ?

Outline

Recap

Estimating Population Sizes

Mean Squared Error

Estimating Population Sizes through Collisions

Mean Squared Error

$$
\begin{aligned}
& \text { Let } T \text { be an estimator for a parameter } \theta \text {. The mean squared error of } T \text { is } \\
& \qquad \operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
\end{aligned}
$$

Mean Squared Error

__ Mean Squared Error Definition
Let T be an estimator for a parameter θ. The mean squared error of T is

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
$$

- According to this, estimator T_{1} better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$.

Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter θ. The mean squared error of T is

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
$$

- According to this, estimator T_{1} better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$.

Bias-Variance Decomposition
The mean squared error can be decomposed into:

Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter θ. The mean squared error of T is

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
$$

- According to this, estimator T_{1} better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$.

Bias-Variance Decomposition
The mean squared error can be decomposed into:

$$
\operatorname{MSE}[T]=(\mathbf{E}[T]-\theta)^{2}+\mathbf{V}[T]
$$

Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter θ. The mean squared error of T is

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
$$

- According to this, estimator T_{1} better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$.

Bias-Variance Decomposition
The mean squared error can be decomposed into:

$$
\operatorname{MSE}[T]=\underbrace{(\mathbf{E}[T]-\theta)^{2}}_{=\mathrm{Bias}^{2}}+\mathbf{V}[T]
$$

Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter θ. The mean squared error of T is

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
$$

- According to this, estimator T_{1} better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$.

Bias-Variance Decomposition
The mean squared error can be decomposed into:

$$
\operatorname{MSE}[T]=\underbrace{(\mathbf{E}[T]-\theta)^{2}}_{=\text {Bias }^{2}}+\underbrace{\mathbf{V}[T]}_{=\text {Variance }}
$$

Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter θ. The mean squared error of T is

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
$$

- According to this, estimator T_{1} better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$.

Bias-Variance Decomposition
The mean squared error can be decomposed into:

$$
\operatorname{MSE}[T]=\underbrace{(\mathbf{E}[T]-\theta)^{2}}_{=\text {Bias }^{2}}+\underbrace{\mathbf{V}[T]}_{=\text {Variance }}
$$

- If T_{1} and T_{2} are both unbiased, T_{1} is better than T_{2} iff $\mathbf{V}\left[T_{1}\right]<\mathbf{V}\left[T_{2}\right]$.

Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter θ. The mean squared error of T is

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right] .
$$

- According to this, estimator T_{1} better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$.

Bias-Variance Decomposition
The mean squared error can be decomposed into:

$$
\operatorname{MSE}[T]=\underbrace{(\mathbf{E}[T]-\theta)^{2}}_{=\text {Bias }^{2}}+\underbrace{\mathbf{V}[T]}_{=\text {Variance }}
$$

- If T_{1} and T_{2} are both unbiased, T_{1} is better than T_{2} iff $\mathbf{V}\left[T_{1}\right]<\mathbf{V}\left[T_{2}\right]$.
~ Minimum-Variance Unbiased Estimator (MVUE) (the unbiased estimator with the smallest variance).

Bias-Variance Decomposition: Derivation

Example 3

We need to prove: $\operatorname{MSE}[T]=(\mathbf{E}[T]-\theta)^{2}+\mathbf{V}[T]$.

Bias-Variance Decomposition: Derivation

Example 3

We need to prove: $\mathbf{M S E}[T]=(\mathbf{E}[T]-\theta)^{2}+\mathbf{V}[T]$.

$$
\operatorname{MSE}[T]=\mathbf{E}\left[(T-\theta)^{2}\right]
$$

Bias-Variance Decomposition: Derivation

Example 3

We need to prove: $\mathbf{M S E}[T]=(\mathbf{E}[T]-\theta)^{2}+\mathbf{V}[T]$.

$$
\begin{aligned}
\operatorname{MSE}[T] & =\mathbf{E}\left[(T-\theta)^{2}\right] \\
& =\mathbf{E}\left[T^{2}-2 T \theta+\theta^{2}\right]
\end{aligned}
$$

Bias-Variance Decomposition: Derivation

Example 3

We need to prove: $\mathbf{M S E}[T]=(\mathbf{E}[T]-\theta)^{2}+\mathbf{V}[T]$.

Answer

$$
\begin{aligned}
\operatorname{MSE}[T] & =\mathbf{E}\left[(T-\theta)^{2}\right] \\
& =\mathbf{E}\left[T^{2}-2 T \theta+\theta^{2}\right] \\
& =\mathbf{E}[T]^{2}-2 \cdot \mathbf{E}[T] \cdot \theta+\theta^{2}+\mathbf{E}\left[T^{2}\right]-\mathbf{E}[T]^{2}
\end{aligned}
$$

Bias-Variance Decomposition: Derivation

Example 3

We need to prove: $\mathbf{M S E}[T]=(\mathbf{E}[T]-\theta)^{2}+\mathbf{V}[T]$.

Answer

$$
\begin{aligned}
\operatorname{MSE}[T] & =\mathbf{E}\left[(T-\theta)^{2}\right] \\
& =\mathbf{E}\left[T^{2}-2 T \theta+\theta^{2}\right] \\
& =\mathbf{E}[T]^{2}-2 \cdot \mathbf{E}[T] \cdot \theta+\theta^{2}+\mathbf{E}\left[T^{2}\right]-\mathbf{E}[T]^{2} \\
& =(\mathbf{E}[T]-\theta)^{2}+\mathbf{V}[T] .
\end{aligned}
$$

Bias-Variance Decomposition: Illustration

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.
Answer

- Since T_{1} is unbiased, $\operatorname{MSE}\left[T_{1}\right]=\left(\mathbf{E}\left[T_{1}\right]-\theta\right)^{2}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]$, and

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.
Answer

- Since T_{1} is unbiased, $\operatorname{MSE}\left[T_{1}\right]=\left(\mathbf{E}\left[T_{1}\right]-\theta\right)^{2}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]$, and

$$
\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[2 \cdot \bar{X}_{n}-1\right]=4 \cdot \mathbf{V}\left[\bar{X}_{n}\right]=\frac{4}{n^{2}} \cdot \mathbf{V}\left[X_{1}+\cdots+X_{n}\right]
$$

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.
Answer

- Since T_{1} is unbiased, $\operatorname{MSE}\left[T_{1}\right]=\left(\mathbf{E}\left[T_{1}\right]-\theta\right)^{2}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]$, and

$$
\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[2 \cdot \bar{X}_{n}-1\right]=4 \cdot \mathbf{V}\left[\bar{X}_{n}\right]=\frac{4}{n^{2}} \cdot \mathbf{V}\left[X_{1}+\cdots+X_{n}\right]
$$

- Note: The X_{i} 's are not independent!

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.
Answer

- Since T_{1} is unbiased, $\operatorname{MSE}\left[T_{1}\right]=\left(\mathbf{E}\left[T_{1}\right]-\theta\right)^{2}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]$, and

$$
\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[2 \cdot \bar{X}_{n}-1\right]=4 \cdot \mathbf{V}\left[\bar{X}_{n}\right]=\frac{4}{n^{2}} \cdot \mathbf{V}\left[X_{1}+\cdots+X_{n}\right]
$$

- Note: The X_{i} 's are not independent!
- Use generalisation of $\mathbf{V}\left[X_{1}+X_{2}\right]=\mathbf{V}\left[X_{1}\right]+\mathbf{V}\left[X_{2}\right]+2 \cdot \operatorname{Cov}\left[X_{1}, X_{2}\right]$ (Exercise Sheet) to n r.v.'s, and then that the X_{i} 's are identically distributed, and also the $\left(X_{i}, X_{j}\right), i \neq j$:

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.
Answer

- Since T_{1} is unbiased, $\operatorname{MSE}\left[T_{1}\right]=\left(\mathbf{E}\left[T_{1}\right]-\theta\right)^{2}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]$, and

$$
\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[2 \cdot \bar{X}_{n-1}\right]=4 \cdot \mathbf{V}\left[\bar{X}_{n}\right]=\frac{4}{n^{2}} \cdot \mathbf{V}\left[X_{1}+\cdots+X_{n}\right]
$$

- Note: The X_{i} 's are not independent!
- Use generalisation of $\mathbf{V}\left[X_{1}+X_{2}\right]=\mathbf{V}\left[X_{1}\right]+\mathbf{V}\left[X_{2}\right]+2 \cdot \operatorname{Cov}\left[X_{1}, X_{2}\right]$ (Exercise Sheet) to n r.v.'s, and then that the X_{i} 's are identically distributed, and also the $\left(X_{i}, X_{j}\right), i \neq j$:

$$
\begin{aligned}
\mathbf{V}\left[X_{1}+\cdots+X_{n}\right] & =\sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right]+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
& =n \cdot \mathbf{V}\left[X_{1}\right]+2\binom{n}{2} \cdot \operatorname{Cov}\left[X_{1}, X_{2}\right] .
\end{aligned}
$$

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.
Answer

- Since T_{1} is unbiased, $\operatorname{MSE}\left[T_{1}\right]=\left(\mathbf{E}\left[T_{1}\right]-\theta\right)^{2}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]$, and

$$
\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[2 \cdot \bar{X}_{n}-1\right]=4 \cdot \mathbf{V}\left[\bar{X}_{n}\right]=\frac{4}{n^{2}} \cdot \mathbf{V}\left[X_{1}+\cdots+X_{n}\right]
$$

- Note: The X_{i} 's are not independent!
- Use generalisation of $\mathbf{V}\left[X_{1}+X_{2}\right]=\mathbf{V}\left[X_{1}\right]+\mathbf{V}\left[X_{2}\right]+2 \cdot \operatorname{Cov}\left[X_{1}, X_{2}\right]$ (Exercise Sheet) to n r.v.'s, and then that the X_{i} 's are identically distributed, and also the $\left(X_{i}, X_{j}\right), i \neq j$:

$$
\begin{aligned}
\mathbf{V}\left[X_{1}+\cdots+X_{n}\right] & =\sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right]+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
& =n \cdot \mathbf{V}\left[X_{1}\right]+2\binom{n}{2} \cdot \operatorname{Cov}\left[X_{1}, X_{2}\right] .
\end{aligned}
$$

- $\mathbf{V}\left[X_{1}\right]=\frac{(N+1)(N-1)}{12}$, and with "more effort" (see Dekking et al.)

$$
\operatorname{Cov}\left[X_{1}, X_{2}\right]=-\frac{1}{12}(N+1)
$$

It holds that $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, where $T_{1}=2 \cdot \bar{X}_{n}-1$.
Answer

- Since T_{1} is unbiased, $\operatorname{MSE}\left[T_{1}\right]=\left(\mathbf{E}\left[T_{1}\right]-\theta\right)^{2}+\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[T_{1}\right]$, and

$$
\mathbf{V}\left[T_{1}\right]=\mathbf{V}\left[2 \cdot \bar{X}_{n}-1\right]=4 \cdot \mathbf{V}\left[\bar{X}_{n}\right]=\frac{4}{n^{2}} \cdot \mathbf{V}\left[X_{1}+\cdots+X_{n}\right]
$$

- Note: The X_{i} 's are not independent!
- Use generalisation of $\mathbf{V}\left[X_{1}+X_{2}\right]=\mathbf{V}\left[X_{1}\right]+\mathbf{V}\left[X_{2}\right]+2 \cdot \operatorname{Cov}\left[X_{1}, X_{2}\right]$ (Exercise Sheet) to n r.v.'s, and then that the X_{i} 's are identically distributed, and also the $\left(X_{i}, X_{j}\right), i \neq j$:

$$
\begin{aligned}
\mathbf{V}\left[X_{1}+\cdots+X_{n}\right] & =\sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right]+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
& =n \cdot \mathbf{V}\left[X_{1}\right]+2\binom{n}{2} \cdot \operatorname{Cov}\left[X_{1}, X_{2}\right] .
\end{aligned}
$$

- $\mathbf{V}\left[X_{1}\right]=\frac{(N+1)(N-1)}{12}$, and with "more effort" (see Dekking et al.)

$$
\operatorname{Cov}\left[X_{1}, X_{2}\right]=-\frac{1}{12}(N+1)
$$

- Rearranging and simplifying gives

$$
\mathbf{V}\left[T_{1}\right]=\frac{(N+1)(N-n)}{3 n}
$$

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove:

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove:

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Equi-spaced (idealised) configuration

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove:

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Equi-spaced (idealised) configuration

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that MSE $\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove:

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Equi-spaced (idealised) configuration

Maximum could have equally likely taken any value between 79 and 90

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove:

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=
$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

Answer

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove: For details see Dekking et al.

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\cdots=\frac{n(N+1)(N-n)}{(n+2)(n+1)^{2}}
$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove: For details see Dekking et al.

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\cdots=\frac{n(N+1)(N-n)}{(n+2)(n+1)^{2}}=\Theta\left(\frac{N^{2}}{n^{2}}\right)
$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove: For details see Dekking et al.

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\cdots=\frac{n(N+1)(N-n)}{(n+2)(n+1)^{2}}=\Theta\left(\frac{N^{2}}{n^{2}}\right)
$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove: For details see Dekking et al.

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\cdots=\frac{n(N+1)(N-n)}{(n+2)(n+1)^{2}}=\Theta\left(\frac{N^{2}}{n^{2}}\right)
$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

- $\operatorname{MSE}\left[T_{2}\right]$ is much lower than $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, i.e., $\frac{\operatorname{MSE}\left[T_{1}\right]}{\operatorname{MSE}\left[T_{2}\right]}=\frac{n+2}{3}$

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove: For details see Dekking et al.

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\cdots=\frac{n(N+1)(N-n)}{(n+2)(n+1)^{2}}=\Theta\left(\frac{N^{2}}{n^{2}}\right)
$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

- $\operatorname{MSE}\left[T_{2}\right]$ is much lower than $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, i.e., $\frac{\operatorname{MSE}\left[T_{1}\right]}{\operatorname{MSE}\left[T_{2}\right]}=\frac{n+2}{3}$
$\cdot \Rightarrow$ confirms simulations suggesting that T_{2} is better than T_{1} !

Analysis of the MSE for T_{2} (Sketch)

Example 5

It holds that $\operatorname{MSE}\left[T_{2}\right]=\Theta\left(\frac{N^{2}}{n^{2}}\right)$, where $T_{2}=\frac{n+1}{n} \cdot \max \left(X_{1}, \ldots, X_{n}\right)-1$.

- T_{2} is unbiased \Rightarrow need $\mathbf{V}\left[T_{2}\right]$ which reduces to $\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$
- One can prove: For details see Dekking et al.

$$
\mathbf{V}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]=\cdots=\frac{n(N+1)(N-n)}{(n+2)(n+1)^{2}}=\Theta\left(\frac{N^{2}}{n^{2}}\right)
$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

- $\operatorname{MSE}\left[T_{2}\right]$ is much lower than $\operatorname{MSE}\left[T_{1}\right]=\Theta\left(\frac{N^{2}}{n}\right)$, i.e., $\frac{\operatorname{MSE}\left[T_{1}\right]}{\operatorname{MSE}\left[T_{2}\right]}=\frac{n+2}{3}$
- \Rightarrow confirms simulations suggesting that T_{2} is better than T_{1} !
- can be shown T_{2} is the best unbiased estimator, i.e., it minimises MSE.

Outline

Recap

Estimating Population Sizes

Mean Squared Error

Estimating Population Sizes through Collisions

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model

- Population/ID space of size $|S|=N$
- We take uniform samples from S with replacement
- Goal: Find estimator for N

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model

- Population/ID space of size $|S|=N$
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose $n=6, N=11, S=\{3,4,7,8,10,15.83356,20,21,56,81,10000\}$

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model

- Population/ID space of size $|S|=N$
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose $n=6, N=11, S=\{3,4,7,8,10,15.83356,20,21,56,81,10000\}$
- Let the sample be

$$
10,81,20,3,81,10000
$$

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model

- Population/ID space of size $|S|=N$
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose $n=6, N=11, S=\{3,4,7,8,10,15.83356,20,21,56,81,10000\}$
- Let the sample be

$$
10,81,20,3,81,10000
$$

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model

- Population/ID space of size $|S|=N$
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose $n=6, N=11, S=\{3,4,7,8,10,15.83356,20,21,56,81,10000\}$
- Let the sample be

$$
10,81,20,3,81,10000
$$

As we do not know S, our only clue are elements that were sampled twice.

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model

- Population/ID space of size $|S|=N$
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose $n=6, N=11, S=\{3,4,7,8,10,15.83356,20,21,56,81,10000\}$
- Let the sample be

$$
10,81,20,3,81,10000
$$

Let us call this a collision
As we do not know S, our only clue are elements that were sampled twice.

A New Estimation Problem

Previous Model

- Population/ID space $S=\{1,2, \ldots, N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

This also applies to situations where elements are not labelled before we see them first time (e.g., Mark \& Recapture Method)

- Population/ID space of size $|S|=N$
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose $n=6, N=11, S=\{3,4,7,8,10,15.83356,20,21,56,81,10000\}$
- Let the sample be

$$
10,81,20,3,81,10000
$$

Let us call this a collision
As we do not know S, our only clue are elements that were sampled twice.

Birthday Problem: Given a set of i people

Birthday Problem

Birthday Problem: Given a set of i people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?

Birthday Problem

Birthday Problem: Given a set of i people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
\mathbf{P} [collision]

Birthday Problem

Birthday Problem: Given a set of i people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?
\mathbf{P} [collision]

Birthday Problem

Birthday Problem: Given a set of i people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?
\mathbf{P} [collision]

Birthday Problem

Birthday Problem: Given a set of i people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?
\mathbf{P} [collision]

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.
Find-First-Collision(S)
$C=\varnothing$
For $i=1,2, \ldots$
Take next i.i.d. sample X_{i} from S
If $X_{i} \notin C$ then $C \leftarrow C \cup\left\{X_{i}\right\}$
else return $T(i)$
End For

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.
Find-First-Collision(S)
$C=\varnothing$
For $i=1,2, \ldots$
Take next i.i.d. sample X_{i} from S
If $X_{i} \notin C$ then $C \leftarrow C \cup\left\{X_{i}\right\}$
else return $T(i)$
End For
$T(i)$ will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.
Find-First-Collision(S)
$C=\varnothing$
For $i=1,2, \ldots$
Take next i.i.d. sample X_{i} from S
If $X_{i} \notin C$ then $C \leftarrow C \cup\left\{X_{i}\right\}$
else return $T(i)$
End For
$T(i)$ will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.
Find-First-Collision(S)
$C=\varnothing$
For $i=1,2, \ldots$
Take next i.i.d. sample X_{i} from S
If $X_{i} \notin C$ then $C \leftarrow C \cup\left\{X_{i}\right\}$
else return $T(i)$
End For
$T(i)$ will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.
Find-First-Collision(S)
$C=\varnothing$
For $i=1,2, \ldots$
Take next i.i.d. sample X_{i} from S
If $X_{i} \notin C$ then $C \leftarrow C \cup\left\{X_{i}\right\}$
else return $T(i)$
End For
$T(i)$ will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...
Same as the birthday problem, but now with $|S|=N$ days... \cdot

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.
Find-First-Collision(S)
$C=\varnothing$
For $i=1,2, \ldots$
Take next i.i.d. sample X_{i} from S
If $X_{i} \notin C$ then $C \leftarrow C \cup\left\{X_{i}\right\}$
else return $T(i)$
End For
$T(i)$ will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...
Same as the birthday problem, but now with $|S|=N$ days... \cdot

Expected Running Time (Knuth, Ramanujan)

$$
\sqrt{\frac{\pi N}{2}}-\frac{1}{3}+O\left(\frac{1}{\sqrt{N}}\right)
$$

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.
Find-First-Collision(S)
$C=\varnothing$
For $i=1,2, \ldots$
Take next i.i.d. sample X_{i} from S
If $X_{i} \notin C$ then $C \leftarrow C \cup\left\{X_{i}\right\}$
else return $T(i)$
End For
$T(i)$ will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...
Same as the birthday problem, but now with $|S|=N$ days... ©

Expected Running Time (Knuth, Ramanujan)

$$
\sqrt{\frac{\pi N}{2}}-\frac{1}{3}+O\left(\frac{1}{\sqrt{N}}\right)
$$

Exercise: Prove a bound of $\leq 2 \cdot \sqrt{N}$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
Answer

- We outline a construction by induction.

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
Answer

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$.

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
Answer

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2)
$$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
Answer

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1 .
$$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
\qquad

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1 .
$$

- Case $|S|=2$: Algo stops after 2 or 3 rounds (w.p. 1/2 each).

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
\qquad

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1 .
$$

- Case $|S|=2$: Algo stops after 2 or 3 rounds (w.p. 1/2 each). We want

$$
2=\mathbf{E}[T]=\frac{1}{2} \cdot T(2)+\frac{1}{2} \cdot T(3)
$$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
\qquad

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1 .
$$

- Case $|S|=2$: Algo stops after 2 or 3 rounds (w.p. 1/2 each). We want

$$
2=\mathbf{E}[T]=\frac{1}{2} \cdot T(2)+\frac{1}{2} \cdot T(3) \quad \Rightarrow \quad T(3)=3 .
$$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
\qquad

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1
$$

- Case $|S|=2$: Algo stops after 2 or 3 rounds (w.p. 1/2 each). We want

$$
2=\mathbf{E}[T]=\frac{1}{2} \cdot T(2)+\frac{1}{2} \cdot T(3) \quad \Rightarrow \quad T(3)=3 .
$$

- Case $|S|=3$: gives $3=\mathbf{E}[T]=\frac{1}{3} \cdot T(2)+\frac{4}{9} \cdot T(3)+\frac{2}{9} \cdot T(4)$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
\qquad

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1
$$

- Case $|S|=2$: Algo stops after 2 or 3 rounds (w.p. 1/2 each). We want

$$
2=\mathbf{E}[T]=\frac{1}{2} \cdot T(2)+\frac{1}{2} \cdot T(3) \quad \Rightarrow \quad T(3)=3 .
$$

- Case $|S|=3$: gives $3=\mathbf{E}[T]=\frac{1}{3} \cdot T(2)+\frac{4}{9} \cdot T(3)+\frac{2}{9} \cdot T(4)$ $\Rightarrow T(4)=6$, similarly, $T(5)=10$ etc.

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
\qquad

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1
$$

- Case $|S|=2$: Algo stops after 2 or 3 rounds (w.p. 1/2 each). We want

$$
2=\mathbf{E}[T]=\frac{1}{2} \cdot T(2)+\frac{1}{2} \cdot T(3) \quad \Rightarrow \quad T(3)=3
$$

- Case $|S|=3$: gives $3=\mathbf{E}[T]=\frac{1}{3} \cdot T(2)+\frac{4}{9} \cdot T(3)+\frac{2}{9} \cdot T(4)$ $\Rightarrow T(4)=6$, similarly, $T(5)=10$ etc.
- can continue to define $T(i)$ inductively in this way (note T is unique)

Estimation via Collision: Getting the Estimator Unbiased

Example 6

It is possible to define $T(i), i \in \mathbb{N}$, such that $\mathbf{E}[T]=|S|$ for any set S.
\qquad

- We outline a construction by induction.
- Case $|S|=1$: Algo always stops after $i=2$ rounds and returns $T(2)$. We want

$$
1=\mathbf{E}[T]=T(2) \quad \Rightarrow \quad T(2)=1
$$

- Case $|S|=2$: Algo stops after 2 or 3 rounds (w.p. 1/2 each). We want

$$
2=\mathbf{E}[T]=\frac{1}{2} \cdot T(2)+\frac{1}{2} \cdot T(3) \quad \Rightarrow \quad T(3)=3
$$

- Case $|S|=3$: gives $3=\mathbf{E}[T]=\frac{1}{3} \cdot T(2)+\frac{4}{9} \cdot T(3)+\frac{2}{9} \cdot T(4)$ $\Rightarrow T(4)=6$, similarly, $T(5)=10$ etc.
- can continue to define $T(i)$ inductively in this way (note T is unique) (proof that $T(i)=\binom{i}{2}$ is harder)

Mark \& Recapture Method (non-examinable)

Source: Wikipedia

Mark \& Recapture Method (non-examinable)

Source: Wikipedia

Mark \& Recapture Method:

- First phase: A portion of the population is captured, marked and released
- Second phase: Another portion is captured and the number of marked individuals is counted

Mark \& Recapture Method (non-examinable)

Source: Wikipedia

Mark \& Recapture Method:

- First phase: A portion of the population is captured, marked and released
- Second phase: Another portion is captured and the number of marked individuals is counted

A similar method making use of collisions again!

Mark \& Recapture Method (non-examinable)

Source: Wikipedia

Mark \& Recapture Method:

- First phase: A portion of the population is captured, marked and released
- Second phase: Another portion is captured and the number of marked individuals is counted

A similar method making use of collisions again!

- Let n be the number of marked animals, and N be the (unknown) size of population
- Let k be the number of caught marked animals (in the second visit), and K be the number of caught animals (in the second visit)

Mark \& Recapture Method (non-examinable)

Source: Wikipedia

Mark \& Recapture Method:

- First phase: A portion of the population is captured, marked and released
- Second phase: Another portion is captured and the number of marked individuals is counted

A similar method making use of collisions again!

- Let n be the number of marked animals, and N be the (unknown) size of population
- Let k be the number of caught marked animals (in the second visit), and K be the number of caught animals (in the second visit)

$$
\frac{k}{K} \approx \frac{n}{N} \quad \Rightarrow \quad N \approx n \cdot \frac{K}{k} .
$$

