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Recap: Unbiased Estimators and Bias

Definition
An estimator T is called an unbiased estimator for
a parameter 6 if

E[T]=0,
irrespective of the value 6. The bias is defined as

E[T]-0=E[T-0].

Source: Edwin Leuven (Point Estimation)

* How can we measure the accuracy of an estimator?
,,’ ~ bias and mean-squared error
= Eom = If there are several unbiased estimators, which one to
choose? ~» mean-squared error (or variance)
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Estimating Population Sizes (First Version)

= Suppose we have a sample of a few serial numbers (IDs) of some product
= We assume IDs are running from 1 to an unknown parameter N (so N = 0)

= Each of the IDs is drawn without replacement from the discrete uniform
distribution over {1,2,..., N}

= This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

7,3,10,46,14

Warning

= As before, we denote the samples Xi, Xz, ..., X,
= Since sampling is without replacement, these are:

= they are not independent! (but identically distributed)
= their number must satisfy n< N
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First Estimator Based on Sample Mean

Example 1
Construct an unbiased estimator using the sample mean.

Answer

= The sample mean is
X, - X +X2;~~+Xn'

= Linearity of expectation applies (even for dependent random var.!):

(%] ZEL) e

N1 N+t
=Xl N

i=1

= Thus we obtain an unbiased estimator by

T:=2-X,-1.
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Example: Odd Behaviour of T;

= Suppose n=5
= Let the sample be

7,3,10,46,14
= The estimator returns:
Ti=2-X,-1 :2-%—1 =31 ®
AN

This estimator will often unnecessarily
underestimate the true value N.

[ It is possible (but difficult!) to prove P[ Ty < max(Xi, Xz,...,Xn)] ~ 0.5 ]

= Achieving unbiasedness alone is not a good strategy

= Improvement: find an estimator which always returns a value
at least max(Xiy, Xz, ..., Xn)
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Intuition: Constructing an Estimator based on Maximum

= Suppose N=100and n=15
= Qur samples are:

9,82,39,35,20,51,54,62,81,29,84,59, 3,34,55

[How much should we add to the maximum? j

. N
- N
&’1 \\ >
‘AN NN Y
o ———————e1—es—e e e e X
1 5 10 15 20 25 30 3 40 45 50 55 60 65 70 75 80 8 90 95 100
[Rearrange the other 14 points equi-spaced between 0 and 84. ]
\] .
—A———r N
—to———————e————to— o ————fo— o ———————— X
1 5 10 15 20 25 30 3 40 45 50 55 60 65 70 75 80 85 90 95 100

[max(X1 yeeey Xn) + T2 o) }{This suggests 84 + 6 = 90 as the estimator! j
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Deriving the Estimator Based on Maximum

Example 2

Construct an unbiased estimator using max(Xi, ..., Xp)

Answer

= Calculate expectation of the maximum (for details see Dekking et al.)

n n n

E[max(Xi,..., Xn)]=...= 7 N+t 5=

(N+1).

[Equi-spaced configuration would suggest max(Xi, ..., Xn) ~ % - N]
—~ 6 6N

] X

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

= Hence we obtain an unbiased estimator by

T ;:%«max(Xnm,Xn)‘L
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Empirical Analysis of the two Estimators

T Tz
0.008 — 0.008 —
0.006 — 0.006 —
0.004 — 0.004 —
0.002 — 0.002 —
0 - 0 -
[ T I 1 [ T I 1
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Source: Modern Introduction to Statistics

Figure: Histogram of 2000 values for Ty and T,, when N = 1000 and n = 10.

[Can we find a quantity that captures the superiority of T, over 7'1?]

Intro to Probability Estimating Population Sizes 10



Outline

Mean Squared Error

Intro to Probability

Mean Squared Error



Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter 0. The mean squared error of T is

MSE[T]-E[(T-0)*].

= According to this, estimator T; better than T, if MSE[ T; | <MSE[ T2 .

Bias-Variance Decomposition
The mean squared error can be decomposed into:

MSE[T]=(E[T]-6)°+ V[T]
= Bias2 = Variance

= If Ty and T; are both unbiased, T; is better than T, iff V[ Ty ] < V[ T2 ].
/N

~» Minimum-Variance Unbiased Estimator (MVUE)
(the unbiased estimator with the smallest variance).
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Bias-Variance Decomposition: Derivation

Example 3
We need to prove: MSE[ T]=(E[T]-60)®+V[T].

Answer

MSE [ [(T % ]

-E
E[T2—2T0+6]
E
=(E

[T} -2-E[T]-0+6°+E[T*|-E[T]
[T]1-6)°+V[T].
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Bias-Variance Decomposition: lllustration

Low Variance

Low Bias

High Bias

Source: Edwin Leuven (Point Estimation)
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Example 4

It holds that MSE[m:e(NTZ),where =B =

Answer

= Since T, is unbiased, MSE[T1]=(E[T1]—0)2+V[T1]=V[T1],and
- - 4
V[T1]=V[2-X,,—1]=4-V[Xn]= — VX + 4 X0

= Note: The X;j's are not independent!

= Use generalisation of V[ X; + Xo | =V [ X; ]+ V[ X2 ]+2-Cov [ Xi, Xz ]
(Exercise Sheet) to nr.v’s, and then that the Xj’s are identically distributed,
and also the (X, X;), i # Jj:

V[x,]+2i gnj Cov[ X, X;]

i=1 j=i+1

:n.qu]+2('27).Cov[x1,x2].

e

VIXi++Xn]=

I

= V[Xi]= W, and with “more effort” (see Dekking et al.)
1
Cov[Xi,Xo]= —E(N+ 1).

= Rearranging and simplifying gives
_(N+1)(N-n)

VT -
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Analysis of the MSE for T, (Sketch)
Example 5

It holds that MSE[ 7] = © (%

Answer

= T, is unbiased = need V[ T ] which reduces to V[ max(Xj,

),where To= ™1 max(Xy, ..., Xp) — 1.

= One can prove:

[For details see Dekking et al. J

LX) ]

V' onN+1)(N=n) N2
V[max(X1,...,Xn)]:~--:W:e(?)

[Equi—spaced (idealised) configuration suggests a standard deviation of o ~
n—o \\ "

80
=z

[Maximum could have equally likely taken any value between 79 and 90 ]

N2
7)o e
= = confirms simulations suggesting that T, is better than T;!

= can be shown T is the best unbiased estimator, i.e., it minimises MSE.

N
n

N=p+o

X
70 75 85 LY 95 100

- MSE[ T2 ] is much lower than MSE [ T; ] = © ( MSE[T;] - nt2

3
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A New Estimation Problem

Previous Model
= Population/ID space S={1,2,...,N}
= We take uniform samples from S without replacement

= Goal: Find estimator for N

This also applies to situations where elements are not labelled
New Model before we see them first time (e.g., Mark & Recapture Method)

1V

= Population/ID space of size |S| = N
= We take uniform samples from S with replacement
= Goal: Find estimator for N

= Suppose n=6, N=11, S={3,4,7,8,10,15.83356, 20,21,56,81, 10000}
= Let the sample be
10,81,20,3,81,10000

Let us call this a collision

V
As we do not know S, our only clue are elements that were sampled twice.
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Birthday Problem

Birthday Problem: Given a set of i people
= What is the probability of having two with the same birthday (i.e.,

having at least one collision)?

= What is the expected number of people one needs to ask until the first
collision occurs?

P [ collision ]

0.5

<Note that /365 ~ 19.10... ]

23
TR |

H——t—t—— ‘
120 40 60 80 100 365
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)

1: C=0

2. Fori=1,2,...

3: Take next i.i.d. sample X; from S
4: If Xi ¢ Cthen C~ Cu{X;}

5:

6: End For

| t T(i
else return 7(/) &[ T (i) will be the value of the estimator if algo ]

returns after / rounds. (We want T unbiased)

= Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...

[Same as the birthday problem, but now with |S\ N days...

\_/

Expected Running Time (Knuth, Ramanujan)
730l
\/N ~

lExermse Prove a bound of < 2-+/N ]
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Estimation via Collision: Getting the Estimator Unbiased

Example 6
It is possible to define T (i), i e N, suchthat E[ T ] = |S| for any set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after i = 2 rounds and returns T(2).

We want
1=E[T]=T(2) = T(2)=1.

= Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
We want

i

2

» Case [S|=3:gives3=E[T]=1-T(2)+3-T(3)+%-T(4)
= T(4) =6, similarly, T(5) =10 etc.

= can continue to define T (/) inductively in this way (note T is unique)
(proof that T(i) = (}) is harder)

2:E[T]:%~T(2)+ T8 =  T(3)-3
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Mark & Recapture Method (non-examinable)

~1— _id=1)
P [ collision ] ~ exP( 2‘365)

1
0.5

1 20 40 60 80100 365

Source: Wikipedia

Mark & Recapture Method:
= First phase: A portion of the population is captured, marked and released

= Second phase: Another portion is captured and the number of marked
individuals is counted N

[A similar method making use of collisions again! ]

= Let nbe the number of marked animals, and N be the (unknown) size of population

= Let k be the number of caught marked animals (in the second visit), and K be the
number of caught animals (in the second visit)

k. n
K N

x| =X

= N=~n-
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