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Announcements

No in-person Lectures 11, 12 (scheduled 22 May and 24 May)

There will be recordings for Lecture 11, 12

possibly an in-person Example Class in the week 29 May–2 June

IA Examination Briefing on Wednesday 24 May 12:00-13:00 by
Prof Robert Watson, Lecture Theatre A, Arts School (this venue!)

for exam questions in this course, calculators are not required
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A Distribution whose Average does not converge (Lecture 9)

Cau(2, 1) distribution, Source: Modern Introduction to Statistics

The Cauchy distribution has “too heavy” tails (no ex-
pectation), in particular the average does not converge.
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Introduction

Setting: We can take random samples in the form of i.i.d. random vari-
ables X1,X2, . . . ,Xn from an unknown distribution.

Taking enough samples allows us to estimate the mean (WLLN, CLT)

Using indicator variables, we can estimate P [ X ≤ a ] for any a ∈ R
 in principle we can reconstruct the unknown distribution

How can we estimate the variance or other parameters?
 estimator

How can we measure the accuracy of an estimator?
 bias (this lecture) and mean-squared error (next lecture)

Physical Experiments:

Measurement = Quantity of Interest + Measurement Error

expectation
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Empirical Distribution Function

Let X1,X2, . . . ,Xn being i.i.d. samples, and F be the corresponding distri-
bution function. For any a ∈ R, define

Fn(a) :=
number of Xi ∈ (−∞, a]

n
.

Definition of Empirical Distribution Function (Empirical CDF)

The Weak Law of Large Numbers implies that for every ε > 0 and a ∈ R,

lim
n→∞

P [ |Fn(a)− F (a)| > ε ] = 0.

Remark

Thus by taking enough samples, we can estimate the
entire distribution (including its expectation and variance).
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Empirical Distribution Functions (Example 1/2)

Consider throwing an unbiased dice 8 times, and let the realisation be:

(x1, x2, . . . , x8) = (4, 1, 5, 3, 1, 6, 4, 1).

What is the Empirical Distribution Function F8(a)?
Answer

a

1 2 3 4 5 6

1/8
2/8
3/8
4/8
5/8
6/8
7/8

0

1

F 8
(a

)

1/6

2/6

3/6

4/6

5/6

F
(a

)

Example 1
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Empirical Distribution Functions (Example 2/2)

Source: Modern Introduction to Statistics

Figure: Empirical Distribution Functions of samples from a Normal Distribution N (5, 4)
(n = 20 left, n = 200 right)
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An Example of an Estimation Problem

Consider the packages arriving at a network server.

We might be interested in:

1. number of packets that arrive within a “typical” minute

2. percentage of minutes during which no packets arrive

If arrivals occur at random time number of arrivals during one
minute follows a Poisson distribution with unknown parameter λ

Scenario

Source: Wikipedia

minutes

0 1 2 3 4 5 6

X ∼ Poi(λ)

∆ ∼ Exp(λ)

P [ X = k ] = e−λ · λ
k

k!

Waiting Time (Lecture 5, Slide 22)

Estimator for λ

Estimator for e−λ
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Estimator

A random variable
T = h(X1,X2, . . . ,Xn),

depending only on the samples is called estimator.

An estimate is a value that only depends on the dataset x1, x2, . . . , xn, i.e.,

t = h(x1, x2, . . . , xn).

Definition of Estimator

Questions:

What makes an estimator suitable?

 unbiased (later: MSE)

Does an unbiased estimator always exist? How to compute it?

If there are several unbiased estimators, which one to choose?
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Example: Arrival of Packets (1/3)

Samples: Given X1,X2, . . . ,Xn i.i.d., Xi ∼ Pois(λ)

Meaning: Xi is the number of packets arriving in minute i

Suppose we wish to estimate λ by using the sample mean X n.
Answer

We have
X n :=

X1 + X2 + · · ·+ Xn

n
,

and E
[

X n

]
= E [ X1 ] = λ. This suggests the estimator:

h(X1,X2, . . . ,Xn) := X n.

Applying the Weak Law of Large Numbers:

lim
n→∞

P
[ ∣∣∣X n − λ

∣∣∣ > ε
]

= 0 for any ε > 0.

Example 2
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Example: Arrival of Packets (2/3)

Now suppose we wish to instead estimate the probability of zero arrivals
e−λ by the relative frequency of samples which are zero.

Answer

Let X1,X2, . . . ,Xn be the n samples. Let

Yi := 1Xi=0.

Then
E [ Yi ] = P [ Xi = 0 ] = e−λ,

and thus we can define an estimator by

h1(X1,X2, . . . ,Xn) :=
Y1 + Y2 + · · ·+ Yn

n
.

Example 3a
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Example: Arrival of Packets (3/3)

Suppose we wish to estimate the probability of zero arrivals e−λ by
using the sample mean X n.

Answer

We saw that X n =
∑n

i=1 Xi
n satisfies E

[
X n

]
= E [ X1 ] = λ.

Recall by the Weak Law of Large Numbers:

lim
n→∞

P
[ ∣∣∣X n − λ

∣∣∣ > ε
]

= 0 for any ε > 0.

Then we estimate e−λ by e−Xn . Hence our estimator is

h2(X1,X2, . . . ,Xn) := e−Xn .

Example 3b
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Recall by the Weak Law of Large Numbers:

lim
n→∞

P
[ ∣∣∣X n − λ

∣∣∣ > ε
]

= 0 for any ε > 0.
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Behaviour of the Estimators

Suppose we have n = 30 and we want to estimate e−λ

Consider the two estimators h1(X1, . . . ,Xn) and h2(X1, . . . ,Xn).

How good are these two estimators?

⇒ The first estimator can only attain values 0, 1
30 ,

2
30 , . . . , 1

⇒ The second estimator can only attain values 1, e−1/30, e−2/30, . . .

For most values of λ, both estimators will never return
the exact value of e−λ on the basis of 30 observations.
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Simulation of the two Estimators

The unknown parameter is p = e−λ = 0.1 (i.e., λ = ln 10 ≈ 2.30 . . .)

We consider n = 30 minutes and compute h1 and h2

We repeat this 500 times and draw a frequency histogram (h1 = Y n left,
h2 = e−Xn right)

Source: Modern Introduction to Statistics

h1 h2

Both estimators concentrate around the true value 0.1, but
the second estimator appears to be more concentrated.
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Unbiased Estimators and Bias

An estimator T is called an unbiased estimator for
the parameter θ if

E [ T ] = θ,

irrespective of the value θ.

The bias is defined as

E [ T ]− θ = E [ T − θ ] .

Definition

Which of the two estimators h1, h2 are unbiased?

Source: Edwin Leuven (Point Estimation)
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Analysis of the Bias of the First Estimator

Is h1(X1,X2, . . . ,Xn) = Y1+Y2+···+Yn
n an unbiased estimator for e−λ?

Answer

Recall we defined Yi := 1Xi=0.

Yes, because:

E [ h1(X1,X2, . . . ,Xn) ]

=
n · E [ Y1 ]

n
= P [ X1 = 0 ]

= e−λ.

Example 4a
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Bias of the Second Estimator (and Jensen’s Inequality)

Is h2(X1,X2, . . . ,Xn) = e−Xn an unbiased estimator for e−λ?
Answer

No! (recall: E
[

X 2 ] ≥ E [ X ]2)

We have

E
[

e−Xn
]
> e−E[ Xn ] = e−λ

This follows by Jensen’s inequality, and the inequality is strict since
z 7→ e−z is strictly convex.

Thus h2(X1,X2, . . . ,Xn) is not unbiased – it has positive bias.

Example 4b

For any random variable X , and any convex function g : R→ R, we have

E [ g(X ) ] ≥ g(E [ X ]).

If g is strictly convex and X is not constant, then the inequality is strict.

Jensen’s Inequality
λg(a) + (1− λ)g(b) ≥ g(λa + (1− λ)b)
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Asymptotic Bias of the Second Estimator (non-examinable)

E [ h2(X1, . . . ,Xn) ]
n→∞−→ e−λ (hence it is asymptotically unbiased).

Answer

Recall h2(X1, . . . ,Xn) = e−Xn . For any 0 ≤ k ≤ n,

P
[

h2(X1, . . . ,Xn) = e−k/n
]
= P

[ n∑
i=1

Xi = k

]
= P [Z = k ] ,

where Z ∼ Pois(n · λ) (since Pois(λ1) + Pois(λ2) = Pois(λ1 + λ2))

⇒ P
[

h2(X1, . . . ,Xn) = e−k/n
]
=

e−nλ · (nλ)k

k!

⇒ E [ h2(X1, . . . ,Xn) ] =
∞∑

k=0

e−nλ ·
(nλk )

k!
· e−k/n

= e−nλ · enλe−1/n
∞∑

k=0

e−nλe−1/n
·
(nλe−1/n)k

k!

= e−nλ·(1−e−1/n) · 1
n→∞
≈ e−nλ·(1−1+1/n+O(1/n2)) = e−λ+O(λ/n).

Example 4c

By LOTUS

since ex = 1 + x + O(x2) for small x

Hence in the limit, the positive bias of h2 diminishes.
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Unbiased Estimator for Expectation and Variance

Let X1,X2, . . . ,Xn be identically distributed samples from a distribution
with finite expectation µ and finite variance σ2. Then

X n :=
X1 + X2 + · · ·+ Xn

n

is an unbiased estimator for µ.
Furthermore,

Sn = Sn(X1, . . . ,Xn) :=
1

n − 1
·

n∑
i=1

(
Xi − X n

)2

is an unbiased estimator for σ2.

Unbiased Estimators for Expectation and Variance
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We need to prove: E [ Sn ] = σ2.
Answer

Multiplying by n − 1 yields:

(n − 1) · Sn =
n∑

i=1

(
Xi − X n

)2

=
n∑

i=1

(
Xi − µ + µ− X n

)2

=
n∑

i=1

(Xi − µ)2 +
n∑

i=1

(
X n − µ

)2
− 2

n∑
i=1

(Xi − µ)
(

X n − µ
)

=
n∑

i=1

(Xi − µ)2 + n
(

X n − µ
)2

− 2
(

X n − µ
)
· n ·

(
X n − µ

)

=
n∑

i=1

(Xi − µ)2 − n
(

X n − µ
)2
.

Let us now take expectations:

(n − 1) · E [ Sn ] =
n∑

i=1

E
[
(Xi − µ)2

]
− n · E

[(
X n − µ

)2
]

= n · σ2 − n · σ2
/n

= (n − 1) · σ2
.

Recall: E
[
(X n − µ)2

]
= V

[
X n

]
= σ2/n

Example 5
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E [ Sn ] = E
[

1
n−1 ·

∑n
i=1

(
Xi − X n

)2
]

= σ2. Why is it 1
n−1 and not 1

n ?

Answer

First Explanation. Consider n = 1. Having just one estimate should
not tell us anything about the variance (it could be infinite!).

Second Explanation. Assume µ is known, but σ2 unknown. Define

n∑
i=1

(Xi − µ)2 =: A.

Additionally, define
n∑

i=1

(
Xi − X n

)2
=: B.

B ≤ A, as X n solves a quadratic minimisation problem.
It is easy to verify that 1

n · A is an unbiased estimator for σ2

The factor 1
n−1 (instead of 1

n ) corrects the fact that X n is a more
“favourable” average than the true mean λ.

Example 5 (cntd.)

Intro to Probability More Examples 23



Warning: An Unbiased Estimator may not always exist

Suppose that we have one sample X ∼ Bin(n, p), where 0 < p < 1 is
unknown but n is known. Prove there is no unbiased estimator for 1/p.

Answer

First a simpler proof which exploits that p might be arbitrarily small

Intuition: For very small p, one T (k), k ∈ {0, 1, . . . , n} must be very
large, but then E [ T (X ) ] is too large for, e.g., p = 1/2
Formal Argument:

Assume T (X) is an unbiased estimator for 1
p for all 0 < p < 1

Define M := max0≤k≤n T (k). Then,

E [T (X) ] =
n∑

k=0

(n
k

)
pk (1− p)n−k · T (k)

≤ M ·
n∑

k=0

(n
k

)
pk (1− p)n−k = M.

Hence this estimator does not work for p < 1
M , since then

E [T (X) ] ≤ M < 1
p (negative bias!)

The next proof will work even if p ∈ [a, b] for 0 < a < b ≤ 1.

Example 6

.1

Intro to Probability More Examples 24



Warning: An Unbiased Estimator may not always exist (cntd.)

Suppose that we have one sample X ∼ Bin(n, p), where 0 < p < 1 is
unknown but n is known. Prove there is no unbiased estimator for 1/p.

Answer

Suppose there exists an unbiased estimator with E [ T (X ) ] = 1/p.

Then

1 = p · E [ T (X ) ]

= p ·
n∑

k=0

P [ X = k ] · T (k)

= p ·
n∑

k=0

(
n
k

)
pk · (1− p)n−k · T (k)

Last term is a polynomial of degree n + 1 with constant term zero

⇒ p · E [ T (X ) ]− 1 is a (non-zero) polynomial of degree ≤ n + 1

⇒ this polynomial has at most n + 1 roots

⇒ E [ T (X ) ] can be equal to 1/p for at most n + 1 values of p, and
thus cannot be an unbiased.

Example 6 (cntd.)
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