Introduction to Probability

Lecture 10: Estimators (Part I) Mateja Jamnik, <u>Thomas Sauerwald</u>

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Faster 2023

Announcements

- No in-person Lectures 11, 12 (scheduled 22 May and 24 May)
- There will be recordings for Lecture 11, 12
- possibly an in-person Example Class in the week 29 May-2 June

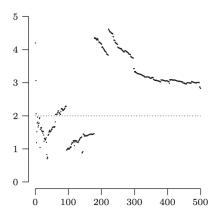
Intro to Probability 2

Announcements

- No in-person Lectures 11, 12 (scheduled 22 May and 24 May)
- There will be recordings for Lecture 11, 12
- possibly an in-person Example Class in the week 29 May-2 June
- IA Examination Briefing on Wednesday 24 May 12:00-13:00 by Prof Robert Watson, Lecture Theatre A, Arts School (this venue!)
- for exam questions in this course, calculators are not required

Intro to Probability 2

A Distribution whose Average does not converge (Lecture 9)



Cau(2, 1) distribution, Source: Modern Introduction to Statistics

The Cauchy distribution has "too heavy" tails (no expectation), in particular the average does not converge.

Intro to Probability

Outline

Introduction

Defining and Analysing Estimators

More Examples

Setting: We can take random samples in the form of i.i.d. random variables $X_1, X_2, ..., X_n$ from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P [X ≤ a] for any a ∈ ℝ
 in principle we can reconstruct the unknown distribution

Setting: We can take random samples in the form of i.i.d. random variables X_1, X_2, \dots, X_n from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P[X < a] for any $a \in \mathbb{R}$ → in principle we can reconstruct the unknown distribution

- How can we estimate the variance or other parameters? → estimator
- How can we measure the accuracy of an estimator? → bias (this lecture) and mean-squared error (next lecture)

Introduction

Setting: We can take random samples in the form of i.i.d. random variables $X_1, X_2, ..., X_n$ from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P[X ≤ a] for any a ∈ ℝ
 in principle we can reconstruct the unknown distribution

- How can we measure the accuracy of an estimator?

 ⇒ bias (this lecture) and mean-squared error (next lecture)

Physical Experiments:

Measurement = Quantity of Interest + Measurement Error

Setting: We can take random samples in the form of i.i.d. random variables $X_1, X_2, ..., X_n$ from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P[X ≤ a] for any a ∈ ℝ
 in principle we can reconstruct the unknown distribution

- How can we measure the accuracy of an estimator?
 → bias (this lecture) and mean-squared error (next lecture)
 expectation

Physical Experiments:

Measurement = Quantity of Interest + Measurement Error

Setting: We can take random samples in the form of i.i.d. random variables $X_1, X_2, ..., X_n$ from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P[X ≤ a] for any a ∈ ℝ
 in principle we can reconstruct the unknown distribution

- How can we estimate the variance or other parameters?

 ⇔ estimator
- How can we measure the accuracy of an estimator?

 → bias (this lecture) and mean-squared error (next lecture)

 variance

Physical Experiments:

Measurement = Quantity of Interest + Measurement Error

Setting: We can take random samples in the form of i.i.d. random variables X_1, X_2, \dots, X_n from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P [X ≤ a] for any a ∈ ℝ
 in principle we can reconstruct the unknown distribution

- How can we measure the accuracy of an estimator?
 → bias (this lecture) and mean-squared error (next lecture) variance

Physical Experiments:

Measurement = Quantity of Interest + Measurement Error

Empirical Distribution Function

Definition of Empirical Distribution Function (Empirical CDF) —

Let X_1, X_2, \dots, X_n being i.i.d. samples, and F be the corresponding distribution function. For any $a \in \mathbb{R}$, define

$$F_n(a) := \frac{\text{number of } X_i \in (-\infty, a]}{n}.$$

Empirical Distribution Function

Definition of Empirical Distribution Function (Empirical CDF) ——

Let X_1, X_2, \dots, X_n being i.i.d. samples, and F be the corresponding distribution function. For any $a \in \mathbb{R}$, define

$$F_n(a) := \frac{\text{number of } X_i \in (-\infty, a]}{n}.$$

Remark

The Weak Law of Large Numbers implies that for every $\epsilon > 0$ and $a \in \mathbb{R}$,

$$\lim_{n\to\infty} \mathbf{P}[|F_n(a) - F(a)| > \epsilon] = 0.$$

Empirical Distribution Function

Definition of Empirical Distribution Function (Empirical CDF) —

Let X_1, X_2, \ldots, X_n being i.i.d. samples, and F be the corresponding distribution function. For any $a \in \mathbb{R}$, define

$$F_n(a) := \frac{\text{number of } X_i \in (-\infty, a]}{n}.$$

Remark

The Weak Law of Large Numbers implies that for every $\epsilon > 0$ and $a \in \mathbb{R}$,

$$\lim_{n\to\infty} \mathbf{P}[|F_n(a)-F(a)|>\epsilon]=0.$$

Thus by taking enough samples, we can estimate the entire distribution (including its expectation and variance).

Empirical Distribution Functions (Example 1/2)

Example 1 -

Consider throwing an unbiased dice 8 times, and let the realisation be:

$$(x_1, x_2, \dots, x_8) = (4, 1, 5, 3, 1, 6, 4, 1).$$

What is the Empirical Distribution Function $F_8(a)$?

Answer

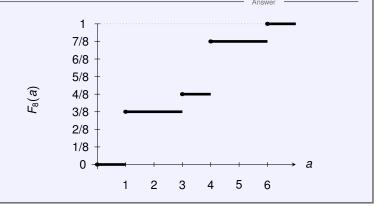
Empirical Distribution Functions (Example 1/2)

Example 1 -

Consider throwing an unbiased dice 8 times, and let the realisation be:

$$(x_1, x_2, \ldots, x_8) = (4, 1, 5, 3, 1, 6, 4, 1).$$

What is the Empirical Distribution Function $F_8(a)$?



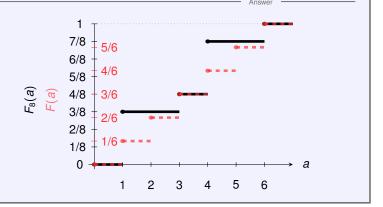
Empirical Distribution Functions (Example 1/2)

Example 1

Consider throwing an unbiased dice 8 times, and let the realisation be:

$$(x_1, x_2, \ldots, x_8) = (4, 1, 5, 3, 1, 6, 4, 1).$$

What is the Empirical Distribution Function $F_8(a)$?



Empirical Distribution Functions (Example 2/2)

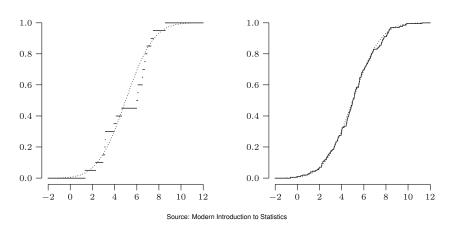


Figure: Empirical Distribution Functions of samples from a Normal Distribution $\mathcal{N}(5,4)$ (n=20 left, n=200 right)

Intro to Probability Introduction

7

Scenario —

Consider the packages arriving at a network server.

Source: Wikipedia

Scenario —

Consider the packages arriving at a network server.

We might be interested in:

Source: Wikipedia

- Scenario -

Consider the packages arriving at a network server.

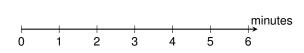
- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute

Source: Wikipedia

Scenario –

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute

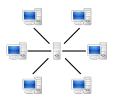


Source: Wikipedia

Scenario -

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute



Source: Wikipedia

Scenario -

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive



Source: Wikipedia

Scenario -

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive



Source: Wikipedia

Scenario -

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive

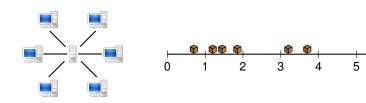


Source: Wikipedia

Scenario

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Source: Wikipedia

Intro to Probability Introduction

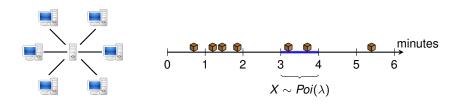
minutes

Scenario

Source: Wikipedia

Consider the packages arriving at a network server.

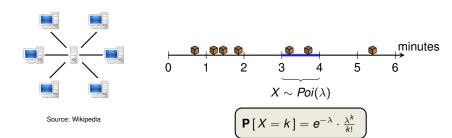
- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Scenario

Consider the packages arriving at a network server.

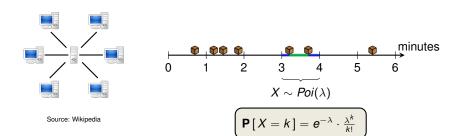
- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Scenario

Consider the packages arriving at a network server.

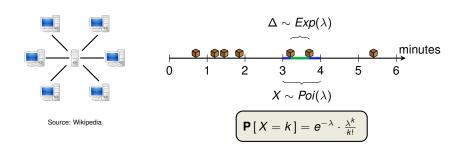
- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Scenario

Consider the packages arriving at a network server.

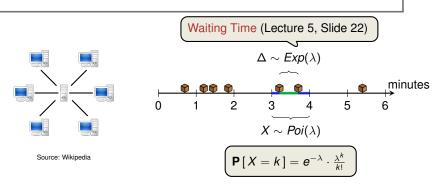
- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Scenario

Consider the packages arriving at a network server.

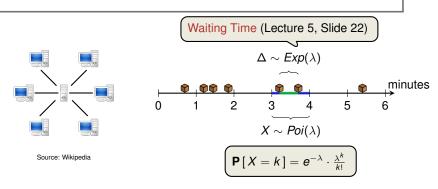
- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Scenario

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Estimator for λ

Scenario

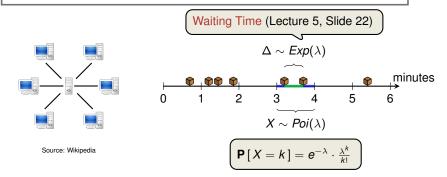
Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive

Estimator for $e^{-\lambda}$

Estimator for λ

 If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Estimator

Definition of Estimator ——

A random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

depending only on the samples is called estimator.

Estimator

Definition of Estimator

A random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

depending only on the samples is called estimator.

An estimate is a value that only depends on the dataset x_1, x_2, \dots, x_n , i.e.,

$$t = h(x_1, x_2, \ldots, x_n).$$

Estimator

Definition of Estimator -

A random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

depending only on the samples is called estimator.

An estimate is a value that only depends on the dataset x_1, x_2, \dots, x_n , i.e.,

$$t=h(x_1,x_2,\ldots,x_n).$$

Questions:

Intro to Probability Introduction

Estimator

Definition of Estimator -

A random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

depending only on the samples is called estimator.

An estimate is a value that only depends on the dataset x_1, x_2, \dots, x_n , i.e.,

$$t=h(x_1,x_2,\ldots,x_n).$$

Questions:

- What makes an estimator suitable? ~> unbiased (later: MSE)
- Does an unbiased estimator always exist? How to compute it?
- If there are several unbiased estimators, which one to choose?

Intro to Probability Introduction

Outline

Introduction

Defining and Analysing Estimators

More Examples

- Samples: Given $X_1, X_2, ..., X_n$ i.i.d., $X_i \sim Pois(\lambda)$
- Meaning: X_i is the number of packets arriving in minute i

Example 2

Suppose we wish to estimate λ by using the sample mean \overline{X}_n .

Answer

- Samples: Given $X_1, X_2, ..., X_n$ i.i.d., $X_i \sim Pois(\lambda)$
- Meaning: X_i is the number of packets arriving in minute i

Example 2

Suppose we wish to estimate λ by using the sample mean \overline{X}_n .

Answer

We have

$$\overline{X}_n := \frac{X_1 + X_2 + \cdots + X_n}{n},$$

and
$$\mathbf{E}\left[\overline{X}_{n}\right] = \mathbf{E}\left[X_{1}\right] = \lambda.$$

- Samples: Given $X_1, X_2, ..., X_n$ i.i.d., $X_i \sim Pois(\lambda)$
- Meaning: X_i is the number of packets arriving in minute i

Example 2

Suppose we wish to estimate λ by using the sample mean \overline{X}_n .

Answer

We have

$$\overline{X}_n := \frac{X_1 + X_2 + \cdots + X_n}{n},$$

and $\mathbf{E}\left[\overline{X}_{n}\right] = \mathbf{E}\left[X_{1}\right] = \lambda$. This suggests the estimator:

$$h(X_1, X_2, \ldots, X_n) := \overline{X}_n.$$

- Samples: Given $X_1, X_2, ..., X_n$ i.i.d., $X_i \sim Pois(\lambda)$
- Meaning: X_i is the number of packets arriving in minute i

Example 2

Suppose we wish to estimate λ by using the sample mean \overline{X}_n .

Answer

We have

$$\overline{X}_n := \frac{X_1 + X_2 + \cdots + X_n}{n},$$

and $\mathbf{E}\left[\overline{X}_{n}\right] = \mathbf{E}\left[X_{1}\right] = \lambda$. This suggests the estimator:

$$h(X_1, X_2, \ldots, X_n) := \overline{X}_n.$$

Applying the Weak Law of Large Numbers:

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \lambda\right| > \epsilon\right] = 0 \quad \text{for any } \epsilon > 0.$$

Example 3a		
Now suppose we wish $e^{-\lambda}$ by the relative freq		ero arrivals
	Answer —	

Example 3a -

Now suppose we wish to instead estimate the probability of zero arrivals $e^{-\lambda}$ by the relative frequency of samples which are zero.

Answer

Let X_1, X_2, \dots, X_n be the *n* samples. Let

$$Y_i := \mathbf{1}_{X_i=0}$$
.

Example 3a -

Now suppose we wish to instead estimate the probability of zero arrivals $e^{-\lambda}$ by the relative frequency of samples which are zero.

Answer

Let X_1, X_2, \dots, X_n be the *n* samples. Let

$$Y_i := \mathbf{1}_{X_i=0}$$
.

Then

$$\mathbf{E}[Y_i] = \mathbf{P}[X_i = 0] = e^{-\lambda},$$

Example 3a -

Now suppose we wish to instead estimate the probability of zero arrivals $e^{-\lambda}$ by the relative frequency of samples which are zero.

Answer

Let X_1, X_2, \ldots, X_n be the *n* samples. Let

$$Y_i := \mathbf{1}_{X_i=0}$$
.

Then

$$E[Y_i] = P[X_i = 0] = e^{-\lambda},$$

and thus we can define an estimator by

$$h_1(X_1, X_2, \ldots, X_n) := \frac{Y_1 + Y_2 + \cdots + Y_n}{n}.$$

Example 3b -		
Suppose we wislusing the sample	pility of zero arrivals $e^{-\frac{1}{2}}$	by by
	Answer -	

Example 3b

Suppose we wish to estimate the probability of zero arrivals $e^{-\lambda}$ by using the sample mean \overline{X}_n .

We saw that
$$\overline{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$
 satisfies $\mathbf{E}\left[\overline{X}_n\right] = \mathbf{E}\left[X_1\right] = \lambda$.

Recall by the Weak Law of Large Numbers:

Example 3b

Suppose we wish to estimate the probability of zero arrivals $e^{-\lambda}$ by using the sample mean \overline{X}_n .

Answer

We saw that
$$\overline{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$
 satisfies $\mathbf{E}\left[\overline{X}_n\right] = \mathbf{E}\left[X_1\right] = \lambda$.

Recall by the Weak Law of Large Numbers:

$$\lim_{n\to\infty} \mathbf{P} \left[\left| \overline{X}_n - \lambda \right| > \epsilon \right] = 0 \quad \text{for any } \epsilon > 0.$$

Example 3b

Suppose we wish to estimate the probability of zero arrivals $e^{-\lambda}$ by using the sample mean \overline{X}_n .

Answer

We saw that
$$\overline{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$
 satisfies $\mathbf{E}\left[\overline{X}_n\right] = \mathbf{E}\left[X_1\right] = \lambda$.

Recall by the Weak Law of Large Numbers:

$$\lim_{n \to \infty} \mathbf{P} \left[\left| \overline{X}_n - \lambda \right| > \epsilon \right] = 0$$
 for any $\epsilon > 0$.

Then we estimate $e^{-\lambda}$ by $e^{-\overline{X}_n}$. Hence our estimator is

$$h_2(X_1, X_2, \ldots, X_n) := e^{-\overline{X}_n}.$$

- Suppose we have n = 30 and we want to estimate $e^{-\lambda}$
- Consider the two estimators $h_1(X_1, ..., X_n)$ and $h_2(X_1, ..., X_n)$.

- Suppose we have n = 30 and we want to estimate $e^{-\lambda}$
- Consider the two estimators $h_1(X_1, ..., X_n)$ and $h_2(X_1, ..., X_n)$.

How **good** are these two estimators?

- Suppose we have n = 30 and we want to estimate $e^{-\lambda}$
- Consider the two estimators $h_1(X_1, ..., X_n)$ and $h_2(X_1, ..., X_n)$.

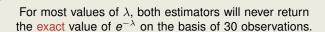
How **good** are these two estimators?

- \Rightarrow The first estimator can only attain values $0, \frac{1}{30}, \frac{2}{30}, \dots, 1$
- \Rightarrow The second estimator can only attain values 1, $e^{-1/30}$, $e^{-2/30}$, ...

- Suppose we have n=30 and we want to estimate $e^{-\lambda}$
- Consider the two estimators $h_1(X_1, ..., X_n)$ and $h_2(X_1, ..., X_n)$.

How **good** are these two estimators?

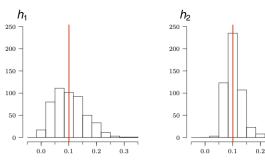
- \Rightarrow The first estimator can only attain values $0, \frac{1}{30}, \frac{2}{30}, \dots, 1$
- \Rightarrow The second estimator can only attain values 1, $e^{-1/30}$, $e^{-2/30}$, . . .



• The unknown parameter is $p = e^{-\lambda} = 0.1$ (i.e., $\lambda = \ln 10 \approx 2.30...$)

- The unknown parameter is $p = e^{-\lambda} = 0.1$ (i.e., $\lambda = \ln 10 \approx 2.30...$)
- We consider n = 30 minutes and compute h_1 and h_2
- We repeat this 500 times and draw a frequency histogram ($h_1 = \overline{Y}_n$ left, $h_2 = e^{-\overline{X}_n}$ right)

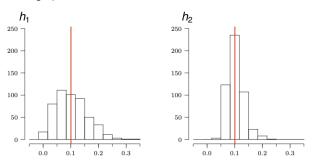
- The unknown parameter is $p = e^{-\lambda} = 0.1$ (i.e., $\lambda = \ln 10 \approx 2.30...$)
- We consider n = 30 minutes and compute h_1 and h_2
- We repeat this 500 times and draw a frequency histogram ($h_1 = \overline{Y}_n$ left, $h_2 = e^{-\overline{X}_n}$ right)



Source: Modern Introduction to Statistics

0.3

- The unknown parameter is $p = e^{-\lambda} = 0.1$ (i.e., $\lambda = \ln 10 \approx 2.30...$)
- We consider n = 30 minutes and compute h_1 and h_2
- We repeat this 500 times and draw a frequency histogram ($h_1 = \overline{Y}_n$ left, $h_2 = e^{-\overline{X}_n}$ right)



Source: Modern Introduction to Statistics

Both estimators concentrate around the true value 0.1, but the second estimator appears to be more concentrated.

Definition —

An estimator T is called an unbiased estimator for the parameter θ if

$$\mathbf{E}[T] = \theta,$$

irrespective of the value θ .

Definition -

An estimator T is called an unbiased estimator for the parameter θ if

$$\mathbf{E}[T] = \theta$$
,

irrespective of the value θ . The bias is defined as

$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$

Definition -

An estimator T is called an unbiased estimator for the parameter θ if

$$\mathbf{E}[T] = \theta$$
,

irrespective of the value θ . The bias is defined as

$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$

Source: Edwin Leuven (Point Estimation)

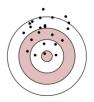
Definition -

An estimator ${\cal T}$ is called an unbiased estimator for the parameter θ if

$$\mathbf{E}[T] = \theta$$
,

irrespective of the value θ . The bias is defined as

$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$



Source: Edwin Leuven (Point Estimation)

Which of the two estimators h_1 , h_2 are unbiased?

Example 4a Is
$$h_1(X_1, X_2, ..., X_n) = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 an unbiased estimator for $e^{-\lambda}$?

Example 4a Is
$$h_1(X_1, X_2, ..., X_n) = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 an unbiased estimator for $e^{-\lambda}$?

Recall we defined $Y_i := \mathbf{1}_{X_i=0}$.

Example 4a _____

Is
$$h_1(X_1, X_2, ..., X_n) = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 an unbiased estimator for $e^{-\lambda}$?

$$\mathbf{E}[h_1(X_1, X_2, \dots, X_n)]$$

Example 4a _____

Is
$$h_1(X_1, X_2, ..., X_n) = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 an unbiased estimator for $e^{-\lambda}$?

$$\mathbf{E}[h_1(X_1,X_2,\ldots,X_n)] = \frac{n \cdot \mathbf{E}[Y_1]}{n}$$

Example 4a ____

Is
$$h_1(X_1, X_2, ..., X_n) = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 an unbiased estimator for $e^{-\lambda}$?

$$\mathbf{E}[h_1(X_1, X_2, \dots, X_n)] = \frac{n \cdot \mathbf{E}[Y_1]}{n}$$
$$= \mathbf{P}[X_1 = 0]$$

Example 4a ____

Is
$$h_1(X_1, X_2, ..., X_n) = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 an unbiased estimator for $e^{-\lambda}$?

$$\mathbf{E}[h_1(X_1, X_2, \dots, X_n)] = \frac{n \cdot \mathbf{E}[Y_1]}{n}$$
$$= \mathbf{P}[X_1 = 0]$$
$$= e^{-\lambda}.$$

Example 4b

Is $h_2(X_1,X_2,\ldots,X_n)=e^{-\overline{X}_n}$ an unbiased estimator for $e^{-\lambda}$?

Answer

Example 4b

Is
$$h_2(X_1, X_2, ..., X_n) = e^{-\overline{X}_n}$$
 an unbiased estimator for $e^{-\lambda}$?

No! (recall: $E[X^2] \ge E[X]^2$)

Example 4b

Is $h_2(X_1, X_2, ..., X_n) = e^{-\overline{X}_n}$ an unbiased estimator for $e^{-\lambda}$?

No! (recall: $E[X^2] \ge E[X]^2$)

Jensen's Inequality

For any random variable X, and any convex function $g:\mathbb{R}\to\mathbb{R}$, we have

$$\mathbf{E}[g(X)] \geq g(\mathbf{E}[X]).$$

Example 4b .

Is $h_2(X_1, X_2, ..., X_n) = e^{-\overline{X}_n}$ an unbiased estimator for $e^{-\lambda}$?

Allswe

No! (recall: $E[X^2] \ge E[X]^2$)

$$\int \lambda g(a) + (1-\lambda)g(b) \geq g(\lambda a + (1-\lambda)b)$$

Jensen's Inequality

For any random variable X, and any convex function $g: \mathbb{R} \to \mathbb{R}$, we have

$$\mathbf{E}[g(X)] \geq g(\mathbf{E}[X]).$$

Example 4b

Is
$$h_2(X_1, X_2, ..., X_n) = e^{-\overline{X}_n}$$
 an unbiased estimator for $e^{-\lambda}$?

Answer

No! (recall: $E[X^2] \ge E[X]^2$)

We have

$$\mathbf{E}\left[e^{-\overline{X}_n}\right] > e^{-\mathbf{E}\left[\overline{X}_n\right]} = e^{-\lambda}$$

$$\int \lambda g(a) + (1-\lambda)g(b) \geq g(\lambda a + (1-\lambda)b)$$

Jensen's Inequality

For any random variable X, and any convex function $g: \mathbb{R} \to \mathbb{R}$, we have

$$\mathbf{E}[g(X)] \geq g(\mathbf{E}[X]).$$

Example 4b

Is $h_2(X_1, X_2, ..., X_n) = e^{-\overline{X}_n}$ an unbiased estimator for $e^{-\lambda}$?

Answer

No! (recall: $E[X^2] \ge E[X]^2$)

We have

$$\mathbf{E}\left[e^{-\overline{X}_n}\right] > e^{-\mathbf{E}\left[\overline{X}_n\right]} = e^{-\lambda}$$

This follows by Jensen's inequality, and the inequality is strict since z → e^{-z} is strictly convex.

 $\left(\lambda g(a) + (1-\lambda)g(b) \geq g(\lambda a + (1-\lambda)b)\right)$

Jensen's Inequality

For any random variable X, and any convex function $g: \mathbb{R} \to \mathbb{R}$, we have

$$E[g(X)] \ge g(E[X]).$$

Example 4b

Is $h_2(X_1, X_2, ..., X_n) = e^{-\overline{X}_n}$ an unbiased estimator for $e^{-\lambda}$?

Answer

No! (recall: $E[X^2] \ge E[X]^2$)

We have

$$\mathbf{E}\left[e^{-\overline{X}_{n}}\right] > e^{-\mathbf{E}\left[\overline{X}_{n}\right]} = e^{-\lambda}$$

- This follows by Jensen's inequality, and the inequality is strict since z → e^{-z} is strictly convex.
- Thus $h_2(X_1, X_2, \dots, X_n)$ is not unbiased it has positive bias.

$$\int \lambda g(a) + (1-\lambda)g(b) \geq g(\lambda a + (1-\lambda)b)$$

Jensen's Inequality

For any random variable X, and any convex function $g: \mathbb{R} \to \mathbb{R}$, we have

$$\mathbf{E}[g(X)] \geq g(\mathbf{E}[X]).$$

Asymptotic Bias of the Second Estimator (non-examinable)

Example 4c

 $\mathbf{E}[h_2(X_1,\ldots,X_n)] \stackrel{n\to\infty}{\longrightarrow} e^{-\lambda}$ (hence it is asymptotically unbiased).

nswer

■ Recall $h_2(X_1, ..., X_n) = e^{-\overline{X}_n}$. For any $0 \le k \le n$,

$$\mathbf{P}\left[h_2(X_1,\ldots,X_n)=e^{-k/n}\right]=\mathbf{P}\left[\sum_{i=1}^n X_i=k\right]=\mathbf{P}\left[Z=k\right],$$

where $Z \sim Pois(n \cdot \lambda)$ (since $Pois(\lambda_1) + Pois(\lambda_2) = Pois(\lambda_1 + \lambda_2)$)

$$\Rightarrow \qquad \mathbf{P}\left[h_2(X_1,\ldots,X_n)=e^{-k/n}\right]=\frac{e^{-n\lambda}\cdot(n\lambda)^k}{k!}$$

$$\Rightarrow \qquad \mathbf{E} \left[h_2(X_1, \dots, X_n) \right] = \sum_{k=0}^{\infty} e^{-n\lambda} \cdot \frac{(n\lambda^k)}{k!} \cdot e^{-k/n}$$

$$= e^{-n\lambda} \cdot e^{n\lambda e^{-1/n}} \sum_{k=0}^{\infty} e^{-n\lambda e^{-1/n}} \cdot \frac{(n\lambda e^{-1/n})^k}{k!}$$

$$=e^{-n\lambda\cdot(1-e^{-1/n})}\cdot 1$$

since
$$e^x = 1 + x + O(x^2)$$
 for small $x \approx e^{-n\lambda \cdot (1 - 1 + 1/n + O(1/n^2))} = e^{-\lambda + O(\lambda/n)}$.

Hence in the limit, the positive bias of h_2 diminishes.

Outline

Introduction

Defining and Analysing Estimators

More Examples

Unbiased Estimators for Expectation and Variance

Let $X_1, X_2, ..., X_n$ be identically distributed samples from a distribution with finite expectation μ and finite variance σ^2 . Then

$$\overline{X}_n := \frac{X_1 + X_2 + \cdots + X_n}{n}$$

is an unbiased estimator for μ .

Furthermore,

$$S_n = S_n(X_1, \ldots, X_n) := \frac{1}{n-1} \cdot \sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2$$

is an unbiased estimator for σ^2 .

We need to prove: **E**[S_n] = σ^2 .

Answer

Multiplying by n-1 yields:

$$\begin{split} (n-1) \cdot S_n &= \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2 \\ &= \sum_{i=1}^n \left(X_i - \mu + \mu - \overline{X}_n \right)^2 \\ &= \sum_{i=1}^n \left(X_i - \mu \right)^2 + \sum_{i=1}^n \left(\overline{X}_n - \mu \right)^2 - 2 \sum_{i=1}^n \left(X_i - \mu \right) \left(\overline{X}_n - \mu \right) \\ &= \sum_{i=1}^n \left(X_i - \mu \right)^2 + n \left(\overline{X}_n - \mu \right)^2 - 2 \left(\overline{X}_n - \mu \right) \cdot n \cdot \left(\overline{X}_n - \mu \right) \\ &= \sum_{i=1}^n \left(X_i - \mu \right)^2 - n \left(\overline{X}_n - \mu \right)^2 \,. \end{split}$$

Let us now take expectations:

$$(n-1) \cdot \mathbf{E}[S_n] = \sum_{i=1}^n \mathbf{E}\left[\left(X_i - \mu\right)^2\right] - n \cdot \mathbf{E}\left[\left(\overline{X}_n - \mu\right)^2\right]$$

$$= n \cdot \sigma^2 - n \cdot \sigma^2/n$$

$$= (n-1) \cdot \sigma^2.$$
Recall: $\mathbf{E}\left[\left(\overline{X}_n - \mu\right)^2\right] = \mathbf{V}\left[\overline{X}_n\right] = \sigma^2/n$

Example 5 (cntd.)

$$\mathbf{E}[S_n] = \mathbf{E}\left[\frac{1}{n-1} \cdot \sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2\right] = \sigma^2. \text{ Why is it } \frac{1}{n-1} \text{ and not } \frac{1}{n}?$$

Answei

- **First Explanation.** Consider n = 1. Having just one estimate should not tell us anything about the variance (it could be infinite!).
- Second Explanation. Assume μ is known, but σ^2 unknown. Define

$$\sum_{i=1}^n (X_i - \mu)^2 =: A.$$

Additionally, define

$$\sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2 =: B.$$

- B < A, as \overline{X}_n solves a quadratic minimisation problem.
- It is easy to verify that $\frac{1}{2} \cdot A$ is an unbiased estimator for σ^2
- The factor $\frac{1}{n-1}$ (instead of $\frac{1}{n}$) corrects the fact that \overline{X}_n is a more "favourable" average than the true mean λ .

Warning: An Unbiased Estimator may not always exist

Example 6

Suppose that we have one sample $X \sim Bin(n, p)$, where 0 is unknown but <math>n is known. Prove there is no unbiased estimator for 1/p.

Answer

- First a simpler proof which exploits that p might be arbitrarily small
- Intuition: For very small p, one T(k), $k \in \{0, 1, ..., n\}$ must be very large, but then $\mathbf{E}[T(X)]$ is too large for, e.g., p = 1/2
- Formal Argument:
 - Assume T(X) is an unbiased estimator for $\frac{1}{p}$ for all 0
 - Define $M := \max_{0 \le k \le n} T(k)$. Then,

$$\mathbf{E}[T(X)] = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} \cdot T(k)$$

$$\leq M \cdot \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = M.$$

- Hence this estimator does not work for $p < \frac{1}{M}$, since then $\mathbf{E}[T(X)] \le M < \frac{1}{p}$ (negative bias!)
- The next proof will work even if $p \in [a, b]$ for 0 < a < b < 1.

Example 6 (cntd.)

thus cannot be an unbiased.

Suppose that we have one sample $X \sim Bin(n, p)$, where 0 is unknown but <math>n is known. Prove there is no unbiased estimator for 1/p.

Answei

- Suppose there exists an unbiased estimator with $\mathbf{E}[T(X)] = 1/p$.
- Then

$$1 = p \cdot \mathbf{E} [T(X)]$$

$$= p \cdot \sum_{k=0}^{n} \mathbf{P} [X = k] \cdot T(k)$$

$$= p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$$

■ Last term is a polynomial of degree n+1 with constant term zero $\Rightarrow p \cdot \mathbf{E}[T(X)] - 1$ is a (non-zero) polynomial of degree $\leq n+1$ \Rightarrow this polynomial has at most n+1 roots $\Rightarrow \mathbf{E}[T(X)]$ can be equal to 1/p for at most n+1 values of p, and