Introduction to Probability

Lecture 10: Estimators (Part I) Mateja Jamnik, <u>Thomas Sauerwald</u>

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

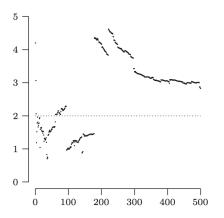
Faster 2023

Announcements

- No in-person Lectures 11, 12 (scheduled 22 May and 24 May)
- There will be recordings for Lecture 11, 12
- possibly an in-person Example Class in the week 29 May-2 June
- IA Examination Briefing on Wednesday 24 May 12:00-13:00 by Prof Robert Watson, Lecture Theatre A, Arts School (this venue!)
- for exam questions in this course, calculators are not required

Intro to Probability 2

A Distribution whose Average does not converge (Lecture 9)



Cau(2, 1) distribution, Source: Modern Introduction to Statistics

The Cauchy distribution has "too heavy" tails (no expectation), in particular the average does not converge.

Intro to Probability

Outline

Introduction

Defining and Analysing Estimators

More Examples

Introduction

Setting: We can take random samples in the form of i.i.d. random variables $X_1, X_2, ..., X_n$ from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P[X ≤ a] for any a ∈ ℝ
 in principle we can reconstruct the unknown distribution

- How can we estimate the variance or other parameters?

 ⇔ estimator
- How can we measure the accuracy of an estimator?

 → bias (this lecture) and mean-squared error (next lecture)

 variance

Physical Experiments:

Measurement = Quantity of Interest + Measurement Error

Intro to Probability Introduction

Empirical Distribution Function

Definition of Empirical Distribution Function (Empirical CDF) —

Let X_1, X_2, \ldots, X_n being i.i.d. samples, and F be the corresponding distribution function. For any $a \in \mathbb{R}$, define

$$F_n(a) := \frac{\text{number of } X_i \in (-\infty, a]}{n}.$$

Remark

The Weak Law of Large Numbers implies that for every $\epsilon > 0$ and $a \in \mathbb{R}$,

$$\lim_{n\to\infty} \mathbf{P}[|F_n(a)-F(a)|>\epsilon]=0.$$

Thus by taking enough samples, we can estimate the entire distribution (including its expectation and variance).

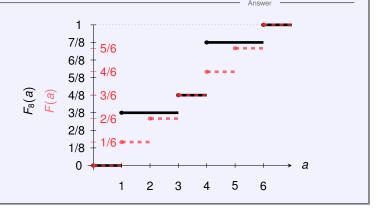
Empirical Distribution Functions (Example 1/2)

Example 1

Consider throwing an unbiased dice 8 times, and let the realisation be:

$$(x_1, x_2, \ldots, x_8) = (4, 1, 5, 3, 1, 6, 4, 1).$$

What is the Empirical Distribution Function $F_8(a)$?



Empirical Distribution Functions (Example 2/2)

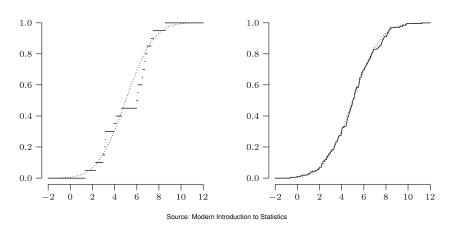


Figure: Empirical Distribution Functions of samples from a Normal Distribution $\mathcal{N}(5,4)$ (n=20 left, n=200 right)

Intro to Probability Introduction

7

An Example of an Estimation Problem

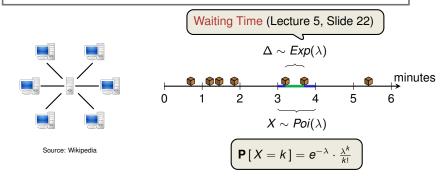
Scenario

Consider the packages arriving at a network server.

- We might be interested in:
 - 1. number of packets that arrive within a "typical" minute
 - 2. percentage of minutes during which no packets arrive
- Estimator for $e^{-\lambda}$

Estimator for λ

 If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Intro to Probability Introduction

Estimator

Definition of Estimator -

A random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

depending only on the samples is called estimator.

An estimate is a value that only depends on the dataset x_1, x_2, \dots, x_n , i.e.,

$$t=h(x_1,x_2,\ldots,x_n).$$

Questions:

- What makes an estimator suitable? ~> unbiased (later: MSE)
- Does an unbiased estimator always exist? How to compute it?
- If there are several unbiased estimators, which one to choose?

Intro to Probability Introduction

Outline

Introduction

Defining and Analysing Estimators

More Examples

Example: Arrival of Packets (1/3)

- Samples: Given $X_1, X_2, ..., X_n$ i.i.d., $X_i \sim Pois(\lambda)$
- Meaning: X_i is the number of packets arriving in minute i

Example 2

Suppose we wish to estimate λ by using the sample mean \overline{X}_n .

Answer

We have

$$\overline{X}_n := \frac{X_1 + X_2 + \cdots + X_n}{n},$$

and $\mathbf{E}\left[\overline{X}_{n}\right] = \mathbf{E}\left[X_{1}\right] = \lambda$. This suggests the estimator:

$$h(X_1, X_2, \ldots, X_n) := \overline{X}_n.$$

Applying the Weak Law of Large Numbers:

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \lambda\right| > \epsilon\right] = 0 \quad \text{for any } \epsilon > 0.$$

Example: Arrival of Packets (2/3)

Example 3a -

Now suppose we wish to instead estimate the probability of zero arrivals $e^{-\lambda}$ by the relative frequency of samples which are zero.

Answer

Let X_1, X_2, \dots, X_n be the *n* samples. Let

$$Y_i := \mathbf{1}_{X_i=0}$$
.

Then

$$E[Y_i] = P[X_i = 0] = e^{-\lambda},$$

and thus we can define an estimator by

$$h_1(X_1, X_2, \ldots, X_n) := \frac{Y_1 + Y_2 + \cdots + Y_n}{n}.$$

Example: Arrival of Packets (3/3)

Example 3b

Suppose we wish to estimate the probability of zero arrivals $e^{-\lambda}$ by using the sample mean \overline{X}_n .

Answer

We saw that
$$\overline{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$
 satisfies $\mathbf{E}\left[\overline{X}_n\right] = \mathbf{E}\left[X_1\right] = \lambda$.

Recall by the Weak Law of Large Numbers:

$$\lim_{n \to \infty} \mathbf{P} \left[\left| \overline{X}_n - \lambda \right| > \epsilon \right] = 0$$
 for any $\epsilon > 0$.

Then we estimate $e^{-\lambda}$ by $e^{-\overline{X}_n}$. Hence our estimator is

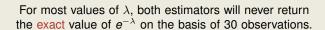
$$h_2(X_1, X_2, \ldots, X_n) := e^{-\overline{X}_n}.$$

Behaviour of the Estimators

- Suppose we have n=30 and we want to estimate $e^{-\lambda}$
- Consider the two estimators $h_1(X_1, ..., X_n)$ and $h_2(X_1, ..., X_n)$.

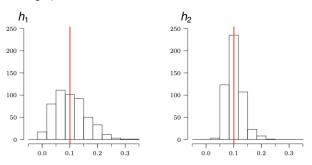
How **good** are these two estimators?

- \Rightarrow The first estimator can only attain values $0, \frac{1}{30}, \frac{2}{30}, \dots, 1$
- \Rightarrow The second estimator can only attain values 1, $e^{-1/30}$, $e^{-2/30}$, ...



Simulation of the two Estimators

- The unknown parameter is $p = e^{-\lambda} = 0.1$ (i.e., $\lambda = \ln 10 \approx 2.30...$)
- We consider n = 30 minutes and compute h_1 and h_2
- We repeat this 500 times and draw a frequency histogram ($h_1 = \overline{Y}_n$ left, $h_2 = e^{-\overline{X}_n}$ right)



Source: Modern Introduction to Statistics

Both estimators concentrate around the true value 0.1, but the second estimator appears to be more concentrated.

Unbiased Estimators and Bias

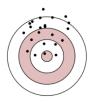
Definition -

An estimator ${\cal T}$ is called an unbiased estimator for the parameter θ if

$$\mathbf{E}[T] = \theta$$
,

irrespective of the value θ . The bias is defined as

$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$



Source: Edwin Leuven (Point Estimation)

Which of the two estimators h_1 , h_2 are unbiased?

Analysis of the Bias of the First Estimator

Example 4a Is
$$h_1(X_1, X_2, ..., X_n) = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 an unbiased estimator for $e^{-\lambda}$?

Bias of the Second Estimator (and Jensen's Inequality)

Example 4b

Is
$$h_2(X_1, X_2, ..., X_n) = e^{-\overline{X}_n}$$
 an unbiased estimator for $e^{-\lambda}$?

Answer

$$\lambda g(a) + (1-\lambda)g(b) \geq g(\lambda a + (1-\lambda)b)$$

Jensen's Inequality

For any random variable X, and any convex function $g: \mathbb{R} \to \mathbb{R}$, we have

$$E[g(X)] \ge g(E[X]).$$

If g is strictly convex and X is not constant, then the inequality is strict.

Asymptotic Bias of the Second Estimator (non-examinable)

Example 4c

 $\mathbf{E}[h_2(X_1,\ldots,X_n)] \stackrel{n\to\infty}{\longrightarrow} e^{-\lambda}$ (hence it is asymptotically unbiased).

■ Recall $h_2(X_1, ..., X_n) = e^{-\overline{X}_n}$. For any 0 < k < n.

$$\mathbf{P}\left[h_2(X_1,\ldots,X_n)=e^{-k/n}\right]=\mathbf{P}\left[\sum_{i=1}^n X_i=k\right]=\mathbf{P}\left[Z=k\right],$$

where $Z \sim Pois(n \cdot \lambda)$ (since $Pois(\lambda_1) + Pois(\lambda_2) = Pois(\lambda_1 + \lambda_2)$)

$$\Rightarrow \qquad \mathbf{P}\left[h_2(X_1,\ldots,X_n)=e^{-k/n}\right]=\frac{e^{-n\lambda}\cdot(n\lambda)^k}{k!}$$

$$\Rightarrow \qquad \mathbf{E} \left[h_2(X_1, \dots, X_n) \right] = \sum_{k=0}^{\infty} e^{-n\lambda} \cdot \frac{(n\lambda^k)}{k!} \cdot e^{-k/n}$$

$$= e^{-n\lambda} \cdot e^{n\lambda e^{-1/n}} \sum_{k=0}^{\infty} e^{-n\lambda e^{-1/n}} \cdot \frac{(n\lambda e^{-1/n})^k}{k!}$$

$$^{\lambda} \cdot e^{n\lambda e^{-1/n}} \sum_{k=0}^{\infty} e^{-n\lambda e^{-1/n}} \cdot \frac{(n\lambda e^{-1/n})^k}{k!}$$

$$=e^{-n\lambda\cdot(1-e^{-1/n})}\cdot 1$$

since $e^x = 1 + x + O(x^2)$ for small $x \stackrel{n \to \infty}{>} e^{-n\lambda \cdot (1 - 1 + 1/n + O(1/n^2))} = e^{-\lambda + O(\lambda/n)}$.

Hence in the limit, the positive bias of h_2 diminishes.

Outline

Introduction

Defining and Analysing Estimators

More Examples

Unbiased Estimators for Expectation and Variance

Let $X_1, X_2, ..., X_n$ be identically distributed samples from a distribution with finite expectation μ and finite variance σ^2 . Then

$$\overline{X}_n := \frac{X_1 + X_2 + \cdots + X_n}{n}$$

is an unbiased estimator for μ .

Furthermore,

$$S_n = S_n(X_1, \ldots, X_n) := \frac{1}{n-1} \cdot \sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2$$

is an unbiased estimator for σ^2 .

We need to prove: $\mathbf{E}[S_n] = \sigma^2$.

Answer

$$\mathbf{E}[S_n] = \mathbf{E}\left[\frac{1}{n-1} \cdot \sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2\right] = \sigma^2$$
. Why is it $\frac{1}{n-1}$ and not $\frac{1}{n}$?

Answer

Suppose that we have one sample $X \sim Bin(n, p)$, where 0 is unknown but <math>n is known. Prove there is no unbiased estimator for 1/p.

Answer

Example 6 (cntd.)

thus cannot be an unbiased.

Suppose that we have one sample $X \sim Bin(n, p)$, where 0 is unknown but <math>n is known. Prove there is no unbiased estimator for 1/p.

Answei

- Suppose there exists an unbiased estimator with $\mathbf{E}[T(X)] = 1/p$.
- Then

$$1 = p \cdot \mathbf{E} [T(X)]$$

$$= p \cdot \sum_{k=0}^{n} \mathbf{P} [X = k] \cdot T(k)$$

$$= p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$$

■ Last term is a polynomial of degree n+1 with constant term zero $\Rightarrow p \cdot \mathbf{E}[T(X)] - 1$ is a (non-zero) polynomial of degree $\leq n+1$ \Rightarrow this polynomial has at most n+1 roots $\Rightarrow \mathbf{E}[T(X)]$ can be equal to 1/p for at most n+1 values of p, and