Introduction to Probability

Lectures 9: Central Limit Theorem Mateja Jamnik, <u>Thomas Sauerwald</u>

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Faster 2023

Outline

Recap: Weak Law of Large Numbers

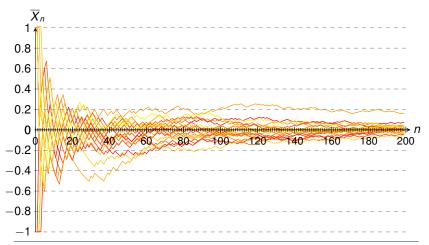
Central Limit Theorem

Illustrations

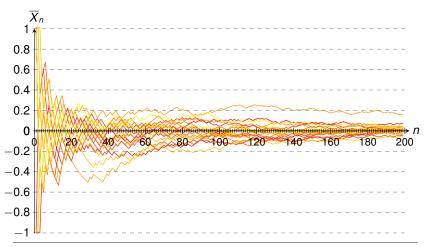
Examples

Bonus Material (non-examinable)

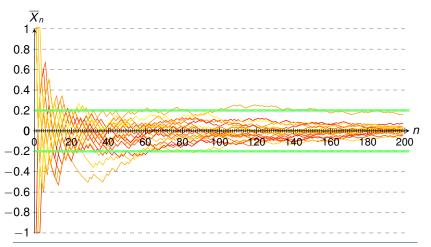
$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n-\mu|>\epsilon\,\right]=0$$



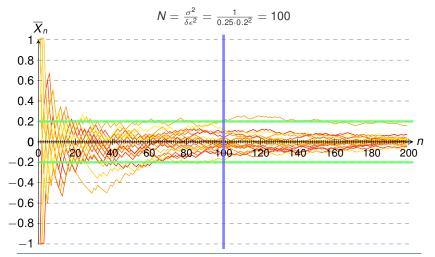
$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0 \qquad \Rightarrow \quad \exists N \colon \forall n \geq N \colon \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > 0.2\right] \leq 0.25$$



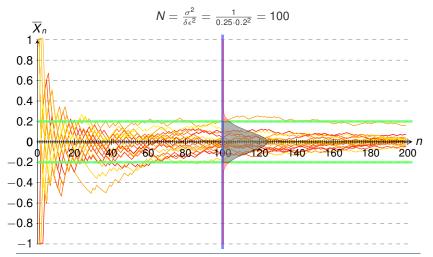
$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n-\mu\right|>\epsilon\right]=0 \qquad \Rightarrow \quad \exists N\colon \forall n\geq N\colon \mathbf{P}\left[\left|\overline{X}_n-\mu\right|>0.2\right]\leq 0.25$$



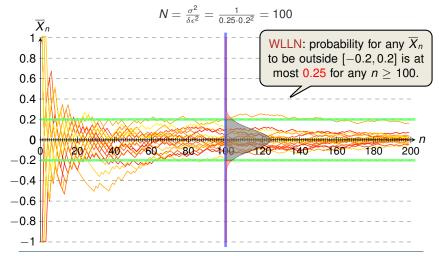
$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n-\mu\right|>\epsilon\right]=0 \qquad \Rightarrow \quad \exists N\colon \forall n\geq N\colon \mathbf{P}\left[\left|\overline{X}_n-\mu\right|>0.2\right]\leq 0.25$$



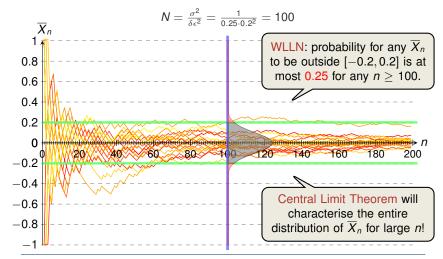
$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n-\mu\right|>\epsilon\right]=0 \qquad \Rightarrow \quad \exists N\colon \forall n\geq N\colon \mathbf{P}\left[\left|\overline{X}_n-\mu\right|>0.2\right]\leq 0.25$$



$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0 \qquad \Rightarrow \quad \exists N \colon \forall n \geq N \colon \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > 0.2\right] \leq 0.25$$



$$\lim_{n\to\infty}\mathbf{P}\left[\,|\overline{X}_n-\mu|>\epsilon\,\right]=0\qquad\Rightarrow\quad\exists N\colon\forall n\geq N\colon\mathbf{P}\left[\,|\overline{X}_n-\mu|>0.2\,\right]\leq 0.25$$



Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

5

• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

- The Sum

- Let $\widetilde{X}_n := \sum_{i=1}^n X_i$ (often denoted by S_n)
- ullet The variance is $oldsymbol{V}\left[\,\widetilde{X}_{n}\,
 ight]=n\sigma^{2}
 ightarrow\infty$

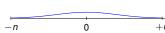
5

• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

- The Sum

- Let $\widetilde{X}_n := \sum_{i=1}^n X_i$ (often denoted by S_n)
- lacktriangle The variance is $oldsymbol{V}\left[\widetilde{X}_{n}
 ight]=n\sigma^{2}
 ightarrow\infty$

5



• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

- The Sum

- Let $\widetilde{X}_n := \sum_{i=1}^n X_i$ (often denoted by S_n)
- The variance is $\mathbf{V}\left[\widetilde{X}_{n}\right]=n\sigma^{2}
 ightarrow\infty$

The Sample Average (Sample Mean) -

- Let $\overline{X}_n := \frac{1}{n} \cdot \sum_{i=1}^n X_i$
- The variance is $\mathbf{V}\left[\,\overline{X}_n\,
 ight] = \sigma^2/n o 0$

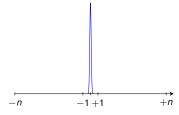
• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

- The Sum

- Let $\widetilde{X}_n := \sum_{i=1}^n X_i$ (often denoted by S_n)
- ullet The variance is $oldsymbol{V}\left[\,\widetilde{X}_{n}\,
 ight]=n\sigma^{2}
 ightarrow\infty$

The Sample Average (Sample Mean) -

- Let $\overline{X}_n := \frac{1}{n} \cdot \sum_{i=1}^n X_i$
- The variance is $\mathbf{V}\left[\overline{X}_n\right] = \sigma^2/n \to 0$



• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

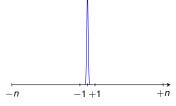
- The Sum

- Let $\widetilde{X}_n := \sum_{i=1}^n X_i$ (often denoted by S_n)
- The variance is $\mathbf{V}\left[\widetilde{X}_n\right] = n\sigma^2 \to \infty$



The Sample Average (Sample Mean) -

- Let $\overline{X}_n := \frac{1}{n} \cdot \sum_{i=1}^n X_i$
- The variance is $\mathbf{V}\left[\overline{X}_n\right] = \sigma^2/n \to 0$



The "Proper" Scaling (Standardising)

- Let $Z_n := \frac{1}{\sqrt{n} \cdot \sigma} \cdot \sum_{i=1}^n X_i$
- The variance is $\mathbf{V}[Z_n] = 1$

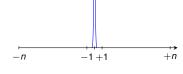
• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

- The Sum

- Let $\widetilde{X}_n := \sum_{i=1}^n X_i$ (often denoted by S_n)
- The variance is $\mathbf{V}\left[\widetilde{X}_n\right] = n\sigma^2 \to \infty$

- The Sample Average (Sample Mean) -

- Let $\overline{X}_n := \frac{1}{n} \cdot \sum_{i=1}^n X_i$
- The variance is $\mathbf{V}\left[\overline{X}_n\right] = \sigma^2/n \to 0$



-n

The "Proper" Scaling (Standardising) -

- Let $Z_n := \frac{1}{\sqrt{n} \cdot \sigma} \cdot \sum_{i=1}^n X_i$
- The variance is $V[Z_n] = 1$

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^2 . Let

$$Z_n := \sqrt{n} \cdot \frac{\overline{X}_n - \mu}{\sigma}$$

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^2 . Let

$$Z_n := \sqrt{n} \cdot \frac{\overline{X}_n - \mu}{\sigma} = \frac{1}{\sqrt{n} \cdot \sigma} \cdot \left(\sum_{i=1}^n X_i - n \cdot \mu \right)$$

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^2 . Let

$$Z_n := \sqrt{n} \cdot \frac{\overline{X}_n - \mu}{\sigma} = \frac{1}{\sqrt{n} \cdot \sigma} \cdot \left(\sum_{i=1}^n X_i - n \cdot \mu\right)$$

Then for any number $a \in \mathbb{R}$, it holds that

$$\lim_{n\to\infty} F_{Z_n}(a) = \Phi(a)$$

where Φ is the distribution function of the $\mathcal{N}(0,1)$ distribution.

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^2 . Let

$$Z_n := \sqrt{n} \cdot \frac{\overline{X}_n - \mu}{\sigma} = \frac{1}{\sqrt{n} \cdot \sigma} \cdot \left(\sum_{i=1}^n X_i - n \cdot \mu \right)$$

Then for any number $a \in \mathbb{R}$, it holds that

$$\lim_{n\to\infty} F_{Z_n}(a) = \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx,$$

where Φ is the distribution function of the $\mathcal{N}(0,1)$ distribution.

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^2 . Let

$$Z_n := \sqrt{n} \cdot \frac{\overline{X}_n - \mu}{\sigma} = \frac{1}{\sqrt{n} \cdot \sigma} \cdot \left(\sum_{i=1}^n X_i - n \cdot \mu \right)$$

Then for any number $a \in \mathbb{R}$, it holds that

$$\lim_{n\to\infty}F_{Z_n}(a)=\Phi(a)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^a e^{-x^2/2}dx,$$

where Φ is the distribution function of the $\mathcal{N}(0,1)$ distribution.

In words: the distribution of Z_n always converges to the distribution function Φ of the standard normal distribution.

Comments on the CLT

- one of the most remarkable results in probability/statistics
- extremely powerful tool in applications: we may not know the actual distribution in real-world, and CLT says we don't have to(!)
- applies also to sums of random variables which may be unbounded
- adding up independent noises in measurements leads to an error following the Normal distribution

Comments on the CLT

- one of the most remarkable results in probability/statistics
- extremely powerful tool in applications: we may not know the actual distribution in real-world, and CLT says we don't have to(!)
- applies also to sums of random variables which may be unbounded
- adding up independent noises in measurements leads to an error following the Normal distribution
- catch: the CLT only holds approximately, i.e., for large n

When is the approximation good?

Intro to Probability Central Limit Theorem 7

- one of the most remarkable results in probability/statistics
- extremely powerful tool in applications: we may not know the actual distribution in real-world, and CLT says we don't have to(!)
- applies also to sums of random variables which may be unbounded
- adding up independent noises in measurements leads to an error following the Normal distribution
- catch: the CLT only holds approximately, i.e., for large n

When is the approximation good?

- usually n > 10 or n > 15 is sufficient in practice
- approximation tends to be worse when threshold a is far from 0, distribution of X_i's asymmetric, bimodal or discrete

Intro to Probability Central Limit Theorem 7

Outline

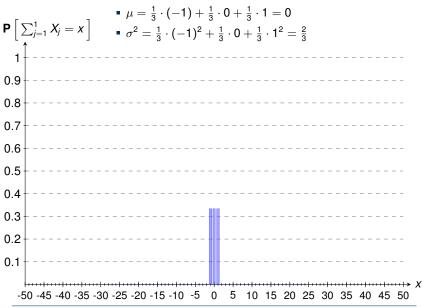
Recap: Weak Law of Large Numbers

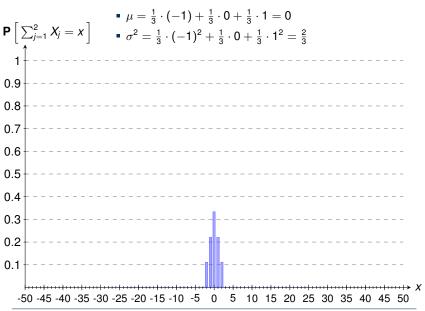
Central Limit Theorem

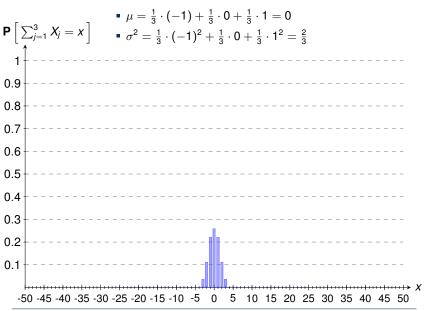
Illustrations

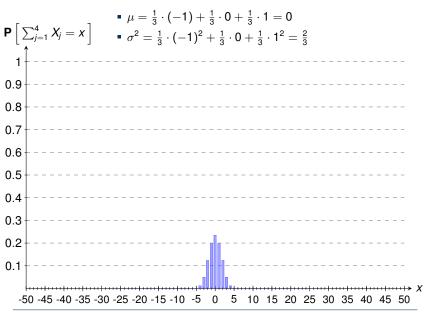
Examples

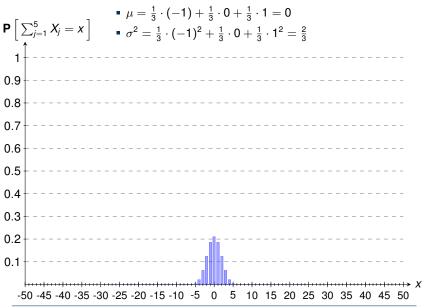
Bonus Material (non-examinable)

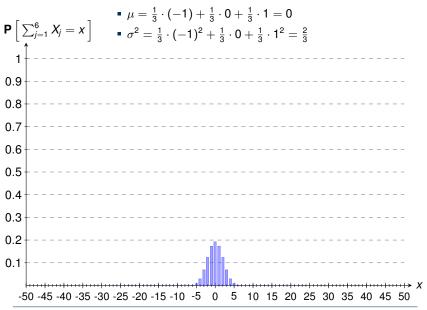


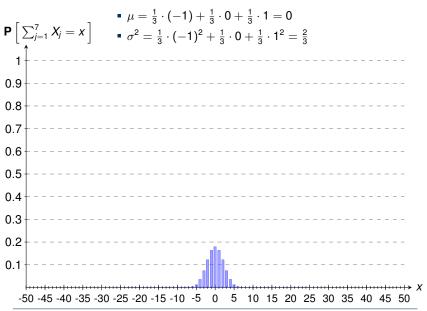


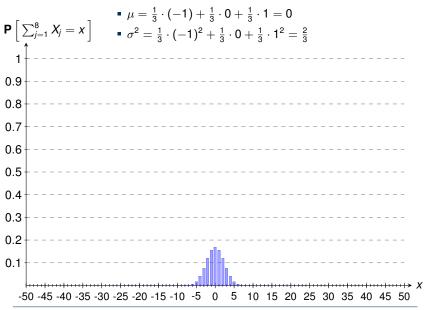


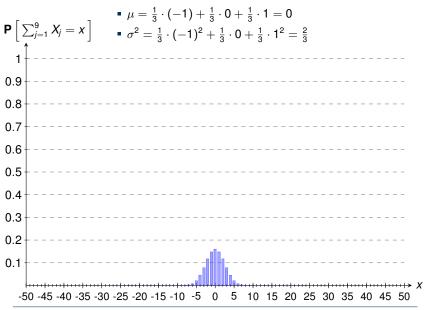


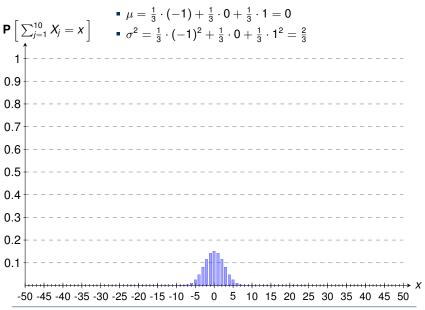


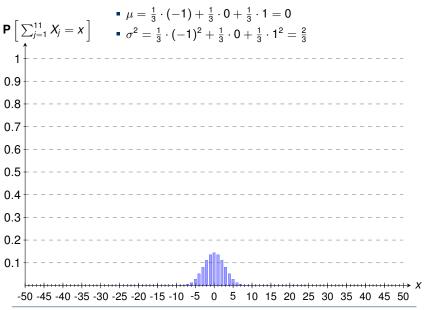


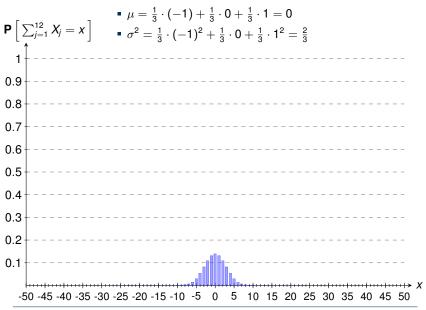


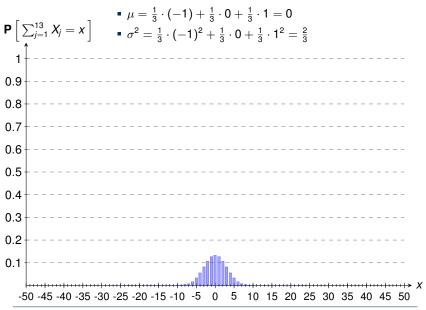


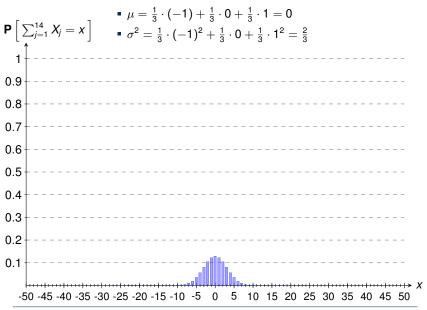


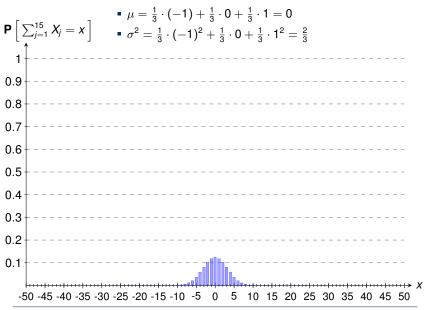


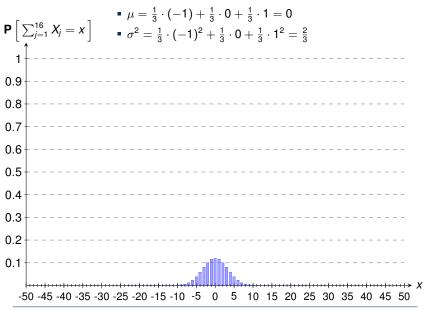


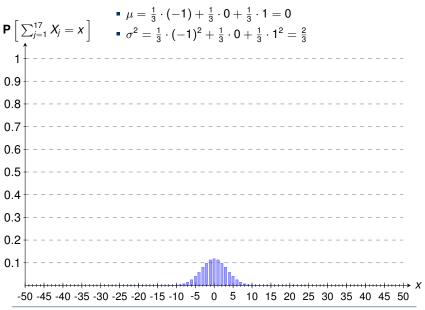


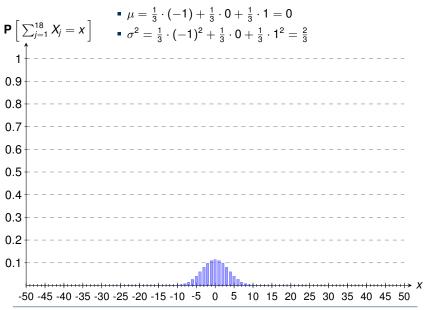


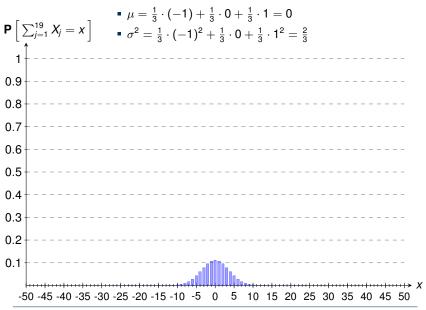


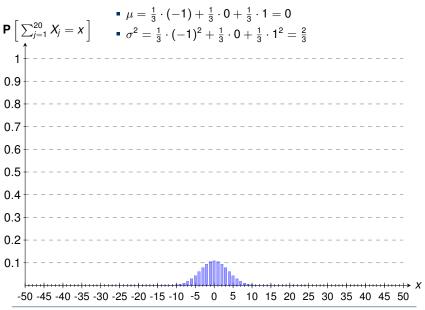


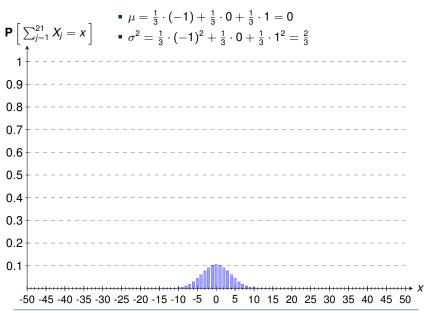


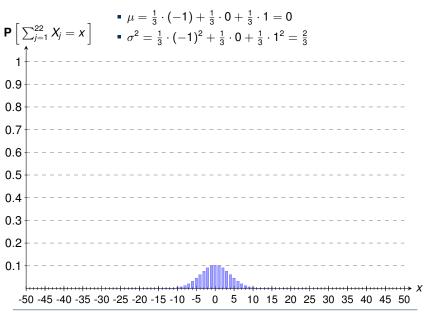


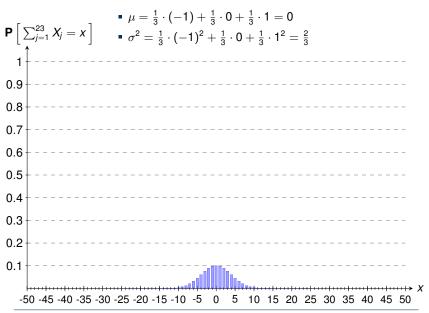


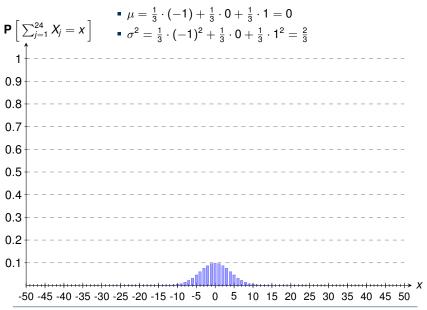


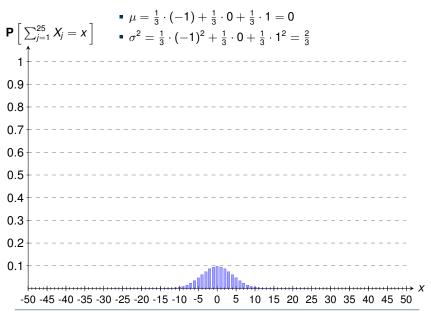


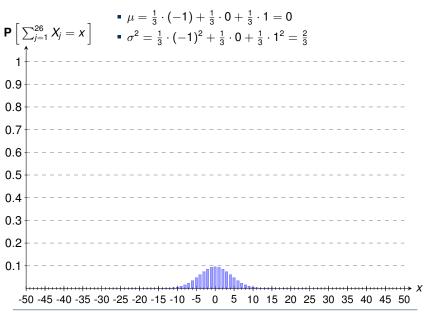


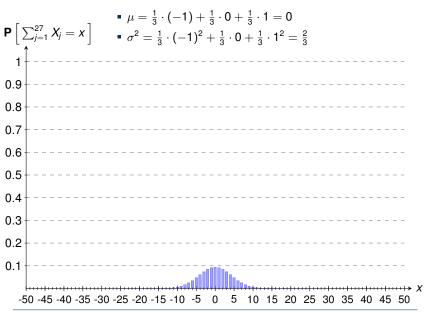


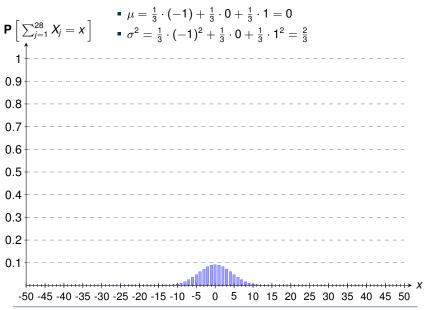


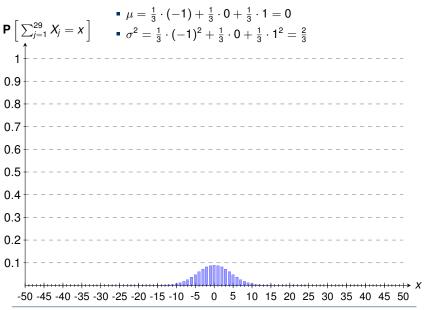


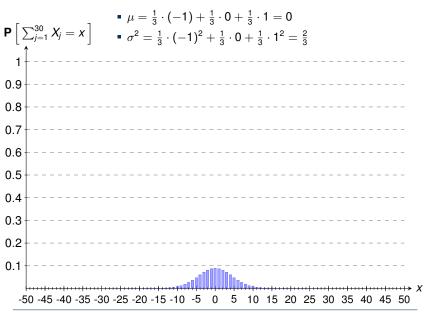


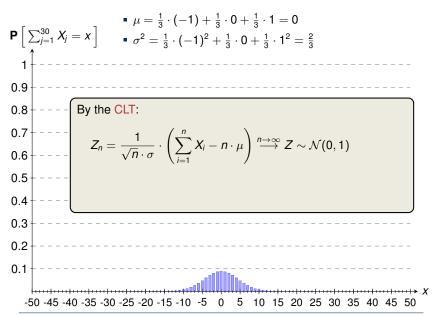


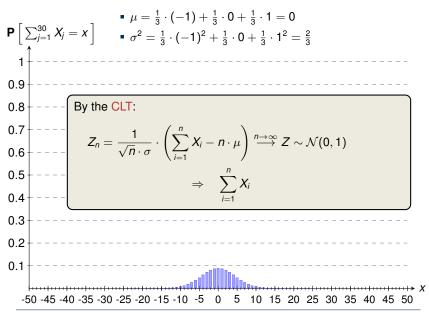


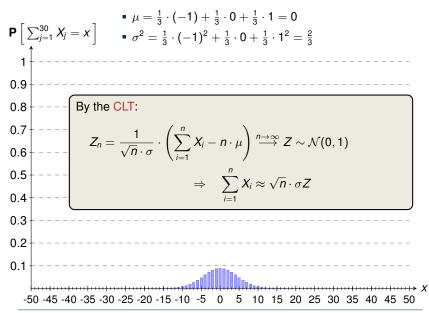


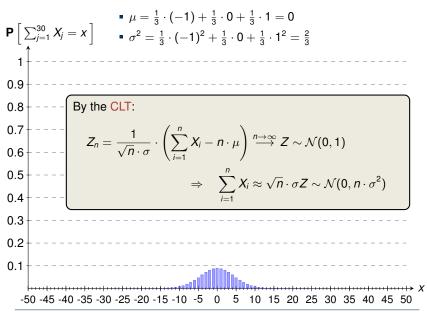


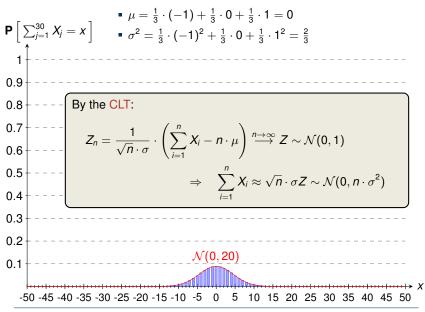


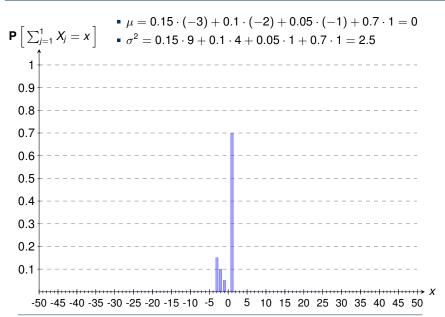


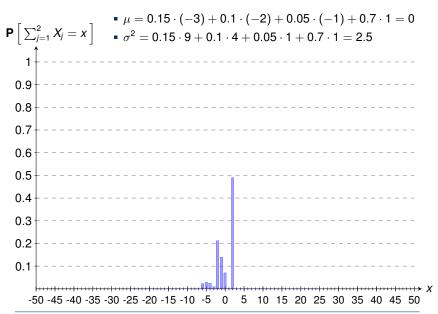


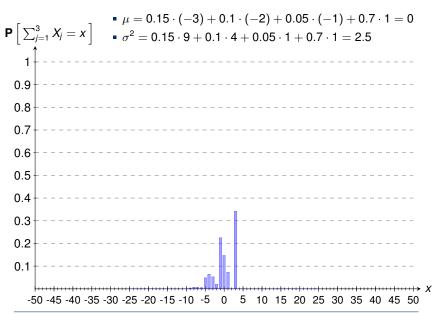


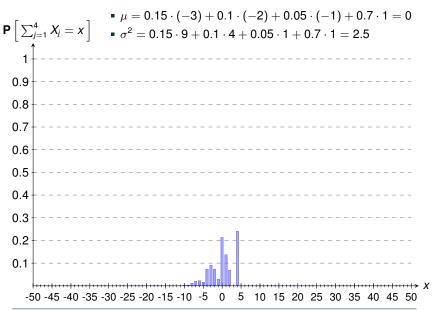


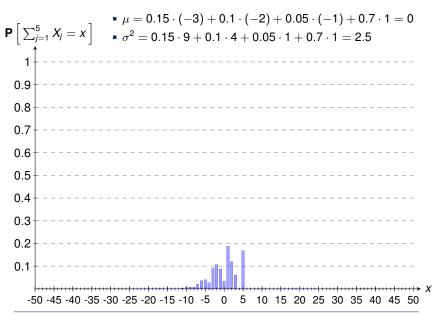


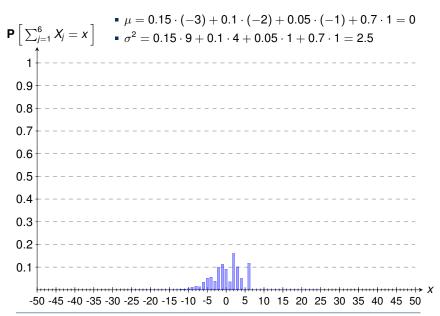


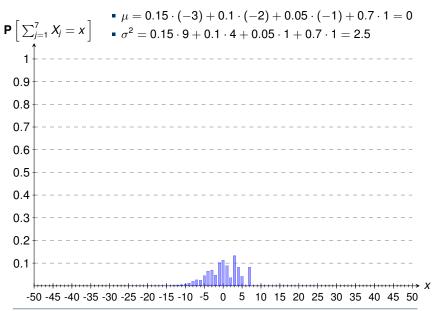


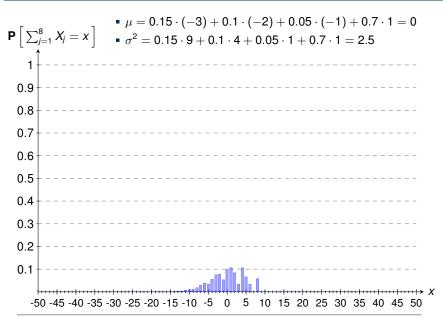


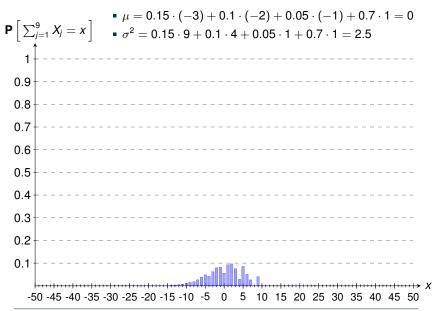




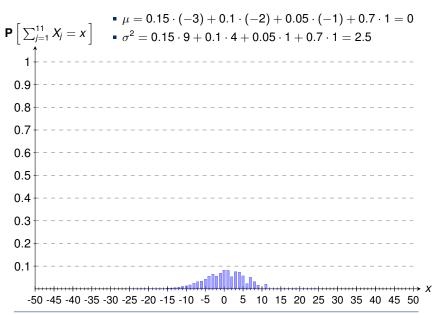


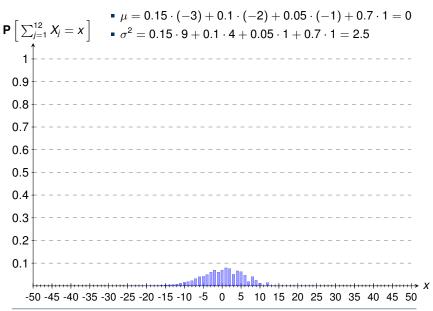


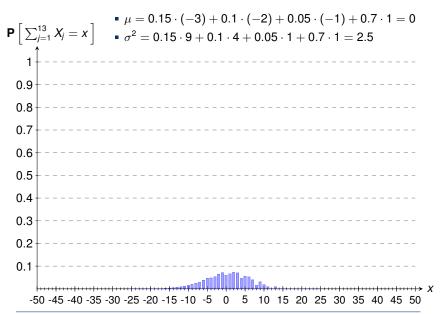


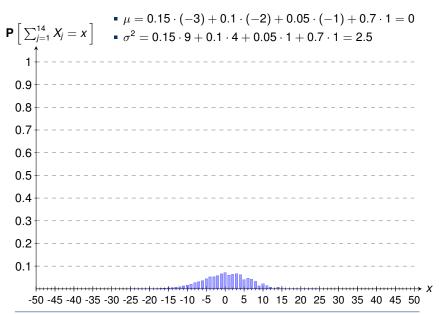


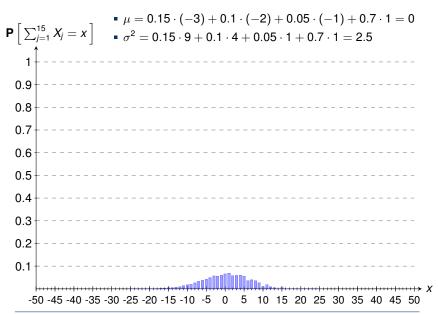


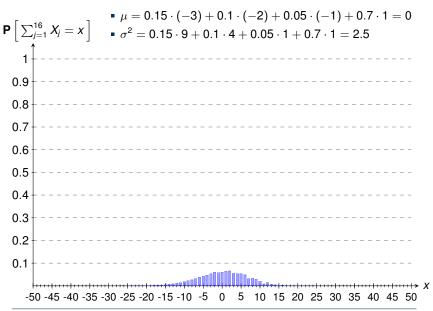


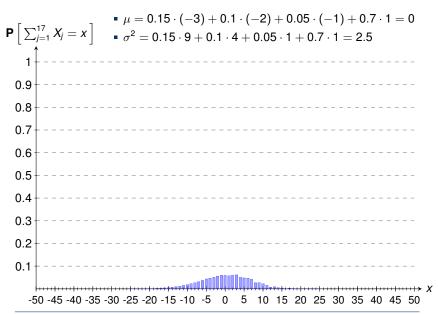


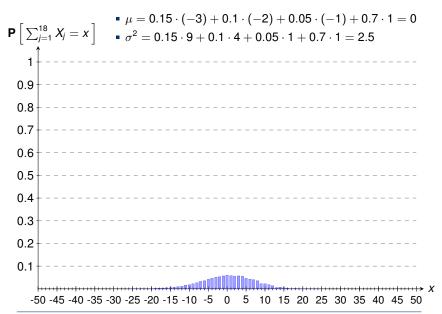


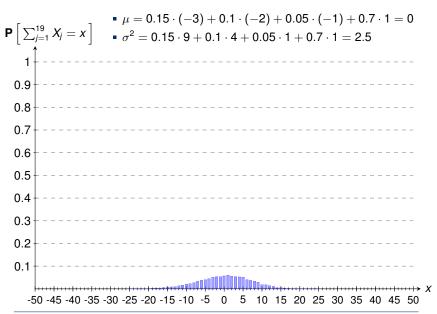


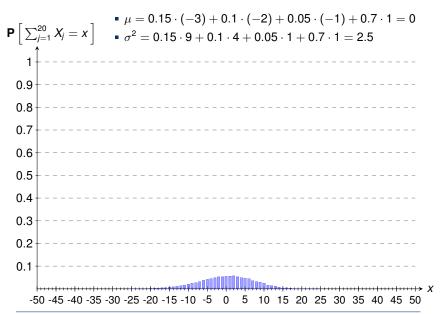


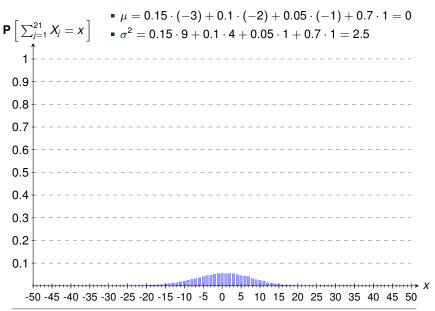




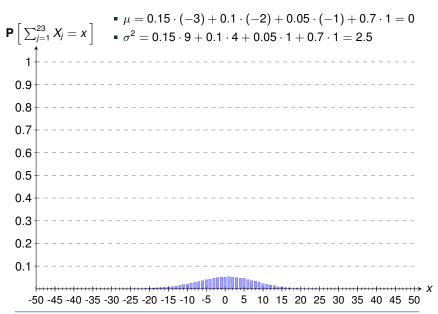


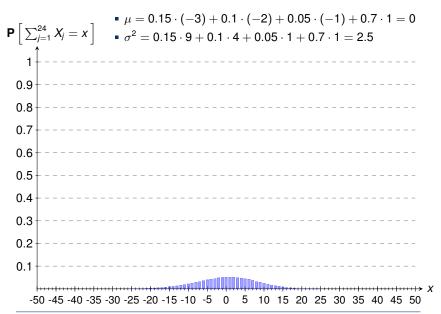


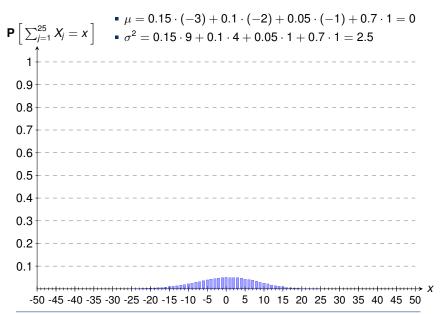


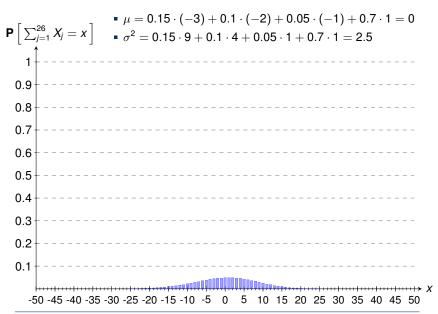


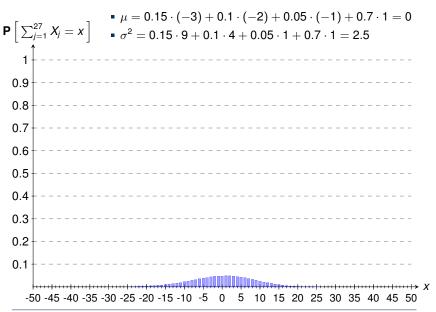


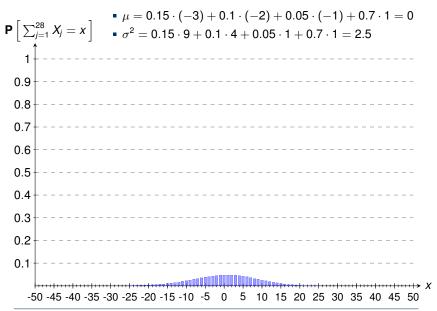


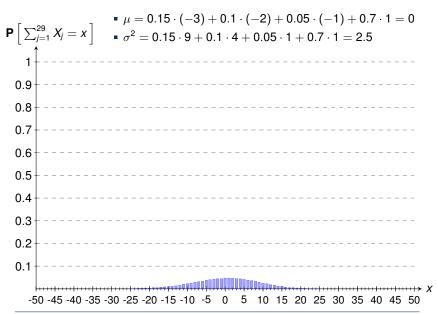


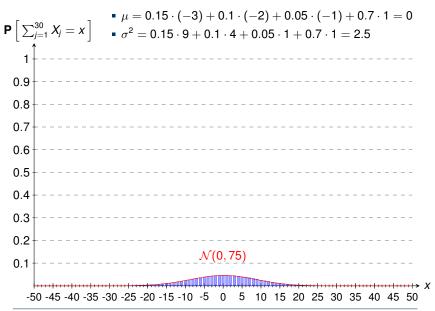


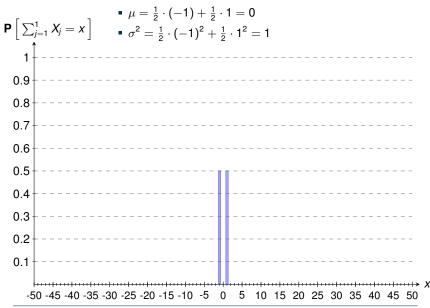


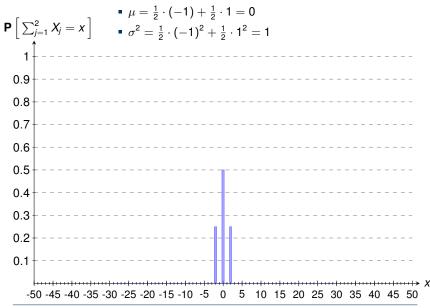












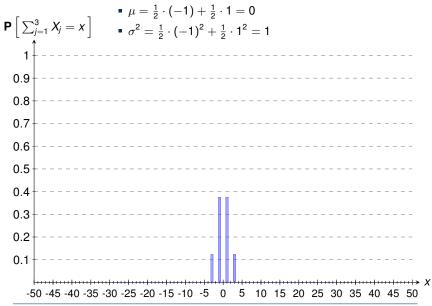
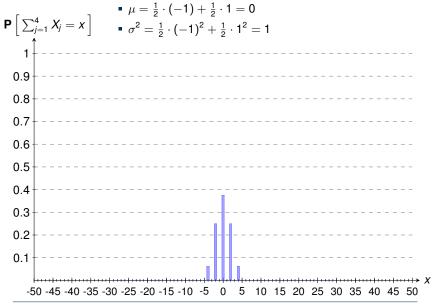
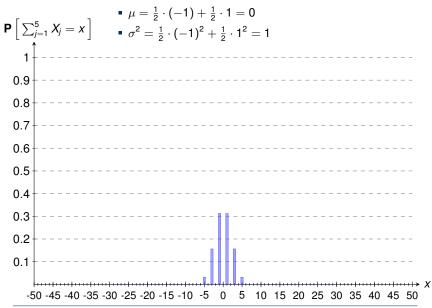
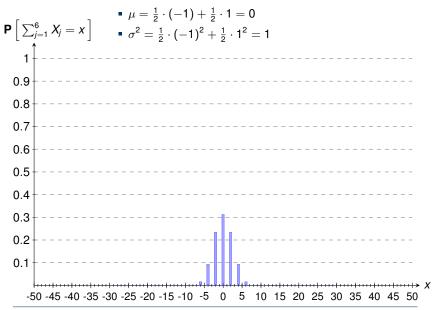
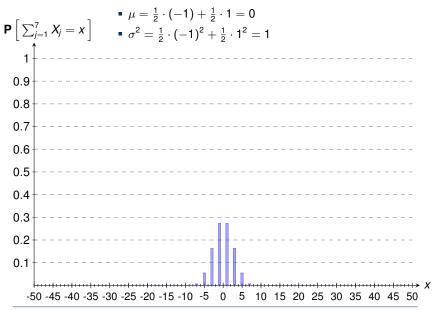


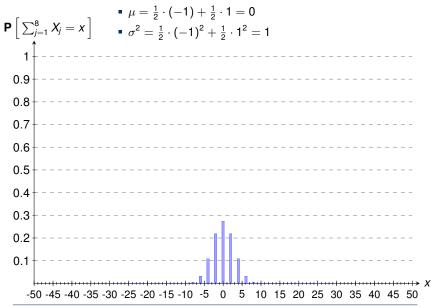
Illustration of CLT (3/4) (example from Lecture 8)

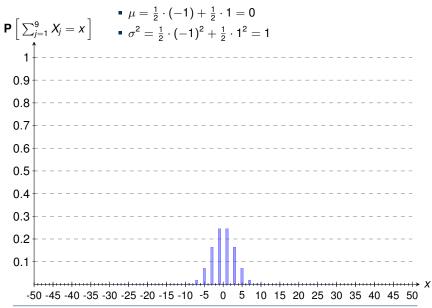


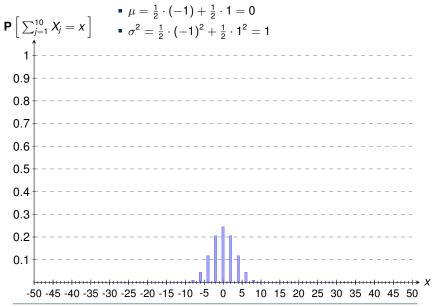


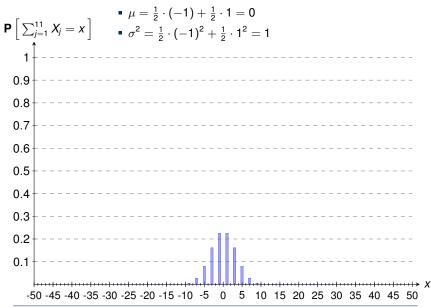


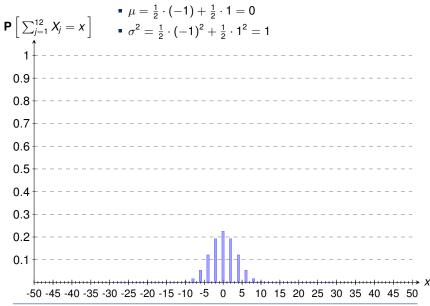


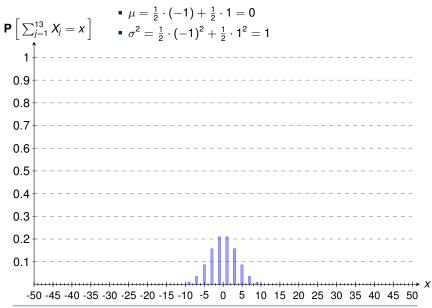


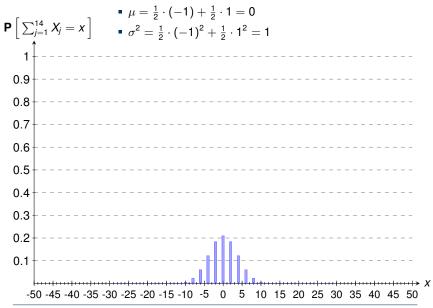


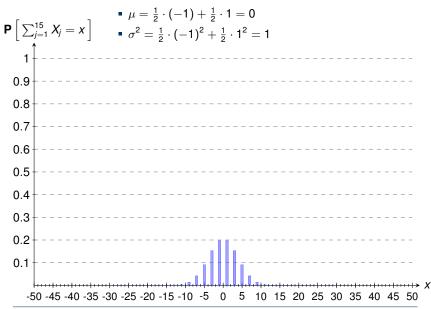


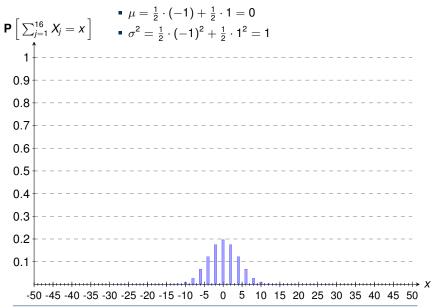


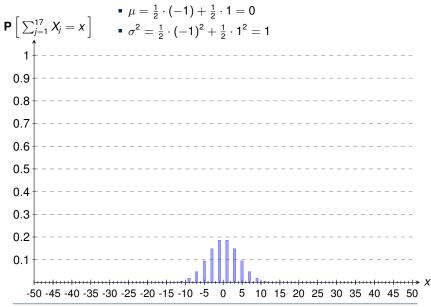


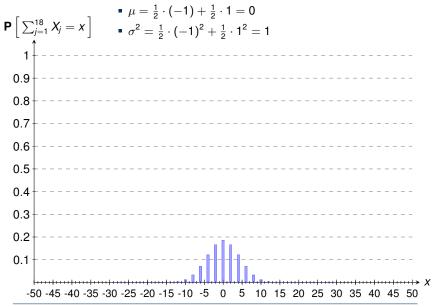


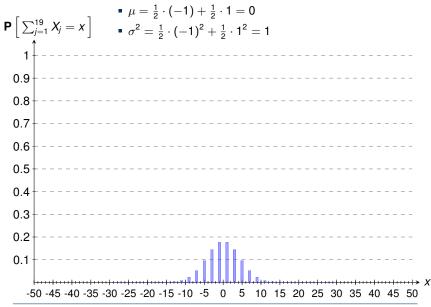


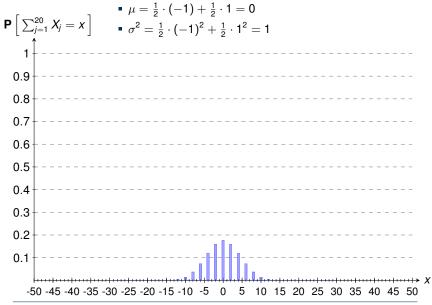


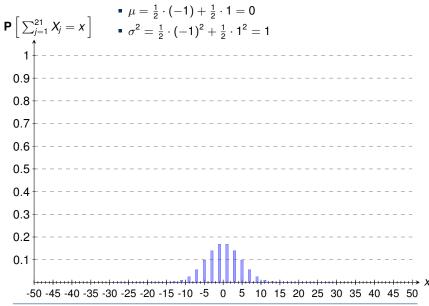


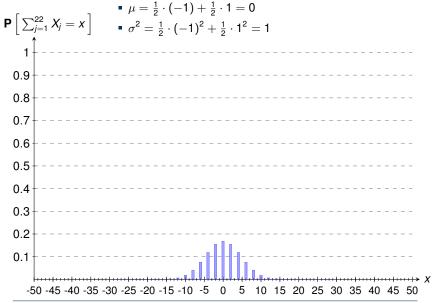


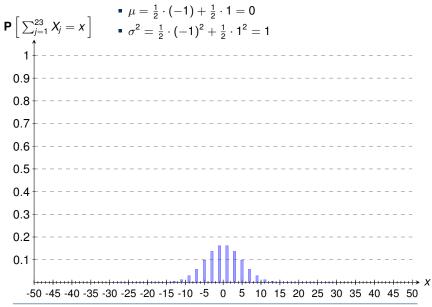


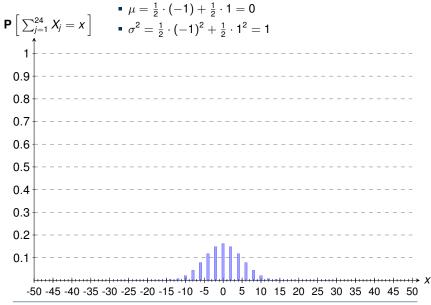


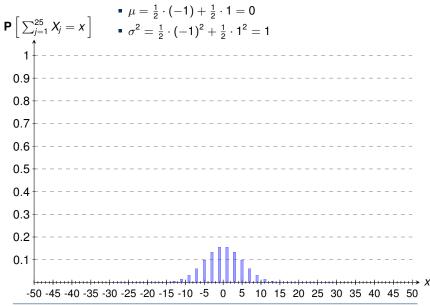


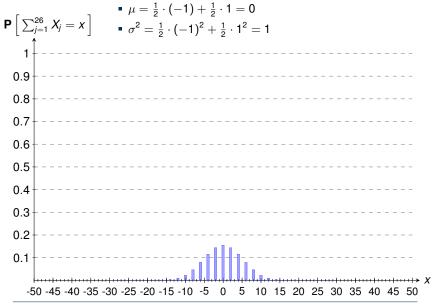


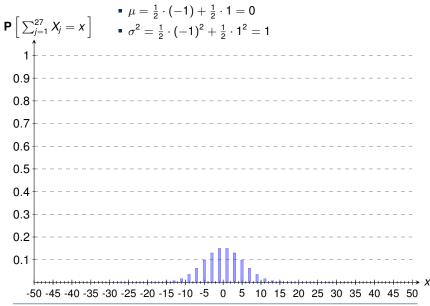


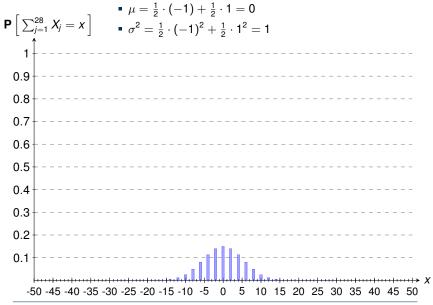


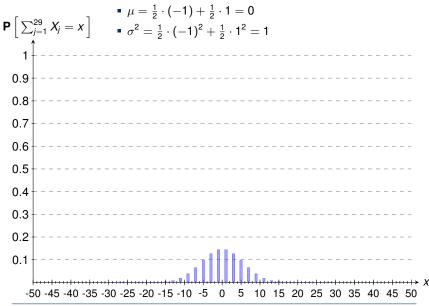


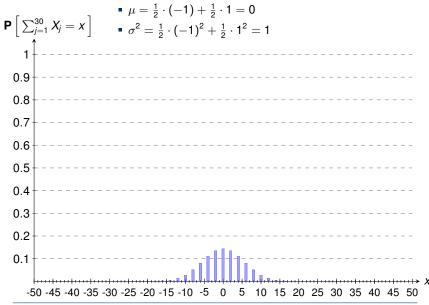


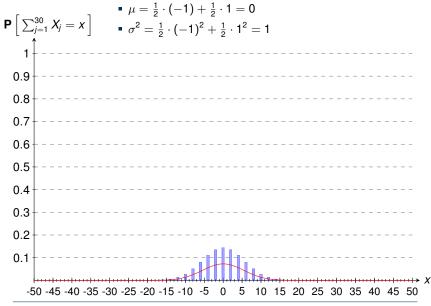


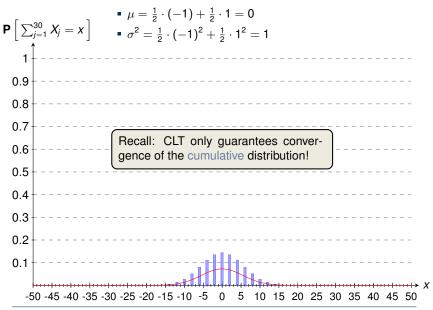


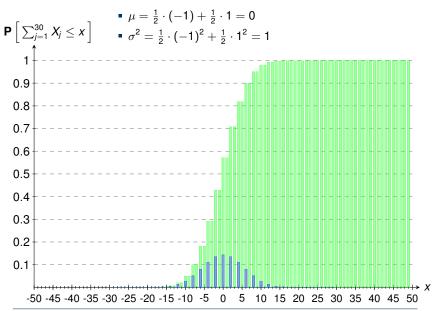


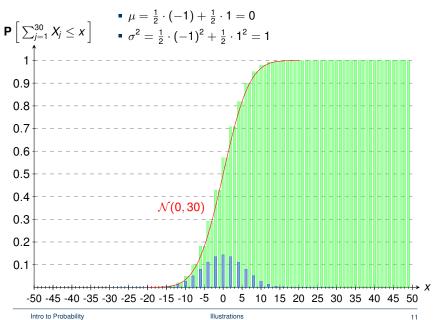


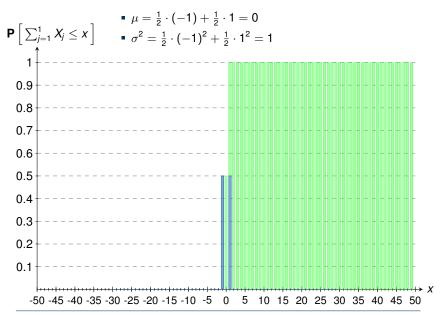


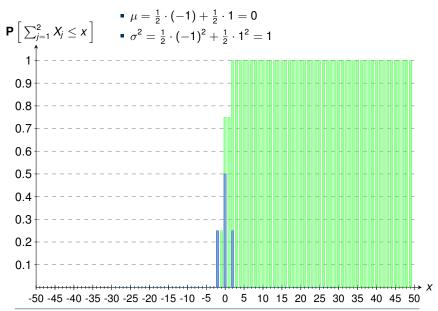


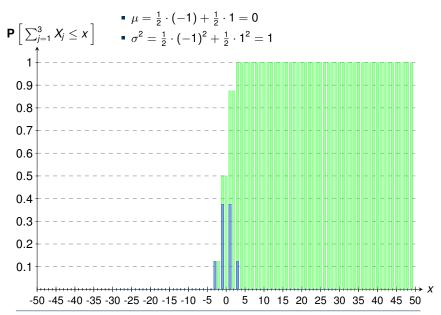


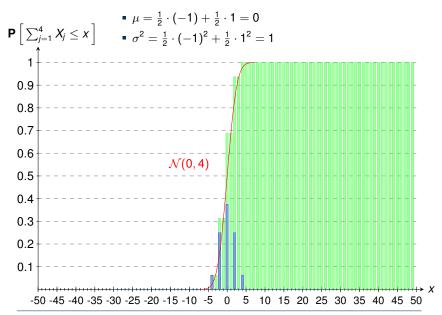


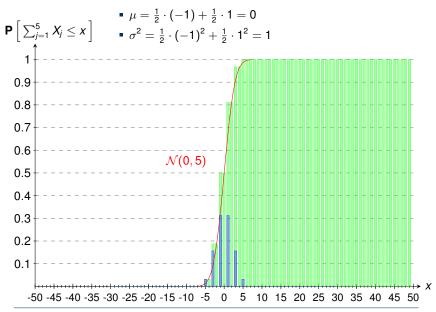


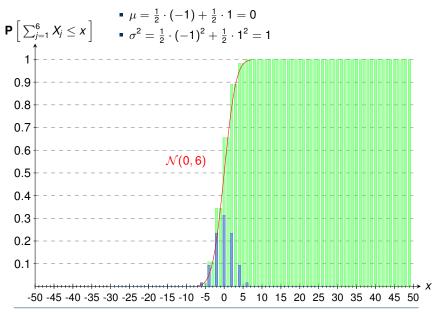


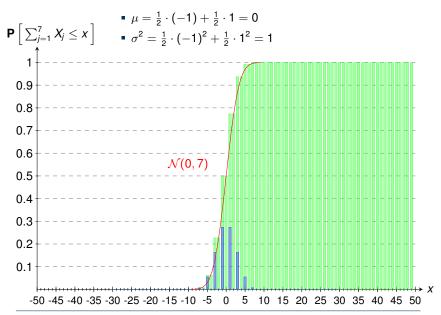


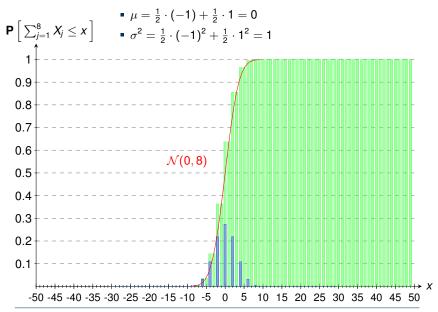


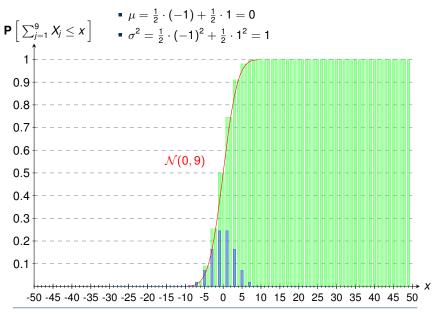


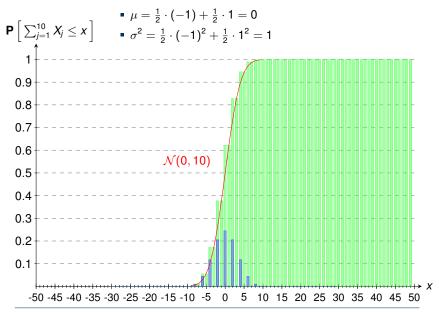


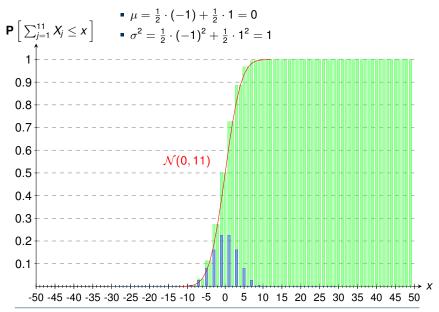


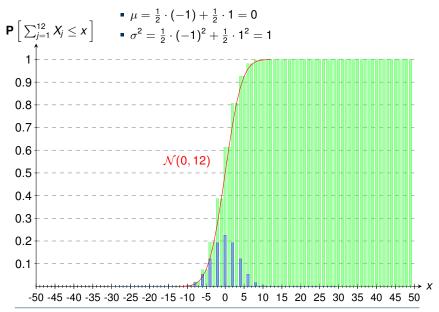


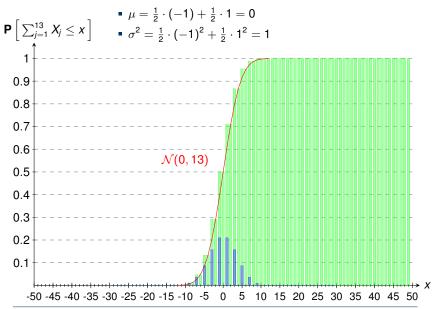


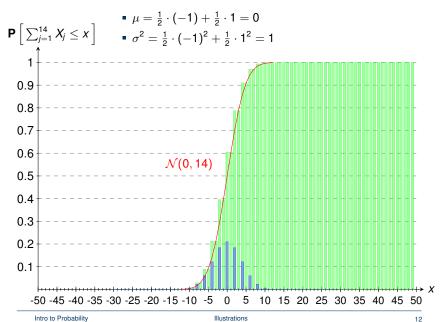


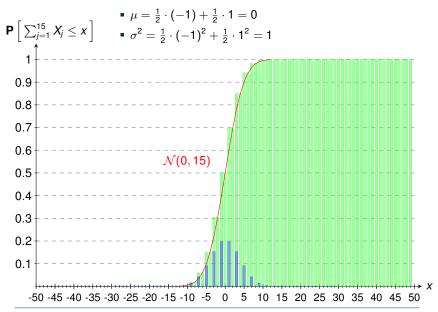


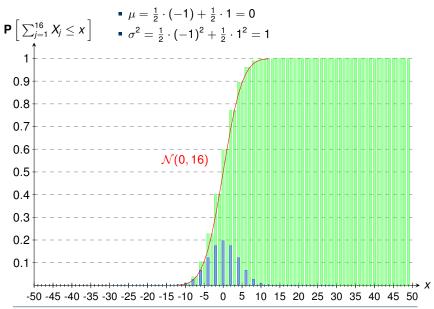


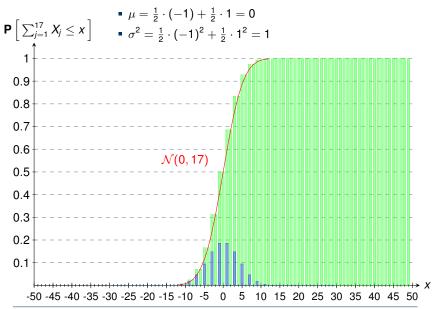


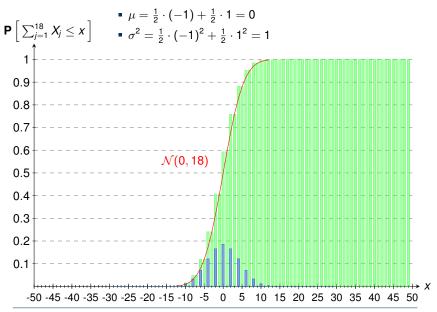


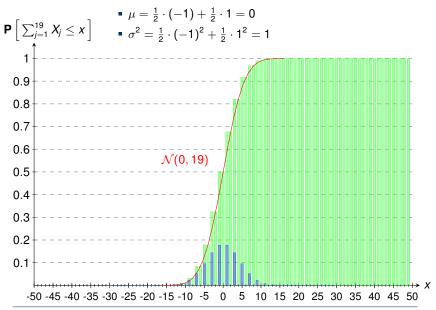


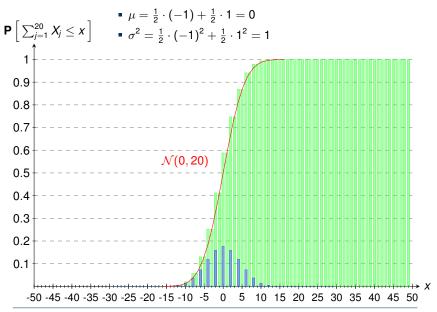


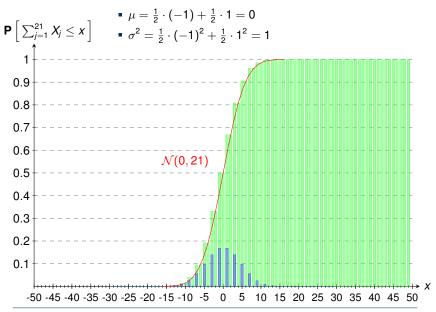


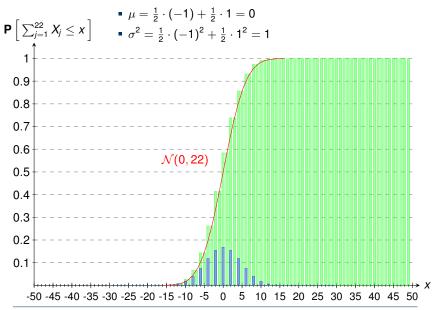


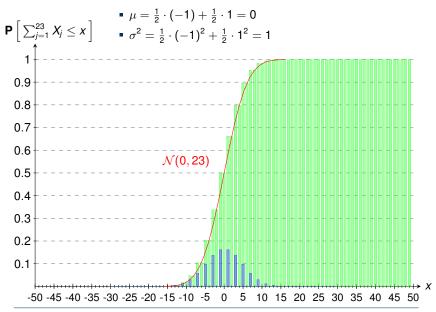


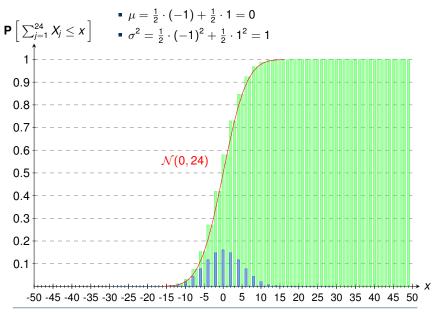


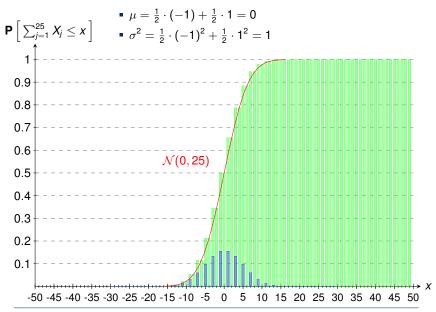


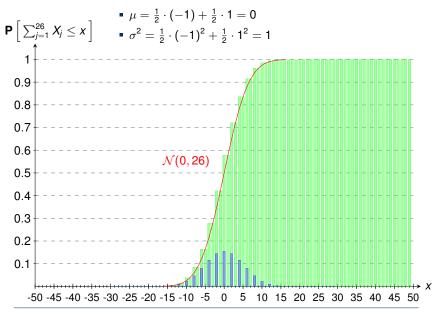


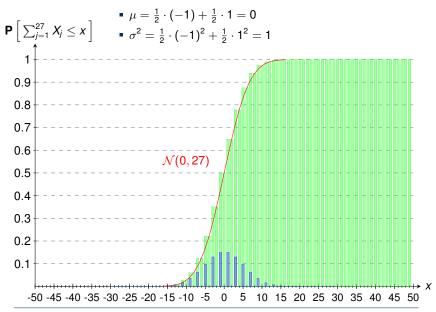


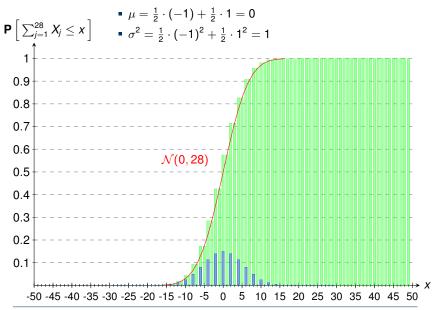


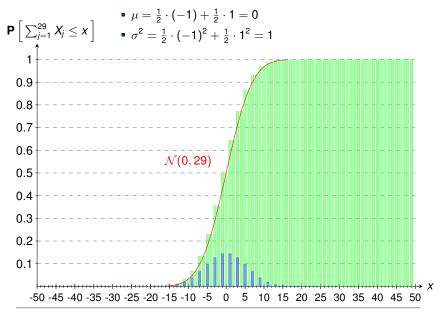


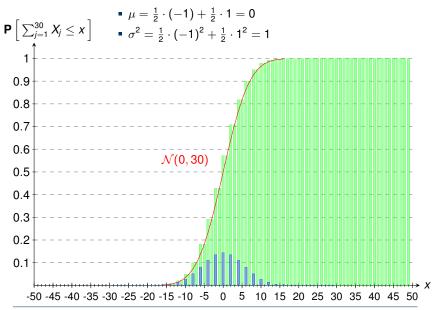












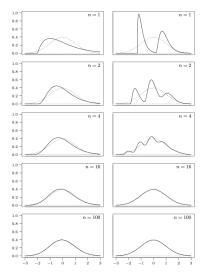


Fig. 14.2. Densities of standardized averages Z_n . Left column: from a gamma density; right column: from a bimodal density. Dotted line: N(0,1) probability density.

Source: Deeking et al., Modern Introduction to Statistics

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

Section 5.4 Normal Random Variables 201

X	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
L4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9700
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
0.5	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
1.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9999

Source: Ross, Probability 8th ed.

$$Z \sim \mathcal{N}(0,1)$$
 $\mathbf{P}[Z \leq x] = \Phi(x)$

Example 1										
Suppose you are attending a multiple-choice exam of 10 questions and										
you are completely unprepared. Each question has 4 choices, and you										
are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.										
the normal approximation to estimate the prob	ability of passing.									
-	Answer —									

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

Answer

• Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4.

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.
- Applying the CLT yields:

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.
- Applying the CLT yields:

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$
$$= \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \ge \frac{6 - n\mu}{\sigma\sqrt{n}}\right]$$

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.
- Applying the CLT yields:

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$

$$= \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \ge \frac{6 - n\mu}{\sigma\sqrt{n}}\right]$$

$$= \mathbf{P}\left[Z_{10} \ge \frac{6 - 2.5}{\sqrt{3/16} \cdot \sqrt{10}}\right]$$

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.
- Applying the CLT yields:

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$

$$= \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \ge \frac{6 - n\mu}{\sigma\sqrt{n}}\right]$$

$$= \mathbf{P}\left[Z_{10} \ge \frac{6 - 2.5}{\sqrt{3/16} \cdot \sqrt{10}}\right] \approx 1 - \Phi(2.56) \approx 0.0052.$$

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.
- Applying the CLT yields:

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$

$$= \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \ge \frac{6 - n\mu}{\sigma\sqrt{n}}\right]$$
True value is 0.0197. Error lies in the discretisation!
$$= \mathbf{P}\left[Z_{10} \ge \frac{6 - 2.5}{\sqrt{3/16} \cdot \sqrt{10}}\right] \approx 1 - \Phi(2.56) \approx 0.0052.$$

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.
- Applying the CLT yields:

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$

$$= \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \ge \frac{6 - n\mu}{\sigma\sqrt{n}}\right]$$
True value is 0.0197. Error lies in the discretisation!
$$5 \quad 6 \quad 7 \quad = \mathbf{P}\left[Z_{10} \ge \frac{6 - 2.5}{\sqrt{3/16} \cdot \sqrt{10}}\right] \approx 1 - \Phi(2.56) \approx 0.0052.$$

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

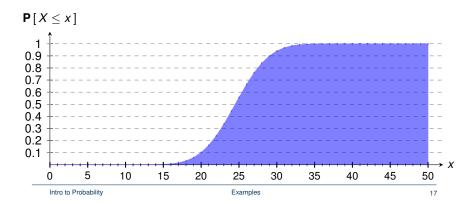
- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4$ and $\sigma^2 = p(1-p) = 3/16$.
- Applying the CLT yields:

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$

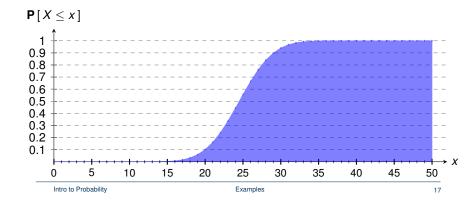
$$\mathbf{A} \text{ better approximation is obtained by } \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 5.5\right] \longrightarrow \approx 0.0143$$

$$= \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \ge \frac{6 - n\mu}{\sigma\sqrt{n}}\right]$$
True value is 0.0197. Error lies in the discretisation!
$$5 \quad 6 \quad 7 \quad = \mathbf{P}\left[Z_{10} \ge \frac{6 - 2.5}{\sqrt{3/16} \cdot \sqrt{10}}\right] \approx 1 - \Phi(2.56) \approx 0.0052.$$

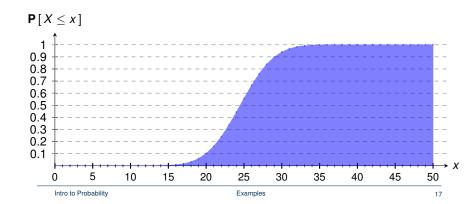
■ Let *X* ~ *Bin*(50, 1/2)



- Let X ~ Bin(50, 1/2)
- Hence $\mu = 25$, $\sigma^2 = 50 \cdot 1/4 = 12.5$



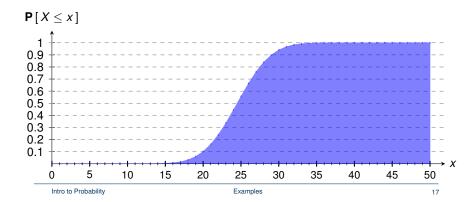
- Let X ~ Bin(50, 1/2)
- Hence $\mu = 25$, $\sigma^2 = 50 \cdot 1/4 = 12.5$



- Let *X* ~ *Bin*(50, 1/2)
- Hence $\mu = 25$, $\sigma^2 = 50 \cdot 1/4 = 12.5$

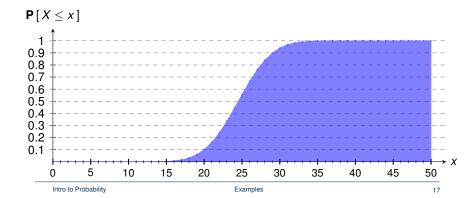
How good is the approximation by the CLT?

Let Y ~ N(25, 12.5)



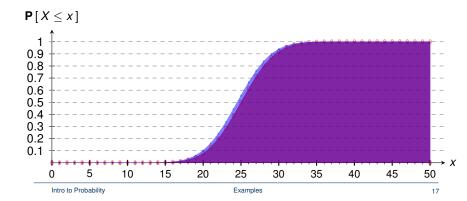
- Let *X* ~ *Bin*(50, 1/2)
- Hence $\mu = 25$, $\sigma^2 = 50 \cdot 1/4 = 12.5$

- Let Y ~ N(25, 12.5)
- **■** $P[X \le X] \approx P[Y \le X]$



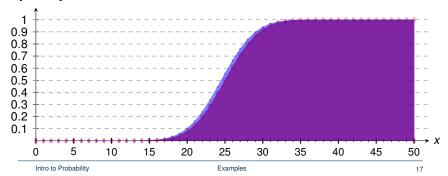
- Let *X* ~ *Bin*(50, 1/2)
- Hence $\mu = 25$, $\sigma^2 = 50 \cdot 1/4 = 12.5$

- Let Y ~ N(25, 12.5)
- $P[X < x] \approx P[Y < x] \rightarrow$ reasonable approximation, but some error



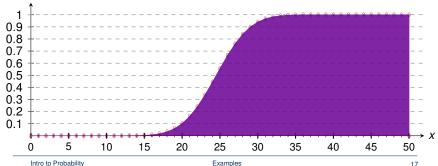
- Let X ~ Bin(50, 1/2)
- Hence $\mu = 25$, $\sigma^2 = 50 \cdot 1/4 = 12.5$

- Let Y ~ N(25, 12.5)
- $P[X < x] \approx P[Y < x] \rightarrow$ reasonable approximation, but some error
- **P**[$X \le X$] ≈ **P**[$Y \le X + 0.5$]



- Let X ~ Bin(50, 1/2)
- Hence $\mu = 25$, $\sigma^2 = 50 \cdot 1/4 = 12.5$

- Let Y ~ N(25, 12.5)
- $P[X \le x] \approx P[Y \le x] \rightarrow$ reasonable approximation, but some error
- $P[X \le X] \approx P[Y \le X + 0.5] \rightsquigarrow \text{ very tight approximation!}$



A "Reverse" Application of the CLT

Example 2 -

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda = 1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

Answer

• We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^n X_i \ge 100\right]$$

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \geq 100\right] = \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i} - 2n}{2\sqrt{n}} \geq \frac{100 - 2n}{2\sqrt{n}}\right]$$

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \ge 100\right] = \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i} - 2n}{2\sqrt{n}} \ge \frac{100 - 2n}{2\sqrt{n}}\right]$$

$$\approx 1 - \Phi\left(\frac{100 - 2n}{2\sqrt{n}}\right) \stackrel{!}{=} 0.05.$$

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

Answer

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 100\right] = \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - 2n}{2\sqrt{n}} \ge \frac{100 - 2n}{2\sqrt{n}}\right]$$
$$\approx 1 - \Phi\left(\frac{100 - 2n}{2\sqrt{n}}\right) \stackrel{!}{=} 0.05.$$

• Using a normal table (looking for value 0.95) yields: $\frac{100-2n}{2\sqrt{n}} = 1.645$.

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 100\right] = \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - 2n}{2\sqrt{n}} \ge \frac{100 - 2n}{2\sqrt{n}}\right]$$
$$\approx 1 - \Phi\left(\frac{100 - 2n}{2\sqrt{n}}\right) \stackrel{!}{=} 0.05.$$

- Using a normal table (looking for value 0.95) yields: $\frac{100-2n}{2\sqrt{n}} = 1.645$.
- ⇒ Solving the quadratic gives $n \le 39.6$.

Example 2

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 100\right] = \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - 2n}{2\sqrt{n}} \ge \frac{100 - 2n}{2\sqrt{n}}\right]$$
$$\approx 1 - \Phi\left(\frac{100 - 2n}{2\sqrt{n}}\right) \stackrel{!}{=} 0.05.$$

- Using a normal table (looking for value 0.95) yields: $\frac{100-2n}{2\sqrt{n}} = 1.645$.
- ⇒ Solving the quadratic gives $n \le 39.6$.
 - Addendum: Following the reasoning from Example 1, $P\left[\sum_{i=1}^{n} X_i \ge 99.5\right]$ might be a better approximation

Example 2

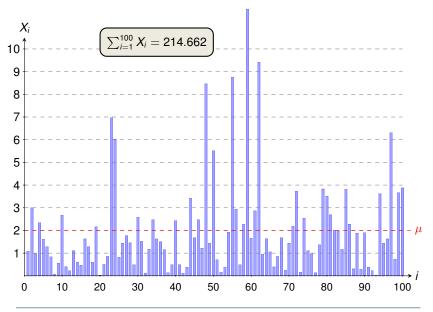
Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 100\right] = \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_i - 2n}{2\sqrt{n}} \ge \frac{100 - 2n}{2\sqrt{n}}\right]$$
$$\approx 1 - \Phi\left(\frac{100 - 2n}{2\sqrt{n}}\right) \stackrel{!}{=} 0.05.$$

- Using a normal table (looking for value 0.95) yields: $\frac{100-2n}{2\sqrt{n}} = 1.645$.
- \Rightarrow Solving the quadratic gives $n \le 39.6$.
 - Addendum: Following the reasoning from Example 1, $P\left[\sum_{i=1}^{n} X_i \ge 99.5\right]$ might be a better approximation $\Rightarrow n \le 39.4$.

A Sample of 100 Exponential Random Variables Exp(1/2)



Intro to Probability Examples 19

Example 3	
Consider $n = 100$ independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.	
	Answer ———

Intro to Probability Examples 20

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

■ Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

■ Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0, 1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev: $V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25$.

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25$$
.

$$P[|X - \mu| \ge 25] \le \frac{V[X]}{25^2} = \frac{1}{25} = 0.04.$$

Intro to Probability Examples 2

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

■ Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = \underline{25}$$
.

$$P[|X - \mu| \ge 25] \le \frac{V[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = \underline{25}$$
.

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise:

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

■ Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25.$$

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise:
$$Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$$

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25.$$

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise:
$$Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$$

$$\mathbf{P}[X \ge 75] = \mathbf{P}\left[Z_n \ge \frac{75 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(5) = 0.0000002866...$$

Intro to Probability Examples 2

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev: $V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25.$

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise: $Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$

$$\mathbf{P}[X \ge 75] = \mathbf{P}\left[Z_n \ge \frac{75 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(5) = 0.0000002866...$$

exact probability is 0.0000002818...

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0, 1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev: $V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25.$

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise: $Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$

$$\mathbf{P}[X \ge 75] = \mathbf{P}\left[Z_n \ge \frac{75 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(5) = 0.0000002866...$$

exact probability is 0.0000002818...

CLT gives a much better result (but relies on i.i.d. assumption)

Intro to Probability Examples 2

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0, 1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25.$$

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise:
$$Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$$

$$\mathbf{P}[X \ge 75] = \mathbf{P}\left[Z_n \ge \frac{75 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(5) = 0.0000002866...$$

- exact probability is 0.0000002818...
- Addendum: Replacing 75 by 74.5:

CLT gives a much better result (but relies on i.i.d. assumption)

Intro to Probability Examples 2

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

• Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0, 1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = \underline{25}$$
.

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise:
$$Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$$

$$\mathbf{P}[X \ge 75] = \mathbf{P}\left[Z_n \ge \frac{75 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(5) = 0.0000002866...$$

- exact probability is 0.0000002818...
- Addendum: Replacing 75 by 74.5:
 - This leads to $1 \Phi(4.9) = 0.000000479...$

CLT gives a much better result (but relies on i.i.d. assumption)

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

■ Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0, 1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25.$$

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise:
$$Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$$

$$\mathbf{P}[X \ge 75] = \mathbf{P}\left[Z_n \ge \frac{75 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(5) = 0.0000002866...$$

- exact probability is 0.0000002818...
- Addendum: Replacing 75 by 74.5:

- CLT gives a much better result (but relies on i.i.d. assumption)
- This leads to $1 \Phi(4.9) = 0.000000479...$
- Issue: threshold too large ($P[X \ge a] \approx P[X = a]$) \Rightarrow CLT less precise

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

■ Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0, 1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

• Chebyshev:
$$V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25.$$

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04$$
. As X is symmetric, we could deduce probability is at most 0.02.

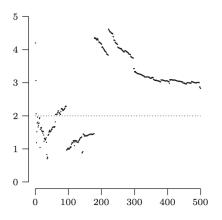
• Central Limit Theorem: First standardise:
$$Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$$

$$\mathbf{P}[X \ge 75] = \mathbf{P}\left[Z_n \ge \frac{75 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(5) = 0.0000002866...$$

- exact probability is 0.0000002818...
- Addendum: Replacing 75 by 74.5:

CLT gives a much better result (but relies on i.i.d. assumption)

- This leads to $1 \Phi(4.9) = 0.000000479...$
- Issue: threshold too large ($P[X \ge a] \approx P[X = a]$) \Rightarrow CLT less precise
- In this region, 75 gives a better approximation than 74.5, but for smaller values (e.g., ≤ 63) the ".5-shift" gives significantly better results.



Cau(2, 1) distribution, Source: Deeking et al., Modern Introduction to Statistics

The Cauchy distribution has "too heavy" tails (no expectation), in particular the average does not converge.

21

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Bonus Material (non-examinable)

Moment-Generating Function ———

The moment-generating function of a random variable *X* is

$$M_X(t) = \mathbf{E}\left[e^{tX}\right], \quad \text{where } t \in \mathbb{R}.$$

Moment-Generating Function -

The moment-generating function of a random variable X is

$$M_X(t) = \mathbf{E}\left[e^{tX}\right], \qquad \text{where } t \in \mathbb{R}.$$

Using power series of e and differentiating shows that $M_X(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X]$, $\mathbf{E}[X^2]$,......

Moment-Generating Function -

If $X \sim \mathcal{N}(0,1)$, then $M_X(t) = \frac{t^2}{2}$.

The moment-generating function of a random variable X is

$$M_X(t) = \mathbf{E}\left[e^{tX}\right], \qquad \text{where } t \in \mathbb{R}.$$

Using power series of e and differentiating shows that $M_X(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X]$, $\mathbf{E}[X^2]$,

Moment-Generating Function -

If $X \sim \mathcal{N}(0,1)$, then $M_X(t) = \frac{t^2}{2}$.

The moment-generating function of a random variable X is

$$M_X(t) = \mathbf{E}\left[e^{tX}\right], \quad \text{where } t \in \mathbb{R}.$$

Using power series of e and differentiating shows that $M_X(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X]$, $\mathbf{E}[X^2]$,

- Lemma

- 1. If X and Y are two r.v.'s with $M_X(t) = M_Y(t)$ for all $t \in (-\delta, +\delta)$ for some $\delta > 0$, then the distributions X and Y are identical.
- 2. If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

Moment-Generating Function -

If $X \sim \mathcal{N}(0,1)$, then $M_X(t) = \frac{t^2}{2}$.

The moment-generating function of a random variable X is

$$M_X(t) = \mathbf{E}\left[e^{tX}\right], \qquad \text{where } t \in \mathbb{R}.$$

Using power series of e and differentiating shows that $M_X(t)$ encapsulates all moments of X, i.e., $\mathbf{E}[X]$, $\mathbf{E}[X^2]$,

- Lemma

- 1. If X and Y are two r.v.'s with $M_X(t) = M_Y(t)$ for all $t \in (-\delta, +\delta)$ for some $\delta > 0$, then the distributions X and Y are identical.
- 2. If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

Proof of 2: (Proof of 1 is quite non-trivial!)

$$M_{X+Y}(t) = \mathbf{E}\left[e^{t(X+Y)}\right] = \mathbf{E}\left[e^{tX}\cdot e^{tY}\right] \stackrel{(!)}{=} \mathbf{E}\left[e^{tX}\right] \cdot \mathbf{E}\left[e^{tY}\right] = M_X(t)M_Y(t)$$

Proof Sketch:

• Assume w.l.o.g. that $\mu = 0$ and $\sigma = 1$ (if not, scale variables)

Proof Sketch:

- Assume w.l.o.g. that $\mu = 0$ and $\sigma = 1$ (if not, scale variables)
- We also assume that the moment generating function of X_i , $M(t) = \mathbf{E} \left[e^{tX_i} \right]$ exists and is finite.

Proof Sketch:

- Assume w.l.o.g. that $\mu = 0$ and $\sigma = 1$ (if not, scale variables)
- We also assume that the moment generating function of X_i , $M(t) = \mathbf{E} \left[e^{tX_i} \right]$ exists and is finite.
- The moment generating function of X_i/\sqrt{n} is given by

$$\mathbf{E}\left[e^{tX_i/\sqrt{n}}\right] = M(t/\sqrt{n}).$$

Proof Sketch:

- Assume w.l.o.g. that $\mu = 0$ and $\sigma = 1$ (if not, scale variables)
- We also assume that the moment generating function of X_i , $M(t) = \mathbf{E} \left[e^{tX_i} \right]$ exists and is finite.
- The moment generating function of X_i/\sqrt{n} is given by

$$\mathbf{E}\left[e^{tX_i/\sqrt{n}}\right]=M(t/\sqrt{n}).$$

Hence by the Lemma (second statement) from the previous slide,

$$\mathbf{E}\left[\exp\left(\frac{t\sum_{i=1}^{n}X_{i}}{\sqrt{n}}\right)\right] = \left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}.$$

Proof Sketch:

- Assume w.l.o.g. that $\mu = 0$ and $\sigma = 1$ (if not, scale variables)
- We also assume that the moment generating function of X_i , $M(t) = \mathbf{E} \left[e^{tX_i} \right]$ exists and is finite.
- The moment generating function of X_i/\sqrt{n} is given by

$$\mathbf{E}\left[e^{tX_i/\sqrt{n}}\right]=M(t/\sqrt{n}).$$

Hence by the Lemma (second statement) from the previous slide,

$$\mathbf{E}\left[\exp\left(\frac{t\sum_{i=1}^{n}X_{i}}{\sqrt{n}}\right)\right] = \left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}.$$

Now define

$$L(t) := \log(M(t)).$$

Proof Sketch:

- Assume w.l.o.g. that $\mu = 0$ and $\sigma = 1$ (if not, scale variables)
- We also assume that the moment generating function of X_i,
 M(t) = E [e^{tX_i}] exists and is finite.
- The moment generating function of X_i/\sqrt{n} is given by

$$\mathbf{E}\left[e^{tX_i/\sqrt{n}}\right]=M(t/\sqrt{n}).$$

Hence by the Lemma (second statement) from the previous slide,

$$\mathbf{E}\left[\exp\left(\frac{t\sum_{i=1}^{n}X_{i}}{\sqrt{n}}\right)\right] = \left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}.$$

Now define

$$L(t) := \log(M(t)).$$

■ Differentiating (details ommitted here, see book by Ross) shows L(0) = 0, $L'(0) = \mu = 0$ and $L''(0) = \mathbf{E} [X^2] = 1$.

Proof Sketch (cntd):

To prove the theorem, we must show that

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right)\right)^n \to e^{t^2/2}$$

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0, 1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0, 1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

$$\lim_{n\to\infty}\frac{L(t/\sqrt{n})}{n^{-1}}$$

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0, 1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

We take logarithms on both sides and obtain

$$\lim_{n\to\infty}\frac{L(t/\sqrt{n})}{n^{-1}}$$

Using L'Hopital's rule.

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0,1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

$$\lim_{n\to\infty}\frac{L(t/\sqrt{n})}{n^{-1}}=\lim_{n\to\infty}\frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}} < \text{Using L'Hopital's rule.}$$

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0, 1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

$$\begin{split} \lim_{n \to \infty} \frac{L(t/\sqrt{n})}{n^{-1}} &= \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}} \blacktriangleleft \text{Using L'Hopital's rule.} \\ &= \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})t}{2n^{-1/2}} \end{split}$$

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0,1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right)\right)^n \to e^{t^2/2}$$

We take logarithms on both sides and obtain

$$\begin{split} \lim_{n \to \infty} \frac{L(t/\sqrt{n})}{n^{-1}} &= \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}} \blacktriangleleft \text{Using L'Hopital's rule.} \\ &= \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})t}{2n^{-1/2}} \end{split}$$

Using L'Hopital's rule (again)

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0,1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

We take logarithms on both sides and obtain

$$\lim_{n\to\infty} \frac{L(t/\sqrt{n})}{n^{-1}} = \lim_{n\to\infty} \frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}}$$

$$= \lim_{n\to\infty} \frac{-L'(t/\sqrt{n})t}{2n^{-1/2}}$$

$$= \lim_{n\to\infty} \frac{-L''(t/\sqrt{n})t}{2n^{-1/2}}$$

$$= -L''(t/\sqrt{n})n^{3/2}t^2$$

Using L'Hopital's rule (again) $= \lim_{n \to \infty} \frac{-L''(t/\sqrt{n})n^{3/2}t^2}{-2n^{-3/2}}$

Proof Sketch (cntd):

To prove the theorem, we must show that

This is the moment generating function of N(0, 1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

$$\lim_{n\to\infty} \frac{L(t/\sqrt{n})}{n^{-1}} = \lim_{n\to\infty} \frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}}$$
 Using L'Hopital's rule.
$$= \lim_{n\to\infty} \frac{-L'(t/\sqrt{n})t}{2n^{-1/2}}$$
 Using L'Hopital's rule (again)
$$= \lim_{n\to\infty} \frac{-L''(t/\sqrt{n})n^{3/2}t^2}{-2n^{-3/2}}$$

$$= \lim_{n\to\infty} \left[-L''(t/\sqrt{n})n^{3/2} \cdot \frac{t^2}{2} \right]$$

Proof Sketch (cntd):

• To prove the theorem, we must show that

This is the moment generating function of N(0, 1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

$$\lim_{n\to\infty}\frac{L(t/\sqrt{n})}{n^{-1}}=\lim_{n\to\infty}\frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}} \text{ Using L'Hopital's rule.}$$

$$=\lim_{n\to\infty}\frac{-L'(t/\sqrt{n})t}{2n^{-1/2}}$$
 Using L'Hopital's rule (again)
$$=\lim_{n\to\infty}\frac{-L''(t/\sqrt{n})n^{3/2}t^2}{-2n^{-3/2}}$$

$$=\lim_{n\to\infty}\left[-L''(t/\sqrt{n})n^{3/2}\cdot\frac{t^2}{2}\right]$$
 We have $L''(0)=1!$

Proof Sketch (cntd):

• To prove the theorem, we must show that

This is the moment generating function of N(0, 1).

$$\lim_{n\to\infty} \left(M\left(\frac{t}{\sqrt{n}}\right) \right)^n \to e^{t^2/2}$$

$$\lim_{n\to\infty}\frac{L(t/\sqrt{n})}{n^{-1}}=\lim_{n\to\infty}\frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}} \text{ Using L'Hopital's rule.}$$

$$=\lim_{n\to\infty}\frac{-L'(t/\sqrt{n})t}{2n^{-1/2}}$$
 Using L'Hopital's rule (again)
$$=\lim_{n\to\infty}\frac{-L''(t/\sqrt{n})t}{-2n^{-3/2}}$$

$$=\lim_{n\to\infty}\frac{-L''(t/\sqrt{n})n^{3/2}t^2}{-2n^{-3/2}}$$

$$=\lim_{n\to\infty}\left[-L''(t/\sqrt{n})n^{3/2}\cdot\frac{t^2}{2}\right]$$
 We proved that the MGF of Z_n converges to that one of $\mathcal{N}(0,1)$.