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Weak Law of Large Numbers: For any € > 0,
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Then for any number a € R, it holds that

lim Fz,(a) = ®(a) ;

where ¢ is the distribution function of the A/(0, 1) distribution.
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where @ is the distribution function of the N(0, 1) distribution.

\ N J
1\

In words: the distribution of Z, always converges to the
distribution function ¢ of the standard normal distribution.

Intro to Probability Central Limit Theorem



Comments on the CLT

= one of the most remarkable results in probability/statistics

= extremely powerful tool in applications: we may not know the actual
distribution in real-world, and CLT says we don’t have to(!)

= applies also to sums of random variables which may be unbounded

= adding up independent noises in measurements leads to an error
following the Normal distribution
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= one of the most remarkable results in probability/statistics

= extremely powerful tool in applications: we may not know the actual
distribution in real-world, and CLT says we don’t have to(!)

= applies also to sums of random variables which may be unbounded

= adding up independent noises in measurements leads to an error
following the Normal distribution

= catch: the CLT only holds approximately, i.e., for large n

When is the approximation good?

= usually n > 10 or n > 15 is sufficient in practice

= approximation tends to be worse when threshold a is far from 0,
distribution of Xj’s asymmetric, bimodal or discrete
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lllustration of CLT (4/4) (example from Lecture 8 cntd.)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

-50 -45-40-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50

4 4 4 4 4 4 4 4 4
t t t t

Intro to Probability

lllustrations

12

X



lllustration of CLT (4/4) (example from Lecture 8 cntd.)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

-50 -45-40-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50

4 4 4 4 4 4 4 4 4
t t t t t t t

Intro to Probability

lllustrations

12

X
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lllustration of CLT with Standardising
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Fig. 14.2. Densities of standardized averages Z,. Left column: from a gamma den-
sity; right column: from a bimodal density. Dotted line: N(0,1) probability density.

Source: Deeking et al., Modern Introduction to Statistics
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Recall: Standard Normal Table

Section 5.4  Normal Random Variables 201

TABLE 5.1: AREA ©(x) UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF X
X 0 01 02 03 04 05 06 07 0309

5000 5040 5080 5120 5160 5199 5239 5279 5319 5359
5398 5438 5478 5517 5557 5596 5636 5675 S5TI4 5753
5793 5832 5871 5910 5948 .5987 6026 6064 6103 6141

6179 6217 6255 6293 6331 6368 6406 .6443 6517
6554 6591 6628 6664 6700 6736 6772 6808 6879
6915 6950 6985 7019 7054 7088 7123 7157 7224
7257 7291 7324 7357 7389 7422 7454 7486 7549
7580 7611 7642 7673 7704 7734 7764 7794 7852
7881 7910 7939 7967 7995 8023 8051 8078 8133
8159 8186 8212 8238 K264 8289 8315 8340 8389
8413 8438 8461 8485 8508 8531 8554 8577 8621
8643 8665 8686 8T8 8729 8749 8770 8790 8830
8849 8869 8888 8907 8925 8944 8962 8980 9015
9032 9049 9066 9082 9099 9115 9131 9147 9177
9192 9207 9222 9236 9251 9265 9279 9292 9319
9332 9345 9357 9370 9382 9394 9406 9418 9441
9452 9463 9474 9484 9495 9505 9515 9525 9545
9554 9564 9573 9582 9591 9599 9608 9616 9633
9641 9649 9656 9664 9671 9678 9686 9693 9706
9713 9719 9726 9732 9738 9744 9750 9756 9767
9772 9778 9783 9788 9793 9798 9803 9808 9817
9821 9826 9830 9834 9838 9842 9846 9850 9857
9861 9864 9868 9871 9875 9878 9881 9884 9890
9893 9896 9898 9901 9904 9906 9909 9911 9916
9918 9920 9922 9925 9927 9929 9931 9932 9936
9938 9940 9941 9943 9945 9946 9948 9949 9952
9953 9955 9956 9957 9959 9960 9961 9962 9964
9965 9966 9967 9968 9969 9970 9971 9972 9974
9974 9975 9976 9977 9977 9978 9979 9979 9981
9981 9982 9982 9983 9984 9984 9985 9985 9986
9987 9987 9987 9988 9988 9989 9989 9989 9990
9990 9991 9991 9991 9992 9992 9992 9992 9993
9993 9993 9994 9994 9994 9994 9994 9995 9995
9995 9995 9995 999 999 9996 9996 9996 9997
9997 9997 9997 9997 9997 9997 9997 9997 9998

Source: Ross, Probability 8th ed.

Z ~N(0,1) P[Z <x]=(x)
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer

= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer
= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].
= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer
= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].

= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.
= pu=1/4and 0 = p(1 — p) = 3/16.
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and

you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use

the normal approximation to estimate the probability of passing.

Answer

= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].

= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.
= pu=1/4and 0 = p(1 — p) = 3/16.

= Applying the CLT yields:

P[XzG]—P[iX,—zB]

i=1
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer
= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].

= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.
= pu=1/4and 0 = p(1 — p) = 3/16.
= Applying the CLT yields:

P[XzG]—P[iX,—zB]

i
:P[Z,»":1)(/—nu>6—fw}
ovn ~ ovn
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Normal Approximation of the Binomial Distribution

Example 1

= pu=1/4and o°

P[X>6]=P

=P

=P

=p(1 —p) =3/16.

= Applying the CLT yields:

>x>6]
i=1

XL Xi—nw 6 np

ovn
6—25
\/3/16 - v/10

avn

Zig >

|

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer

= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].
= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer

= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].

= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.
= pu=1/4and o® = p(1 — p) = 3/16.

= Applying the CLT yields:

P[X>6]=P ix,—ze]

i=1

:P'Z,{7:1)(/—nu>6—nu}
L ovn T ovn
6—2.5
\/3/16 - /10

=P | Zo>

] ~ 1 — ®(2.56) ~ 0.0052.
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer

= pu=1/4and 0 = p(1 — p) = 3/16.
= Applying the CLT yields:

>x>6]

L i=1

P[X>6]=P

=P

= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].
= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.

True value is 0.0197. Error

[ 27:1 Xi—np
L ovn

=P | Zo>

\/3/16 - v/10

26_”’“‘} [

ovn
[ 6—25 }

lies in the discretisation!

)

\

~ 1 — ®(2.56) ~ 0.0052.
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Normal Approximation of the Binomial Distribution

Example 1

you are completely un

Suppose you are attending a multiple-choice exam of 10 questions and

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

prepared. Each question has 4 choices, and you

Answer

= pu=1/4and o°

P[X>6]=P
=P
5 6 7 =P

= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].
= Note X :=37 , X;

= Applying the CLT yields:

, where each X; ~ Ber(p) and n= 10, p = 1/4.
= p(1 — p) = 3/16.

>x>6]

i=1

)

2771 Xi—nu _ 6—np True value is 0.0197. Error
’Jﬁ 2 /i } lies in the discretisation!
Zio> —2=2% | o1 —¢(256)~0>)1052
=" /3/16- /10 ' S
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer
= Let X ~ Bin(10,1/4). We are interested in P[ X > 6].
= Note X := "7, X, where each X; ~ Ber(p) and n=10, p = 1/4.
= pu=1/4and o® = p(1 — p) = 3/16.
= Applying the CLT yields:
[ n A better approximation is obtained
P[X>6]=P Zx,-ze] by P[>0, X; >5.5] ~ ~ 0.0143
i=1
_p r 27:1 Xi — nu S 6 — np [ Trye \{alue is .0,019.7. .Errlor ]
I ov/n = ovn lies in the discretisation!

| | 5

6—25
5 6 7 =P|Zoe>—-2"2 | ~1— ¢(2.56)~ 0.0052.
7= /3716 V0 (2.56)
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Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)

coooooooo0
“NWPAPrOIONOO—
.
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Approximation of the Binomial Distribution

= Let X ~ Bin(50,1/2)
= Hence u =25, 0% =50-1/4 =125

coooooooo0
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.

0 5 10 15 20 25 30 35 40 45 50

Intro to Probability Examples 17




Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

COO0O000000
“DWRUTON®O =
,
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Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

- Let Y ~ N(25,12.5)

COO0O000000
“DWRUTON®O =
,
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Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

= Let Y ~ N(25,12.5)
" P[X<x]=P[Y <Xx]

COO0O000000
“DWRUTON®O =
,

0 5 10 15 20 25 30 35 40 45 50
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Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

= Let Y ~ N(25,12.5)
" P[X <x]=PJ[Y < x] ~ reasonable approximation, but some error
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Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

= Let Y ~ N(25,12.5)
= P[X <x]~P[Y < x] ~ reasonable approximation, but some error
s P[X<x]=P[Y<x+05]
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Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

= Let Y ~ N(25,12.5)
" P[X <x]=PJ[Y < x] ~ reasonable approximation, but some error
P[X <x]~P[Y < x+0.5] ~ very tight approximation!

P[X < x]

o 5 10 15 20 25 30 85 40 45 50
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

Intro to Probability Examples



A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The
container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?
Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.
= Recall that y =0 = 2.
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.
= Recall that y =0 = 2.

= By the CLT,

P[ix,-zwo
i=1
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.
= Recall that y =0 = 2.

= By the CLT,

P[ix,-zwo
i=1

7P[ZL1X;—2n> 100 — 2n
N 2./n = 2vn
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.
= Recall that y =0 = 2.

= By the CLT,

P[ix,-zmo
i=1

n A _
:P[Z,:1)(, 2n _ 100 Zn]

2y/n - 2vn
100 — 2n 1
~1-¢o— ) =0.05.
(%)
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.
= Recall that y =0 = 2.

= By the CLT,

P[ix,-zmo
i=1

n A _
:P[Z,:1)(, 2n _ 100 Zn]

2y/n - 2vn
100 — 2n 1
~1-¢o— ) =0.05.
(%)
= Using a normal table (looking for value 0.95) yields: 1020\;;” = 1.645.
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer —M8M8M—
= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.

= Recall that y =0 = 2.

= By the CLT,

P[ix,-zmo
i=1

n A _
:P[Z,:1)(, 2n _ 100 Zn]

2y/n - 2vn
100 — 2n 1
~1-¢o— ) =0.05.
(%)
= Using a normal table (looking for value 0.95) yields: 1020\;;” = 1.645.

= Solving the quadratic gives n < 39.6.
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.

= Recall that y =0 = 2.
= By the CLT,

P[ix,-zmo
i=1

n A _
:P{Z,ﬂx, 2n _ 100 Zn]

2y/n - 2vn
100 — 2n 1
~1-¢o— ) =0.05.
(%)
= Using a normal table (looking for value 0.95) yields: 1020\;;” = 1.645.

= Solving the quadratic gives n < 39.6.

= Addendum: Following the reasoning from Example 1,
P[>, Xi > 99.5] might be a better approximation
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

= We have Xi, X, ..., Xy ~ Exp(1/2), where nis unknown.

= Recall that y =0 = 2.
= By the CLT,

P[ix,-zmo
i=1

n A _
:P{Z,ﬂx, 2n _ 100 Zn]

2y/n - 2vn
100 — 2n 1
~1-¢o— ) =0.05.
(%)
= Using a normal table (looking for value 0.95) yields: 1020\;;” = 1.645.

= Solving the quadratic gives n < 39.6.

= Addendum: Following the reasoning from Example 1,
P[>, Xi > 99.5] might be a better approximation = n < 39.4.
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A Sample of 100 Exponential Random Variables Exp(1/2)

0 10 20 40

50 60

JLILUBULL, i, |
70 80

90 100
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3=0.666.
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3=0.666.

= Chebyshev: V[X] =19V [X;] =100 (1/2)2 = 25.
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3=0.666.

= Chebyshev: V[X] =19V [X;] =100 (1/2)2 = 25.

P[|X — ul >25]< = — = 0.04.
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3=0.666.

= Chebyshev: V[X] =19V [X;] =100 (1/2)2 = 25.

v [X] 1 As X is symmetric, we could
P[|X —pul >25]<
[l |225] < 252 25

de-

= — = 0.04. duce probability is at most 0.02.

)
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Comparison between Markov, Chebyshev and CLT

Example 3

PLIX -l >25] <

P[X >3/2-E[X]] <2/3 = 0.666.

V[X] 1
= — = 0.04.
252 25 0.0

= Central Limit Theorem: First standardise:

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.

= Chebyshev: V[X] =19V [X;] =100 (1/2)2 = 25.

As X is symmetric, we could

de-

duce probability is at most 0.02.

)
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3=0.666.
= Chebyshev: V[X] =19V [X;] =100 (1/2)2 = 25.

)

Vv [X] 1 As X is symmetric, we could de-

P[|X—ul>25]< 252 25 0.04. duce probability is at most 0.02.
. . . iapme 7 _ X=n1/2
Central Limit Theorem: First standardise: Z, = NIEYE
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3=0.666.
= Chebyshev: V[X] =19V [X;] =100 (1/2)2 = 25.

)

P[X>75]=P|Z,> ] ~ 1 — ®(5) = 0.0000002866 . . .

vn-1/2

Vv [X] 1 As X is symmetric, we could de-
P[|X—ul>25]< 252 = 25 = 0.04. duce probability is at most 0.02.
. 1ot - (= > X=n1)/2
Central Limit Theorem: First standardise: Z, = AV
75—n-1/2
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3=0.666.
= Chebyshev: V[X] =19V [X;] =100 (1/2)2 = 25.

)

P[X>75]=P|Z,> ] ~ 1 — ®(5) = 0.0000002866 . . .

Vn-1/2
= exact probability is 0.0000002818 . . .

Vv [X] 1 As X is symmetric, we could de-
P[|X—ul>25]< 252 = 25 = 0.04. duce probability is at most 0.02.
. 1ot - (= > X=n1)/2
Central Limit Theorem: First standardise: Z, = AV
75—n-1/2
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3 = 0.666.

= Chebyshev: V[ X] =19V [X;] = 100- (1/2)2 = 25.

Vv [X] 1 As X is symmetric, we could de-
P[|X—ul>25]< 252 25 0.04. duce probability is at most 0.02.
. - . ien. 7 _ X=n1/2
Central Limit Theorem: First standardise: Z, = NIEYE
75—n-1/2
P[X>75]=P|Z, > 57”/] ~ 1 — &(5) = 0.0000002866 . ..
vn-1/2 N
= exact probability is 0.0000002818. .. CLT gives a much better result
(but relies on i.i.d. assumption)
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3 = 0.666.

= Chebyshev: V[ X] =19V [X;] = 100- (1/2)2 = 25.
\Y [X] 1 As X is symmetric, we could de-]

PLIX —pl=25] <

— = 0.04. duce probability is at most 0.02.

252 25
. - e n > X=n1/2
Central Limit Theorem: First standardise: Z, = NGV
75—n-1/2
P[X>75]=P|Z, > 57”/] ~ 1 — &(5) = 0.0000002866 . ..
Vvn-1/2 N
= exact probability is 0.0000002818. .. CLT gives a much better result
« Addendum: Replacing 75 by 74.5: (but relies on i.i.d. assumption)
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3 = 0.666.

= Chebyshev: V[ X] =19V [X;] = 100- (1/2)2 = 25.
\Y [X] 1 As X is symmetric, we could de-]

PLIX —pl=25] <

— = 0.04. duce probability is at most 0.02.

252 25
. - e n > X=n1/2
Central Limit Theorem: First standardise: Z, = NGV
75—n-1/2
P[X>75]=P|Z, > 57”/] ~ 1 — &(5) = 0.0000002866 . ..
Vvn-1/2 N
= exact probability is 0.0000002818. .. CLT gives a much better result
« Addendum: Replacing 75 by 74.5: (but relies on i.i.d. assumption)

= This leads to 1 — ®(4.9) = 0.000000479...
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3 = 0.666.

= Chebyshev: V[ X] =19V [X;] = 100- (1/2)2 = 25.
\Y [X] 1 As X is symmetric, we could de-]

PLIX -l >25] <

— = 0.04. duce probability is at most 0.02.

252 25
= Central Limit Theorem: First standardise: Z, = X%’T/j
—n-1/2
P[X>75]=P|Z, > M] ~ 1 — &(5) = 0.0000002866 . ..
Vn-1/2 A
= exact probability is 0.0000002818. .. CLT gives a much better result
= Addendum: Replacing 75 by 74.5: (but relies on i.i.d. assumption)

= This leads to 1 — ®(4.9) = 0.000000479...
= |ssue: threshold too large (P [ X > a] ~ P[ X = a]) = CLT less precise
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

= Markov: X = 3219 X;, X; € {0,1} and E[X] = 100 - § = 50.
P[X >3/2-E[X]] <2/3 = 0.666.

= Chebyshev: V[ X] =19V [X;] = 100- (1/2)2 = 25.
\Y [X] 1 As X is symmetric, we could de-]

PLIX —pl=25] <

— = 0.04. duce probability is at most 0.02.

252 25
= Central Limit Theorem: First standardise: Z, = Xﬁ’?f/j
—n-1/2
P[X>75]=P|Z, > M] ~ 1 — &(5) = 0.0000002866 . ..
Vn-1/2 A
= exact probability is 0.0000002818. .. CLT gives a much better result
= Addendum: Replacing 75 by 74.5: (but relies on i.i.d. assumption)

= This leads to 1 — ®(4.9) = 0.000000479...

= |ssue: threshold too large (P [ X > a] ~ P[ X = a]) = CLT less precise

= In this region, 75 gives a better approximation than 74.5, but for smaller
values (e.g., < 63) the “.5-shift” gives significantly better results.
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A Distribution whose Average does not converge

[ I I I I 1
0 100 200 300 400 500

CaU(27 1 ) distribution, source: Deeking et al., Modern Introduction to Statistics

The Cauchy distribution has “too heavy” tails (no ex-
pectation), in particular the average does not converge.
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Towards a Proof of CLT: Moment Generating Functions

Moment-Generating Function

Mx(t)

The moment-generating function of a random variable X is

:E[e’x], where t € R.

Intro to Probability
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Towards a Proof of CLT: Moment Generating Functions

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [etx] . whereteR.

[

N
N

Using power series of e and differentiating shows that Mx(t)
encapsulates all moments of X, i.e., E[X], E[X?],.. ... J
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Towards a Proof of CLT: Moment Ge

Moment-Generating Function

| 1f X ~ A(0,1), then My(t) = &.

Mx(t) = E [e’x] . whereteR.
/N

[

Using power series of e and differentiating shows that Mx(t)
encapsulates all moments of X, i.e., E[X], E[X?],.. ...

N

[Zd

The moment-generating function of a random variable X is

J
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Towards a Proof of CLT: Moment Ge

| 1f X ~ A(0,1), then My(t) = &.

Moment-Generating Function

v
The moment-generating function of a random variable X is

Mx(t) = E [etx] . whereteR.

/N
Using power series of e and differentiating shows that Mx(t)\
encapsulates all moments of X, i.e., E[X], E[X?],.. ... J
Lemma

1. If X and Y are two r.vs with Mx(t) = My(t) for all t € (-4, +9) for
some ¢ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

Moy (1) = Mx(t) - My(t).
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Towards a Proof of CLT: Moment Ge

Moment-Generating Function

| 1f X ~ A(0,1), then My(t) = &.

v
The moment-generating function of a random variable X is

Mx(t) = E [e‘x] . whereteR.

[

N
N

Using power series of e and differentiating shows that Mx(t)
encapsulates all moments of X, i.e., E[X], E[X?],.. ... J

Lemma

1. If X and Y are two r.vs with Mx(t) = My(t) for all t € (-4, +9) for
some ¢ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

Moy (1) = Mx(t) - My(t).

Proof of 2: (Proof of 1 is quite non-trivial!)

My.y(t) = E [e“xm] =E [e’X : efY] OE [efx] ‘E [efY] = Mx()My(t) O
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Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:
= Assume w.l.o.g. that x = 0 and o = 1 (if not, scale variables)
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Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:
= Assume w.l.o.g. that x = 0 and o = 1 (if not, scale variables)

= We also assume that the moment generating function of X,
M(t) = E [ e™] exists and is finite.
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Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:
= Assume w.l.o.g. that x = 0 and o = 1 (if not, scale variables)

= We also assume that the moment generating function of X,
M(t) = E [ e™] exists and is finite.
= The moment generating function of X;/+/n is given by

E [e'xf/ﬁ] = M(t/v/n).
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Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:
= Assume w.l.o.g. that x = 0 and o = 1 (if not, scale variables)

= We also assume that the moment generating function of X,
M(t) = E [ e™] exists and is finite.
= The moment generating function of X;/v/n is given by

E [efxf/ﬁ] = M(t/v/n).

= Hence by the Lemma (second statement) from the previous slide,

[en ()] - (05)
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Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:
= Assume w.l.o.g. that x = 0 and o = 1 (if not, scale variables)

= We also assume that the moment generating function of X,
M(t) = E [ e™] exists and is finite.

= The moment generating function of X;/v/n is given by

E [efxf/ﬁ] = M(t/v/n).

Hence by the Lemma (second statement) from the previous slide,
t>0 X t\\"
E =) = (M — .
{e”’( vn ” ( (ﬁ))

L(t) == log(M(t)).

= Now define
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Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:
= Assume w.l.o.g. that x = 0 and o = 1 (if not, scale variables)

= We also assume that the moment generating function of X,
M(t) = E [ e™] exists and is finite.
= The moment generating function of X;/v/n is given by

E [efxf/ﬁ] = M(t/v/n).

Hence by the Lemma (second statement) from the previous slide,
t>0 X t\\"
E =) = (M — .
{exp( Vn ﬂ ( (ﬁ))

L(t) := log(M(t)).
Differentiating (details ommitted here, see book by Ross) shows
L(0)=0,L'(0) = p=0and L"(0) = E [ X*] = 1.

= Now define
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Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):
= To prove the theorem, we must show that

i (0(5) 47
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-

Proof Sketch (cntd): [ ating function of N(0, 1).
= To prove the theorem, we must show that

]

() -
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain

L(t//n)

n—oo n-1
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain

L(t/v/n) < Using L'Hopital’s rule. ]

n—oo n-1
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain
lim L(t/vn) _ lim —L'(t//mn" %2t < Using L'Hopital’s rule. ]
—1

n—oo N n—oco —2n—2

Intro to Probability Bonus Material (non-examinable) 25



Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain
lim L(t/vn) _ lim —L'(t//mn" %2t < Using L'Hopital’s rule. ]
n—oo N1 n—o0 —2n—2
—L'(t/v/n)t

n— oo on—1/2
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain
lim L(t/vn) _ lim —L'(t//mn" %2t < Using L'Hopital’s rule. ]
n—oo N1 n—o0 —2n—2
—L'(t/v/n)t

n— oo on—1/2

[ Using LHopital’s rule (again) 7
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain

lim L(t/vn) _ lim —L'(t//mn" %2t <Using L'Hopital's rule. ]

n—soo N1 n— oo —2n—2
I M
n—oo 2n-1/2
. —L"(t n n3/2t2
[Using L'Hopital’s rule (again) 7 = nll)m (—én—(S)/?

Intro to Probability Bonus Material (non-examinable) 25



Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain

lim L(t/vn) _ lim —L'(t//mn" %2t <Using L'Hopital's rule. ]

n—soo N1 n— oo —2n—2
I M
n—oo 2n-1/2
. —L"(t n n3/2t2
[Using L'Hopital’s rule (again) 7 = nll)m (—én—(S)/?

i [
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain

lim L(t/vn) _ lim —L'(t//mn" %2t <Using L'Hopital's rule. ]

n—soo N1 n— oo —2n—2
I M
n—oo 2n-1/2
. —L"(t n n3/2t2
[Using L'Hopital’s rule (again) 7 = nll)m (—én—(S)/?

n— oo

lim [—L”(t/\@ns/2 . g]

(We have L"(0) = 1! ]
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain

lim L(t/vn) _ lim —L'(t//mn" %2t <Using L'Hopital's rule. ]

n—soo N1 n— oo —2n—2
I M
n—oo 2n-1/2
. —L"(t n n3/2t2
[Using L'Hopital’s rule (again) 7 = nll)m (—én—\(S)/?

n— oo

lim [—L”(t/\@ns/2 . g]

We proved that the £
MGF of Z, converges =5
to that one of A/(0, 1).

(We have L"(0) = 1! ]
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