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Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any ε > 0,

lim
n→∞

P
[
|X n − µ| > ε

]
= 0 ⇒ ∃N : ∀n ≥ N : P

[
|X n − µ| > 0.2

]
≤ 0.25
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WLLN: probability for any X n

to be outside [−0.2, 0.2] is at
most 0.25 for any n ≥ 100.

Central Limit Theorem will
characterise the entire

distribution of X n for large n!
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Towards the CLT: Finding the Right Scaling

Let X1,X2, . . . i.i.d. with µ = 0 and finite σ2

Let X̃n :=
∑n

i=1 Xi (often denoted by Sn)

The variance is V
[

X̃n

]
= nσ2 →∞

The Sum

Let X n := 1
n ·
∑n

i=1 Xi

The variance is V
[

X n

]
= σ2/n→ 0

The Sample Average (Sample Mean)

Let Zn := 1√
n·σ ·

∑n
i=1 Xi

The variance is V [ Zn ] = 1

The “Proper” Scaling (Standardising)

+1−1

−n 0 +n

−n +1−1 +n

−n +1−1 +n
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Central Limit Theorem

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Let X1,X2, . . . be any sequence of independent identically distributed ran-
dom variables with finite expectation µ and finite variance σ2. Let

Zn :=
√

n · X n − µ
σ

=
1√
n · σ

·

(
n∑

i=1

Xi − n · µ

)

Then for any number a ∈ R, it holds that

lim
n→∞

FZn (a) = Φ(a) =
1√
2π

∫ a

−∞
e−x2/2dx ,

where Φ is the distribution function of the N (0, 1) distribution.

Central Limit Theorem

In words: the distribution of Zn always converges to the
distribution function Φ of the standard normal distribution.
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Comments on the CLT

one of the most remarkable results in probability/statistics

extremely powerful tool in applications: we may not know the actual
distribution in real-world, and CLT says we don’t have to(!)

applies also to sums of random variables which may be unbounded

adding up independent noises in measurements leads to an error
following the Normal distribution

catch: the CLT only holds approximately, i.e., for large n

When is the approximation good?

usually n ≥ 10 or n ≥ 15 is sufficient in practice

approximation tends to be worse when threshold a is far from 0,
distribution of Xi ’s asymmetric, bimodal or discrete
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Illustration of CLT (1/4)
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P
[∑1

j=1 Xj = x
]

P
[∑2

j=1 Xj = x
]

P
[∑3

j=1 Xj = x
]

P
[∑4

j=1 Xj = x
]

P
[∑5

j=1 Xj = x
]

P
[∑6

j=1 Xj = x
]

P
[∑7

j=1 Xj = x
]

P
[∑8

j=1 Xj = x
]

P
[∑9

j=1 Xj = x
]

P
[∑10

j=1 Xj = x
]

P
[∑11

j=1 Xj = x
]

P
[∑12

j=1 Xj = x
]

P
[∑13

j=1 Xj = x
]

P
[∑14

j=1 Xj = x
]

P
[∑15

j=1 Xj = x
]

P
[∑16

j=1 Xj = x
]
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j=1 Xj = x
]
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[∑22
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]
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j=1 Xj = x
]
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[∑26

j=1 Xj = x
]

P
[∑27

j=1 Xj = x
]

P
[∑28

j=1 Xj = x
]

P
[∑29

j=1 Xj = x
]

P
[∑30

j=1 Xj = x
]

P
[∑30

j=1 Xj = x
] µ = 1

3 · (−1) + 1
3 · 0 + 1

3 · 1 = 0

σ2 = 1
3 · (−1)2 + 1

3 · 0 + 1
3 · 1

2 = 2
3

By the CLT:

Zn =
1√
n · σ

·

(
n∑

i=1

Xi − n · µ

)
n→∞−→ Z ∼ N (0, 1)

⇒
n∑

i=1

Xi ≈
√

n · σZ ∼ N (0, n · σ2)

N (0, 20)
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Illustration of CLT (2/4)
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[∑19
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j=1 Xj = x
]

P
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j=1 Xj = x
]

P
[∑23
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]

P
[∑28

j=1 Xj = x
]

P
[∑29

j=1 Xj = x
]

P
[∑30

j=1 Xj = x
] µ = 0.15 · (−3) + 0.1 · (−2) + 0.05 · (−1) + 0.7 · 1 = 0

σ2 = 0.15 · 9 + 0.1 · 4 + 0.05 · 1 + 0.7 · 1 = 2.5

N (0, 75)
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Illustration of CLT (3/4) (example from Lecture 8)
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[∑25

j=1 Xj = x
]

P
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[∑27
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[∑29

j=1 Xj = x
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P
[∑30

j=1 Xj = x
]

P
[∑30

j=1 Xj ≤ x
]

P
[∑30

j=1 Xj = x
] µ = 1

2 · (−1) + 1
2 · 1 = 0

σ2 = 1
2 · (−1)2 + 1

2 · 1
2 = 1

Recall: CLT only guarantees conver-
gence of the cumulative distribution!

N (0, 30)
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Illustration of CLT (4/4) (example from Lecture 8 cntd.)

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

P
[∑1

j=1 Xj ≤ x
]

P
[∑2

j=1 Xj ≤ x
]

P
[∑3

j=1 Xj ≤ x
]

P
[∑4

j=1 Xj ≤ x
]

P
[∑5

j=1 Xj ≤ x
]

P
[∑6

j=1 Xj ≤ x
]

P
[∑7

j=1 Xj ≤ x
]

P
[∑8

j=1 Xj ≤ x
]

P
[∑9

j=1 Xj ≤ x
]

P
[∑10

j=1 Xj ≤ x
]

P
[∑11

j=1 Xj ≤ x
]

P
[∑12

j=1 Xj ≤ x
]

P
[∑13

j=1 Xj ≤ x
]

P
[∑14

j=1 Xj ≤ x
]

P
[∑15

j=1 Xj ≤ x
]

P
[∑16

j=1 Xj ≤ x
]

P
[∑17

j=1 Xj ≤ x
]

P
[∑18

j=1 Xj ≤ x
]

P
[∑19

j=1 Xj ≤ x
]

P
[∑20

j=1 Xj ≤ x
]

P
[∑21

j=1 Xj ≤ x
]

P
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[∑28

j=1 Xj ≤ x
]

P
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P
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] µ = 1

2 · (−1) + 1
2 · 1 = 0
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2 · (−1)2 + 1

2 · 1
2 = 1

N (0, 4)N (0, 5)N (0, 6)N (0, 7)N (0, 8)N (0, 9)N (0, 10)N (0, 11)N (0, 12)N (0, 13)N (0, 14)N (0, 15)N (0, 16)N (0, 17)N (0, 18)N (0, 19)N (0, 20)N (0, 21)N (0, 22)N (0, 23)N (0, 24)N (0, 25)N (0, 26)N (0, 27)N (0, 28)N (0, 29)N (0, 30)
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Illustration of CLT with Standardising

Source: Deeking et al., Modern Introduction to Statistics
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Recall: Standard Normal Table

Source: Ross, Probability 8th ed.

Z ∼ N (0,1) P [ Z ≤ x ] = Φ(x)

Question: What if we
need Φ(x) for negative x?

Due to symmetry of density
we have Φ(x) = 1 − Φ(−x).

Intro to Probability Examples 15



Normal Approximation of the Binomial Distribution

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you
are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer

Let X ∼ Bin(10, 1/4). We are interested in P [ X ≥ 6 ].

Note X :=
∑n

i=1 Xi , where each Xi ∼ Ber(p) and n = 10, p = 1/4.
⇒ µ = 1/4 and σ2 = p(1− p) = 3/16.

Applying the CLT yields:

P [ X ≥ 6 ] = P

[
n∑

i=1

Xi ≥ 6

]

= P
[ ∑n

i=1 Xi − nµ
√

nσ
≥ 6− nµ√

nσ

]
= P

[
Z10 ≥

6− 2.5√
3/16 ·

√
10

]
≈ 1− Φ(2.56) ≈ 0.0052.

True value is 0.0197. Error
lies in the discretisation!

A better approximation is obtained
by P

[∑n
i=1 Xi ≥ 5.5

]
 ≈ 0.0143

5 6 7

Example 1
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Approximation of the Binomial Distribution

Let X ∼ Bin(50, 1/2)
Hence µ = 25, σ2 = 50 · 1/4 = 12.5

How good is the approximation by the CLT?

Let Y ∼ N (25, 12.5)
P [ X ≤ x ] ≈ P [ Y ≤ x ] reasonable approximation, but some error

P [ X ≤ x ] ≈ P [ Y ≤ x + 0.5 ]

 very tight approximation!

x

P [ X ≤ x ]
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0.6
0.7
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0.9
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Approximation of the Binomial Distribution
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A “Reverse” Application of the CLT

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter λ = 1/2. The
container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer

We have X1,X2, . . . ,Xn ∼ Exp(1/2), where n is unknown.

Recall that µ = σ = 2.

By the CLT,

P

[
n∑

i=1

Xi ≥ 100

]
= P

[ ∑n
i=1 Xi − 2n

2
√

n
≥ 100− 2n

2
√

n

]
≈ 1− Φ

(
100− 2n

2
√

n

)
!

= 0.05.

Using a normal table (looking for value 0.95) yields: 100−2n
2
√

n = 1.645.

⇒ Solving the quadratic gives n ≤ 39.6.

No continuity correction (100 99.5) here, as
∑n

i=1 Xi is continuous

Example 2
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A Sample of 100 Exponential Random Variables Exp(1/2)

0 10 20 30 40 50 60 70 80 90 100

1
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3

4

5
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8

9

10

Xi

i

µ

∑100
i=1 Xi = 214.662
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Comparison between Markov, Chebyshev and CLT

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

Markov: X =
∑100

i=1 Xi , Xi ∈ {0, 1} and E [ X ] = 100 · 1
2 = 50.

P [ X ≥ 3/2 · E [ X ] ] ≤ 2/3 = 0.666.

Chebyshev: V [ X ] =
∑100

i=1 V [ Xi ] = 100 · (1/2)2 = 25.

P [ |X − µ| ≥ 25 ] ≤
V [ X ]

252
=

1
25

= 0.04.

Central Limit Theorem: First standardise: Zn = X−n·1/2√
n·1/2

P [ X ≥ 75 ] = P
[

Zn ≥
75− n · 1/2
√

n · 1/2

]
≈ 1− Φ(5) = 0.0000002866 . . .

exact probability is 0.0000002818 . . .

Addendum: Replacing 75 by 74.5:

This leads to 1− Φ(4.9) = 0.000000479 . . .
Issue: threshold too large (P [ X ≥ a ] ≈ P [ X = a ])⇒ CLT less precise
In this region, 75 gives a better approximation than 74.5, but for smaller
values (e.g., ≤ 63) the “.5-shift” gives significantly better results.

As X is symmetric, we could de-
duce probability is at most 0.02.

CLT gives a much better result
(but relies on i.i.d. assumption)

Example 3

Intro to Probability Examples 20



A Distribution whose Average does not converge

Cau(2, 1) distribution, Source: Deeking et al., Modern Introduction to Statistics

The Cauchy distribution has “too heavy” tails (no ex-
pectation), in particular the average does not converge.
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Towards a Proof of CLT: Moment Generating Functions

The moment-generating function of a random variable X is

MX (t) = E
[

etX
]
, where t ∈ R.

Moment-Generating Function

Using power series of e and differentiating shows that MX (t)
encapsulates all moments of X , i.e., E [ X ], E

[
X 2 ] , . . ....

If X ∼ N (0, 1), then MX (t) = t2

2 .

1. If X and Y are two r.v.’s with MX (t) = MY (t) for all t ∈ (−δ,+δ) for
some δ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

MX+Y (t) = MX (t) ·MY (t).

Lemma

Proof of 2: (Proof of 1 is quite non-trivial!)

MX+Y (t) = E
[

et(X+Y )
]

= E
[

etX · etY
]

(!)
= E

[
etX
]
· E
[

etY
]

= MX (t)MY (t)

Intro to Probability Bonus Material (non-examinable) 23



Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:

Assume w.l.o.g. that µ = 0 and σ = 1 (if not, scale variables)

We also assume that the moment generating function of Xi ,
M(t) = E

[
etXi

]
exists and is finite.

The moment generating function of Xi/
√

n is given by

E
[

etXi/
√

n
]

= M(t/
√

n).

Hence by the Lemma (second statement) from the previous slide,

E
[

exp

(
t
∑n

i=1 Xi√
n

)]
=

(
M
(

t√
n

))n

.

Now define
L(t) := log(M(t)).

Differentiating (details ommitted here, see book by Ross) shows
L(0) = 0, L′(0) = µ = 0 and L′′(0) = E

[
X 2 ] = 1.

Intro to Probability Bonus Material (non-examinable) 24



Proof Sketch of the Central Limit Theorem (2/2)

Proof Sketch (cntd):
To prove the theorem, we must show that

lim
n→∞

(
M
(

t√
n

))n

→ et2/2

We take logarithms on both sides and obtain

lim
n→∞

L(t/
√

n)

n−1 = lim
n→∞

−L′(t/
√

n)n−3/2t
−2n−2

= lim
n→∞

−L′(t/
√

n)t
2n−1/2

= lim
n→∞

−L′′(t/
√

n)n3/2t2

−2n−3/2

= lim
n→∞

[
−L′′(t/

√
n)n3/2 · t2

2

]
=

t2

2
.

This is the moment gener-
ating function of N(0, 1).

Using L’Hopital’s rule.

Using L’Hopital’s rule (again)

We have L′′(0) = 1!
We proved that the

MGF of Zn converges
to that one of N (0, 1).
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