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Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any € > 0,

nlingop[|in—u| >e] =0 = 3N:vn>N: P[|7,,—u|>0.2] <0.25

X, N=3z= 0425To.22 =100
L [ | WLLN: probability for any X,
0.8 to be outside [--0.2,0.2] is at

0.6 most 0.25 for any n > 100.
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06 Central Limit Theorem will
characterise the entire
08l ~ 77| distribution of X, for large n!
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Towards the CLT: Finding the Right Scaling

= Let Xi, Xz, ... i.i.d. with x = 0 and finite o

The Sum

* Let X, := 37, X; (often denoted by Sn)

= The variance is V [)?,,] = no? = oo

The Sample Average (Sample Mean)
= LetYn = 1; . 27:1 )(/

= The variance is V [7,,] =0%/n—>0

The “Proper” Scaling (Standardising)
- Let Zn = ﬁ . 27:1 )(/
= The varianceis V[ Z,] = 1

—1+1

0 +n
—1+1 +n
—1+1 +n

Intro to Probability Central Limit Theorem



Central Limit Theorem

A. de Moivre (1667-1754) P--S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

—— Central Limit Theorem N\

Let Xi, X, . .. be any sequence of independent identically distributed ran-
dom variables with finite expectation x and finite variance o2. Let

o X oy
Zn-—\/ﬁ pn _\/E~O' <Iz_1:)(l n “)

Then for any number a € R, it holds that

1 a 2
I Fna:CDa:—/ e /2dx,
JAim Fz,(@) = @) = —5= |

where @ is the distribution function of the N/(0, 1) distribution.

\ N J
1\

In words: the distribution of Z, always converges to the
distribution function ¢ of the standard normal distribution.
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Comments on the CLT

= one of the most remarkable results in probability/statistics

= extremely powerful tool in applications: we may not know the actual
distribution in real-world, and CLT says we don’t have to(!)

= applies also to sums of random variables which may be unbounded

= adding up independent noises in measurements leads to an error
following the Normal distribution

= catch: the CLT only holds approximately, i.e., for large n

When is the approximation good?

= usually n > 10 or n > 15 is sufficient in practice

= approximation tends to be worse when threshold a is far from 0,
distribution of Xj’s asymmetric, bimodal or discrete

Intro to Probability Central Limit Theorem
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lllustration of CLT (1/4)
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lllustration of CLT (2/4)
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lllustration of CLT (3/4) (example from Lecture 8)

. spu=1-(-1)+1-1=0
[siuex] Loy aps s

ol Recall: CLT only gyarantees conver- | |
) gence of the cumulafive distribution!
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lllustration of CLT (4/4) (example from Lecture 8 cntd.)
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lllustration of CLT with Standardising
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Fig. 14.2. Densities of standardized averages Z,. Left column: from a gamma den-
sity; right column: from a bimodal density. Dotted line: N(0,1) probability density.

Source: Deeking et al., Modern Introduction to Statistics
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Recall: Standard Normal Table

Section 5.4 Normal Random Variables 201
TABLE 5.1: AREA ® (x) UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF X
X 0 01 02 03 04 05 06 0708 09

0 5000 5239 5279 5319 5359
1 5398 5636 5675 5714 5753
2 5793 6026 6103 6141
3 6179 6406 6443 6480 6517
4 6554 6772 8 6! 6879
5 6915 7123 7157 7190 7224
6 7257 7454 7486 7517 7549
a 7580 7764 7794 7823 7852
8 7881 8051 8078 8106 8133
9 8159 8315 8340 8365 .8389
Lo 8413 8554 8577 8599 8621
11 8643 8770 8790 8810  .8830
12 8849 8962 8980 8997 9015
13 9032 9131 9147 9162 9177
14 9192 9279 9292 9306 9319
15 9332 9406 9418 9429 3
1.6 9452 9515 9525 9535 9545
17 9554 9608 9616 9625
1.8 9641 9686 9693 9699 9706
19 9713 9750 9756 9761 9767
20 9772 9803 9808 9812 9817
21 9821 9846 9850 9854 9857
22 9861 9881 9884 9887 9890
23 9893 9909 9911 9913 9916
24 9918 9931 9932 9934 9936
25 9938 9948 9949 9951 9952
26 9953 9961 9962 9963 9964
27 9965 9971 9972 9973 9974
28 9974 9979 9979 9980 9981
29 9981 9985 9985 9986 9986
30 9987 9989 9989 9990 9990
31 9990 9992 9992 9993 9993
32 9993 9994 9995 9995 9995
33 9995 9996 9996 9996 9997
34 9997 9997 9997 9997 9998 \
Source: Ross, Probability 8th ed. Question: What if we
need ®(x) for negative x?
£\
™

Z~N(0,1)  P[Z<Xx]=9(X)( Due to symmetry of density
we have ®(x) = 1 — &(—x).
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Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and
you are completely unprepared. Each question has 4 choices, and you

are going to pass the exam if you guess at least 6 correct answers. Use
the normal approximation to estimate the probability of passing.

Answer

Intro to Probability Examples



Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

= Let Y ~ N(25,12.5)
" P[X <x]=PJ[Y < x] ~ reasonable approximation, but some error

0 5 10 15 20 25 30 35 40 45 50
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Approximation of the Binomial Distribution

« Let X ~ Bin(50,1/2)
= Hence 1 = 25,0 =50-1/4 =125

How good is the approximation by the CLT?

= Let Y ~ N(25,12.5)
" P[X <x]=PJ[Y < x] ~ reasonable approximation, but some error
P[X <x]~P[Y < x+0.5] ~ very tight approximation!

P[X < x]

o 5 10 15 20 25 30 85 40 45 50
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A “Reverse” Application of the CLT

Example 2

Suppose we are sequentially loading one container with packets, whose
weights are i.i.d. exponential variables with parameter A = 1/2. The

container has a capacity of 100 weight units. How many packets can we
load so that we meet the capacity threshold with at least .95 probability?

Answer
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A Sample of 100 Exponential Random Variables Exp(1/2)
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Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that
the number of heads is greater or equal than 75.

Answer

Intro to Probability Examples
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A Distribution whose Average does not converge

[ I I I I 1
0 100 200 300 400 500

CaU(27 1 ) distribution, source: Deeking et al., Modern Introduction to Statistics

The Cauchy distribution has “too heavy” tails (no ex-
pectation), in particular the average does not converge.

Intro to Probability Examples
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Towards a Proof of CLT: Moment Ge

Moment-Generating Function

| 1f X ~ A(0,1), then My(t) = &.

v
The moment-generating function of a random variable X is

Mx(t) = E [e‘x] . whereteR.

[

N
N

Using power series of e and differentiating shows that Mx(t)
encapsulates all moments of X, i.e., E[X], E[X?],.. ... J

Lemma

1. If X and Y are two r.vs with Mx(t) = My(t) for all t € (-4, +9) for
some ¢ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

Moy (1) = Mx(t) - My(t).

Proof of 2: (Proof of 1 is quite non-trivial!)

My.y(t) = E [e“xm] =E [e’X : efY] OE [efx] ‘E [efY] = Mx()My(t) O

Intro to Probability Bonus Material (non-examinable)



Proof Sketch of the Central Limit Theorem (1/2)

Proof Sketch:
= Assume w.l.o.g. that x = 0 and o = 1 (if not, scale variables)

= We also assume that the moment generating function of X,
M(t) = E [ e™] exists and is finite.
= The moment generating function of X;/v/n is given by

E [efxf/ﬁ] = M(t/v/n).

Hence by the Lemma (second statement) from the previous slide,
t>0 X t\\"
E =) = (M — .
{exp( Vn ﬂ ( (ﬁ))

L(t) := log(M(t)).
Differentiating (details ommitted here, see book by Ross) shows
L(0)=0,L'(0) = p=0and L"(0) = E [ X*] = 1.

= Now define

Intro to Probability Bonus Material (non-examinable)
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Proof Sketch of the Central Limit Theorem (2/2)

This is the moment gener-
ating function of N(0, 1).

Proof Sketch (cntd): [
= To prove the theorem, we must show that

()= eF

= We take logarithms on both sides and obtain

lim L(t/vn) _ lim —L'(t//mn" %2t <Using L'Hopital's rule. ]

n—soo N1 n— oo —2n—2
I M
n—oo 2n-1/2
. —L"(t n n3/2t2
[Using L'Hopital’s rule (again) 7 = nll)m (—én—\(S)/?

n— oo

lim [—L”(t/\@ns/2 . g]

We proved that the £
MGF of Z, converges =5
to that one of A/(0, 1).

(We have L"(0) = 1! ]
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