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Intro: Sum of Independent (Uniform) Random Variables

Let X1 and X2 be two independent random variables, both uni-
formly distributed on [0, 1]. How does the probability density
of X1 + X2 look like? What happens for X1 + X2 + X3 etc.?

Answer

Let us try to sketch the densities without explicit computations

a
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aThis is also called “convolution”. The detailed calculation for fX1+X2 can be found at the end of
these slides. The exact distribution is known for any number of random variables under the name
Irwin-Hall distribution.

Example 1
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Motivation

We will study sums of independent variables. How does their distribu-
tion look like, and how well do they concentrate around the expectation?

0 1 2 3 4
0

0.5

1
fX1+X2

fX1+X2+X3

fX1+X2+X3+X4

(1 + δ)µ(1 − δ)µ µ

1. Markov’s inequality

2. Chebyshev’s inequality

3. Law of Large Numbers

4. Central Limit Theorem

Re-use concepts from previous lectures:

1. Independence (Random Var.) (Lec. 1, 7)

2. Expectation and Variance (Lec. 2, 3)

3. Normal Distribution (Lec. 5)

4. Sums of Random Variables (Lec. 6)
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Markov’s Inequality

For any non-negative random variable X with finite E [ X ],
it holds for any a > 0,

P [ X ≥ a ] ≤ E [ X ]

a
.

Markov’s Inequality

A. Markov (1856-1922)

Markov’s inequality is a so-called tail-bound: it upper bounds
the probability that the random variable exceeds its mean

Comments:

Markov’s inequality can be rewritten as: for any δ > 0,

P [ X ≥ δ · E [ X ] ] ≤ 1/δ.

Advantage: Very basic inequality, we only need to know E [ X ]

Downside: For many distributions, the tail bound might be quite loose

Proof is similar to the proof of Chebyshev’s inequality (Exercise!)
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Applying Markov’s Inequality

Consider throwing an unbiased, six-sided dice 120 times and let X
denote the number of times we obtain a six.

1. Derive an upper bound on P [ X ≥ 30 ].
2. Can you also derive an upper bound on P [ X ≤ 10 ]?

Answer

1. First compute E [ X ]

= 1/6 · 120 = 20. Then by Markov:

P [ X ≥ 30 ] ≤ 20
30

=
2
3
.

2. Consider now the second bound.

Define a new random variable Y := 120 − X .
⇒ This random variable is also non-negative (as X ≤ 120).

Applying Markov’s inequality (equivalent version) to Y yields:

P [X ≤ 10 ] = P [Y ≥ 110 ] = P
[

Y ≥
110
100

· E [Y ]

]
≤

100
110

=
10
11

.

Both bounds, especially the second, are quite loose!

Example 2
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Chebyshev’s Inequality

For any random variable X with finite E [ X ] and V [ X ], for
any a > 0,

P [ |X − E [ X ] | ≥ a ] ≤ V [ X ] /a2.

Chebyshev’s Inequality

P. Chebyshev (1821-1894)

Comments:

can be rewritten as:

P
[
|X − E [ X ] | ≥

√
δ · V [ X ]

]
≤ 1/δ.

Unlike Markov, Chebyshev’s inequality holds is two-sided and also for
random variables with negative values

In most cases, Chebyshev’s inequality yields much stronger bounds than
Markov (however, it requires knowledge not only of E [ X ] but also V [ X ]!)

Chebyshev’s inequality is also known as Second Moment Method

The “µ ± a few σ” rule. Most of the probability
mass is within a few standard deviations from µ.
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Derivation of Chebychev’s inequality

We will give a self-contained proof for a continuous random variable
X (the case for discrete X is analogous).

Write down the definition of V [ X ] and then lower bound:

V [ X ] = E
[

(X − µ)2
]

=

∫ ∞
−∞

(x − µ)2 · fX (x) dx

≥
∫
|x−µ|≥a

(x − µ)2 · fX (x) dx

≥
∫
|x−µ|≥a

a2 · fX (x) dx

= a2 ·
∫
|x−µ|≥a

fX (x) dx

= a2 · P [ |X − µ| ≥ a ] .

Dividing both sides by a2 yields the result.

Proof

Exercise: Can you find a proof that uses Markov’s inequality?
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Example: Chebychev is (usually) much stronger than Markov

Throw an unbiased coin n times and let X be the total number of
heads. In an experiment, with n large, we would usually expect a
number of heads that is close to the expectation. Can we justify that?

Answer

X ∼ Bin(n, 1/2) so E [ X ] = n · 1
2 .

Markov’s inequality: For any δ > 0,

P [ X ≥ (1 + δ) · E [ X ] ] ≤ 1
1 + δ

Chebychev’s inequality:

⇒ We have V [ X ] = np(1− p) = n · 1/2 · 1/2. For any δ > 0,

P [ X ≥ (1 + δ) · E [ X ] ] = P [ X − E [ X ] ≥ δ · E [ X ] ]

≤ P [ |X − n/2| ≥ δ · (n/2) ]

≤ n · 1/4
δ2(n/2)2 =

1
δ2n

Not good! Independent of n

Much better! (Inversely) Linear in n

Example 3
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Law of Large Numbers

Let X n := 1/n ·
∑n

i=1 Xi , where the Xi ’s are i.i.d.with finite expectation µ
and finite variance σ2.

Then, for any ε > 0,

lim
n→∞

P
[
|X n − µ| > ε

]
= 0

The Weak Law of Large Numbers

= independent and identically distributed

∀ε > 0 : ∀δ > 0 : ∃N > 0 : ∀n ≥ N : P
[
|X n − µ| > ε

]
≤ δ

“Power of Averaging”: repeated samples allow us to estimate µ

A similar statement holds even if the Xi ’s are not identically distributed.

There is also a strong law of large numbers:

P
[

lim
n→∞

X n = µ
]

= 1.

“For even the most stupid of men, by some instinct of na-
ture, by himself and without any instruction (which is a remark-
able thing), is convinced that the more observations have been
made, the less danger there is of wandering from one’s goal.” J. Bernoulli (1655-1705)
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Illustration of Weak Law of Large Numbers (1/4)

Let Xi be independent random variables taking values ∈ {−1,+1} with
probability 1/2 each

Consider X̃n :=
∑n

i=1 Xi for any n = 0, 1, . . . , 200

How does a “typical” realisation look like?
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Illustration of Weak Law of Large Numbers (2/4)
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Plot of the Distributions for n = 0,1, . . . ,20
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Plot of the Distributions for n = 0,1, . . . ,50
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Plot of the Distributions for n = 0,1, . . . ,80
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Plot of the Distributions for n = 0,1, . . . ,80
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Interlude: Approximation of P[ X̃n = 0 ]

.08
80.09
00.09
10.09
20.09
30.09
50.09
60.09
70.09
90.10
00.10
20.10
40.10
60.10
80.11
00.11
20.11
40.11
70.11
90.12
20.12
50.12
80.13
20.13
50.13
90.14
40.14
90.15
40.16
10.16
80.17
60.18
50.19
600.2
100.2
300.2
500.2
700.3
100.3
800.5
001.0
0

Try to find an expression for P
[

X̃n = 0
]
. Using Stir-

ling’s approximation for n!, conclude that P
[

X̃n = 0
]

=

Θ(1/
√

n) for even integers n.

Exercise
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Illustration of Weak Law of Large Numbers (3/4)

Let Xi be independent random variables taking values ∈ {−1,+1} with
probability 1/2 each

Consider X̃n :=
∑n

i=1 Xi for any for any n = 0, 1, . . . , 200

This does not converge!

Consider now the average (sample mean): X n := 1/n ·
∑n

i=1 Xi .
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Illustration of Weak Law of Large Numbers (4/4)
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Proof of the Weak Law of Large Numbers

Let X n := 1/n ·
∑n

i=1 Xi , where the Xi ’s are i.i.d. with finite expectation µ
and finite variance σ2. Then, for any ε > 0,

lim
n→∞

P
[
|X n − µ| > ε

]
= 0

The Weak Law of Large Numbers

Let X n := 1/n ·
∑n

i=1 Xi

Then E
[

X n

]
= µ and

V
[

X n

]
= 1/n2 · V

[∑n
i=1 Xi

]
= 1/n2 ·

∑n
i=1 V [ Xi ] = 1/n · σ2.

Applying Chebyshev’s inequality yields:

P
[ ∣∣∣X n − E

[
X n

]∣∣∣ > ε
]

≤ 1
ε2 · V

[
X n

]
=

σ2

nε2 .

For any (fixed) ε > 0, the right hand side vanishes as n→∞.

(Let ε > 0, δ > 0. Pick N = σ2

ε2·δ
. Then for any n ≥ N, the probability above is smaller than δ.)

Proof
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Inferring Probabilities of an Event

Suppose that, instead of the expectation µ, we want to estimate the
probability of an event, e.g.,

p := P [ X ∈ (a, b] ] , where a < b.

How can we use the Law of Large Numbers?
Answer

Let X1,X2, . . . ,Xn ∼ X . For each 1 ≤ i ≤ n, define:

Yi =

{
1 if Xi ∈ (a, b],

0 otherwise.

We have:

E [ Yi ] = P [ Xi ∈ (a, b] ] · 1 + P [ Xi 6∈ (a, b] ] · 0 = p.

Similarly, V [ Yi ] = p(1− p)

The random variables Y1,Y2, . . . ,Yn are i.i.d., so we can apply the
Law of Large Numbers to Y n.

Can use similar argument to recover the probability mass or density!

Example 4
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Appendix: Sum of Two Uniform R.V. (non-examinable)

Let X and Y be two independent random variables, both uniformly
distributed on [0, 1]. How does the probability density of X + Y look like?

Answer

We have
fX+Y (a)

(?)
=

∫ +∞

−∞
fX (a − y)fY (y)dy,

where for (?), see Chapter 6.3 in Ross (Chapter 11.2 in Dekking et al.). Since fY (y) = 1 if
0 ≤ y ≤ 1 and fY (y) = 0 otherwise, we have

fX+Y (a) =
∫ 1

0
fX (a − y)dy.

Further, for 0 ≤ a ≤ 1 we have fX (a − y) = 1 and fX (a − y) = 0 otherwise, and thus

fX+Y (a) =
∫ a

0
dy = a.

Similarly, for 1 < a < 2, fX+Y (a) =
∫ 2

a dy = 2 − a. Therefore,

fX+Y (a) =


a if 0 ≤ a ≤ 1,
2 − a if 1 ≤ a ≤ 2,
0 otherwise.

Example
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