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Independence of Random Variables

Two random variables X and Y are independent if for all values a, b:

P [X ≤ a,Y ≤ b ] = P [X ≤ a ] · P [Y ≤ b ] .

Definition of Independence

For two discrete random variables, an equivalent definition is:

P [X = a,Y = b ] = P [X = a ] · P [Y = b ] .

This is useless for continuous random variables.

This definition covers the discrete and continuous case!

Using the joint probability distribution, the above is equivalent to for all a, b,

F (a, b) = FX (a) · FY (b).

Remark

All these definitions extend in the natural way to more than two variables!
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Factorisation

The definition of independence of X and Y implies the following factor-
isation formula: for any “suitable” sets A and B,

P [X ∈ A,Y ∈ B ] = P [X ∈ A ] · P [Y ∈ B ]

For continuous distributions one obtains by differentiating both sides in
the formula for the joint distribution:

fX ,Y (x , y) = fX (x) · fY (y)

Factorisation

Let X and Y be two independent variables. Let I = (a, b] be any interval
and define U := 1X∈I and V := 1Y∈I . Prove U and V are independent.

Answer
P [U = 0,V = 1 ] = P

[
X ∈ Ic ,Y ∈ I

]
= P

[
X ̸∈ Ic ]P [Y ∈ I ] = P [U = 0 ]P [V = 1 ] .

Verification for other combination of values is similar (U =1, V =0 and U =0, V =0, etc).

Independence is inherited under applying functions h1 and
h2 to X and Y , respectively (in this example h1 = h2.)

Example
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Buffon’s Needle Problem (1/2)

Georges-Louis Leclerc de Buffon 1707–1788 (Source Wikipedia) Source: Ross, Probability 8th ed.

A table is ruled with equidistant, parallel lines a distance D apart.

A needle of length L is thrown randomly on the table.

What is the probability that the needle will intersect one of the two lines?

Let X be the distance of the middle point of the needle to the closest parallel
line. Needle intersects a line if hypotenuse of the triangle is less than L/2, i.e.,

X
cos(θ)

<
L
2

⇔ X <
L
2
cos(θ).

We assume that X ∈ [0,D/2] and θ ∈ [0, π/2] are independent and uniform.

Can be thought of as: 1. Sample the middle point of needle, 2. Sample the angle.
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Buffon’s Needle Problem (2/2)

Let us compute the probability that the line intersects:

P
[

X <
L
2
· cos(θ)

]
=

∫∫
x<(L/2) cos y

fX ,θ(x , y) dx dy

=

∫∫
x<(L/2) cos y

fX (x)fθ(y) dx dy

=
4
πD

∫ π/2

0

∫ L/2 cos(y)

0
dxdy

=
4
πD

∫ π/2

0

L
2
cos(y)dy

=
2L
πD

.

This gives us a method to estimate π!
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Covariance

Let X and Y be two random variables. The covariance is defined as:

Cov [X ,Y ] = E [ (X − E [X ]) · (Y − E [Y ]) ] .

Definition of Covariance

Interpretation:

If Cov [X ,Y ] > 0 and X has a realisation larger (smaller) than E [X ],
then Y will likely have a realisation larger (smaller) than E [Y ].

If Cov [X ,Y ] < 0, then it is the other way around.

Using the linearity of expectation rule, one has the equivalent definition:

Cov [X ,Y ] = E [X · Y ]− E [X ] · E [Y ] .

Alternative Formula

Note that Cov [X ,X ] = V [X ].
Two variables X ,Y with Cov [X ,Y ] > 0 are positively correlated.
Two variables X ,Y with Cov [X ,Y ] < 0 are negatively correlated.
Two variables X ,Y with Cov [X ,Y ] = 0 are uncorrelated.
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Illustration of 3 Cases for Cov [X ,Y ]

500 outcomes of randomly generated pairs of RVs (X ,Y ) with different joint distributions

Source: Textbook by Dekking

1. What is the covariance (positive, negative, neutral)?
Left: set of sampled points has a circular shape, so uncorrelated.
Middle: looks like ellipsoids with y =x as main axis, so positively correlated.
Right: looks like ellipsoids with y = −x as main axis, so negatively correlated.

2. Where is the covariance the largest (in magnitude)?
Right: points more closely concentrated, hence correlation is largest.
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Independence implies Uncorrelated

Let X and Y be two independent random variables. Then X and Y are
uncorrelated, i.e., Cov [X ,Y ] = 0.

Answer

We give a proof for the discrete case:

E [X · Y ] =
∑

i

∑
j

ai · bj · P [X = ai ,Y = bj ]

=
∑

i

∑
j

ai · bj · P [X = ai ] · P [Y = bj ]

=

(∑
i

ai · P [X = ai ]

)
·

∑
j

bj · P [Y = bj ]


= E [X ] · E [Y ] .

Example
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Uncorrelated may not imply Independence

Find a (simple) example of two random variables X and Y which are un-
correlated but dependent.

Answer

Let X be uniformly sampled from {−1, 0,+1} and Y := 1X=0.

⇒ X · Y = 0 (for all outcomes), and thus

E [X · Y ] = 0.

Further, E [X ] = 0 (and E [Y ] = 1/3), and hence:

Cov [X ,Y ] = E [X · Y ]− E [X ] · E [Y ] = 0.

On the other hand, P [X = 0 ] = 1/3 and P [Y = 0 ] = 2/3, and thus

1 = P [X · Y = 0 ] > P [X = 0 ] · P [Y = 0 ] = 2/9.

Example
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Variance of Sums and Covariances

For any two random variables X ,Y ,

V [X + Y ] = V [X ] + V [Y ] + 2 · Cov [X ,Y ] .

Hence if X and Y are uncorrelated variables,

V [X + Y ] = V [X ] + V [Y ] .

For any random variables X1,X2, . . . ,Xn:

V

[
n∑

i=1

Xi

]
=

n∑
i=1

V [Xi ] + 2 ·
n∑

i=1

n∑
j=i+1

Cov [Xi ,Xj ] .

Variance of Sum Formula

Generalisation of the case where

X and Y are even independent!
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Computing Variances of Sums of Uncorrelated Variables

Recall the example where X ∈ {−1, 0,+1} uniformly and Y := 1X=0. Com-
pute V [X + Y ].

Answer

We first compute V [X ]:

V [X ] =
1
3
· (−1)2 +

1
3
· 12 =

2
3
.

Now for V [Y ]:

V [Y ] =
1
3
· (1 − 1

3
)2 +

2
3
(0 − 1

3
)2

=
2
9
.

⇒ Hence:

V [X + Y ] = V [X ] + V [Y ] + 2 · Cov [X ,Y ]

=
2
3
+

2
9
+ 0 =

8
9
.

Example
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Correlation Coefficient: Normalising the Covariance

The definition of covariance is not scaling invariant:
If X increases by a factor of α, then Cov [X ,Y ] increase by a factor of α.

⇒ Even if X and Y both increase by α, then Cov [X ,Y ] will change.
(Exercise: It changes by?)

Let X and Y be two random variables. The correlation coefficient ρ(X ,Y )
is defined as:

ρ(X ,Y ) =
Cov [X ,Y ]√
V [X ] · V [Y ]

.

If V [X ] = 0 or V [Y ] = 0, then it is defined as 0.

Correlation Coefficient

Properties:
1. The correlation coefficient is scaling-invariant, i.e.,

ρ(X ,Y ) = ρ(α · X , β · Y ) for any α, β > 0.
2. For any two random variables X ,Y , ρ(X ,Y ) ∈ [−1, 1].
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Range of the Correlation Coefficient

Verify that the correlation coefficients’ range satisfies ρ(X ,Y ) ∈ [−1, 1].
Answer

We will only prove ρ(X ,Y ) ≥ −1 (the other direction follows in
analogous way).

Let σ2
x and σ2

y denote the variances of X and Y , and σx and σy their
standard deviations.

Then:

0 ≤ V
[

X
σx

+
Y
σY

]
= V

[
X
σX

]
+ V

[
Y
σY

]
+ 2 Cov

[
X
σX

,
Y
σY

]
=

V [X ]

V [X ]
+

V [Y ]

V [Y ]
+ 2 · Cov [X ,Y ]

σX · σX

= 2 · (1 + ρ(X ,Y )).

Example
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Using Covariance in Gambling/Trading

Suppose a friend is known to predict the daily change of a certain stock price. After
thoroughly testing, you are convinced that the covariance of the predicted relative
change X ∈ [−1,∞) and the actual relative change Y ∈ [−1,∞) satisfy E [X ] = 0
and Cov [X ,Y ] > 0. Using the information given by X on each day, propose a
strategy, by which – at least theoretically – you earn money (in expectation).

Answer

If X = x > 0 then we are going to buy x units of stock, sell it on the next day
and will have earned (or lost) x · y .
If X = x < 0 then we are going to “short–sell” (This can be regarded as the
inverse operation of buying – the details are not important here.) −x units of
stock, and on the next day we will have earned (or lost) x · y .
The expected earning/loss after one day equals∑

x∈X

P [X = x ] ·
∑
y∈Y

P [Y = y | X = x ] · (x · y)

=
∑

x∈X ,y∈Y

P [X = x ,Y = y ] · (x · y)

= E [X · Y ] .

Since E [X ] = 0, it follows that E [X · Y ] = Cov [X ,Y ] > 0.

Example

Generalisation: If E [X ] > 0,
we would buy x − E [X ] units.
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