Introduction to Probability

Lecture 5+: Continuous random variables
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable

From discrete to continuous RV

- So far, all RV were discrete: can only take on integer values.
- If RV need to take on values in the real number domain (\mathbb{R}), then continuous random variable.
- Examples of continuous RV: Uniform RV, Exponential RV, Normal RV.
- Continuous RV are just like discrete RV, except that every sum becomes an integral.
- Example of possible values of continuous RV X :

$$
\begin{aligned}
(0,1) & =\{x \in \mathbb{R} ; 0<x<1\} \\
{[0,1] } & =\{x \in \mathbb{R} ; 0 \leq x \leq 1\} \\
{[0,1) } & =\{x \in \mathbb{R} ; 0 \leq x<1\} \\
(-\infty, \infty) & =\text { all real numbers }
\end{aligned}
$$

- Examples:
- X: price of a stock
- X : time that a machine works before breakdown
- X : error in an experimental measurement

Integral $=$ area under a curve $=\int_{x=a}^{b} g(x) d x=\left.G(x)\right|_{a} ^{b}=G(b)-G(a)$ where $G(x)$ is the antiderivative for $g(x)$.
Some examples:

$$
\begin{aligned}
\int_{a}^{b} x^{2} d x & =\left.\frac{x^{3}}{3}\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3} & \int a d x=a x+C \\
\int \frac{1}{x} d x & =\ln |x|+C & \int e^{x} d x=e^{x}+C
\end{aligned}
$$

Continuous paradigm

- The most important property of discrete RV was probability mass function (PMF) denoting the probability of the RV taking on a certain value.
- But in the continuous world this is impossible:

What is the probability that a newborn child weighs exactly 3.215438765432532 kg ? NONE

- Real values are defined with infinite precision, thus the probability that a $R V$ takes on a specific value is not meaningful when the RV is continuous.
- We need a function that says how likely is it that a RV takes on a particular value relative to other values that it could take on: probability density function.

Definition of continuous RV

Continuous random variable

A random variable X is continuous if there is a probability density function (PDF), $f(x) \geq 0$ such that for $-\infty<x<\infty$:

$$
\mathbf{P}[a \leq X \leq b]=\int_{a}^{b} f(x) d x
$$

To preserve the axioms that guarantee that $\mathbf{P}[a \leq X \leq b]$ is a probability, the following properties must hold:

$$
\begin{aligned}
& 0 \leq \mathbf{P}[a \leq X \leq b] \leq 1 \\
& \mathbf{P}[-\infty<X<\infty]=1 \quad\left(=\int_{-\infty}^{\infty} f(x) d x\right)
\end{aligned}
$$

- Note: we also write $f(x)$ as $f_{X}(x)$.
- In continuous world, every RV has a PDF: its relative value wrt to other possible values.
- Integrate $f(x)$ to get probabilities.

Comparing PMF and PDF

Discrete random variable X	Continuous random variable X
Probability mass function (PMF):	Probability density function (PDF):
$p(x)$	$f(x)$
Compute probability:	Compute probability:
$\mathbf{P}[X=x]=p(x)$	
$\mathbf{P}[a \leq X \leq b]=\sum_{x=a}^{b} p(x)$	$\mathbf{P}[a \leq X \leq b]=\int_{x=a}^{b} f(x) d x$

Both are measures of how likely is X to take on a value.

Computing probability example

Example

Let X be a continuous RV with PDF:

$$
f(x)= \begin{cases}\frac{1}{2} x & \text { if } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

What is $\mathbf{P}[X \geq 1]$?

PDF properties

- $f(x)$ is NOT a probability, it is probability density:

$$
\mathbf{P}[X=a]=\int_{a}^{a} f(x) d x=0 \neq f(a)
$$

$\mathbf{P}\left[a-\frac{\epsilon}{2} \leq X \leq a+\frac{\epsilon}{2}\right]=\int_{a-\frac{\epsilon}{2}}^{a+\frac{\epsilon}{2}} f(x) d x \approx$ width \times height $=\epsilon f(a)$
Thus, $\mathbf{P}[X=a]=\lim _{\epsilon \rightarrow 0} \epsilon f(a)=0$.

- $\mathbf{P}[a \leq X \leq b]=\mathbf{P}[a<X \leq b]=\mathbf{P}[a \leq X<b]=\mathbf{P}[a<X<b]$

PDF and probability example

Example

Let X be a continuous RV with PDF:

$$
f(x)= \begin{cases}C\left(4 x-2 x^{2}\right) & \text { when } 0<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

What is the value of the constant C ? What is $\mathbf{P}[X>1]$?

C is a normalisation constant. We know that PDF must sum to 1 :

PDF and probability example cont.

Example

Let X be a continuous RV with PDF:

$$
f(x)= \begin{cases}C\left(4 x-2 x^{2}\right) & \text { when } 0<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

What is the value of the constant C ? What is $\mathbf{P}[X>1]$?

$$
\begin{aligned}
\mathbf{P}[X>1] & =\int_{1}^{\infty} f(x) d x=\int_{1}^{2} f(x) d x+\int_{2}^{\infty} 0 d x \\
& =\int_{1}^{2} \frac{3}{8}\left(4 x-2 x^{2}\right) d x=\left.\frac{3}{8}\left(2 x^{2}-\frac{2 x^{3}}{3}\right)\right|_{1} ^{2}= \\
& =\frac{3}{8}\left(\left(8-\frac{16}{3}\right)-\left(2-\frac{2}{3}\right)\right)=\frac{1}{2}
\end{aligned}
$$

Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable

Cumulative distribution function

- Since PDF is not a probability, we need to solve an integral every single time we want to calculate a probability.
- To save effort, cumulative distribution function (CDF) computes this: $F(a)=F_{X}(a)=\mathbf{P}[X \leq a]$ where $-\infty<a<\infty$.
- Recall: CDF for discrete RV is $F(a)=\sum_{\text {all } x \leq a} p(x)$

Cumulative distribution function for a continuous RV

For a continuous random variable X with PDF $f(x)$, the cumulative distribution function (CDF) is:

$$
\begin{aligned}
& F_{X}(a)=\mathbf{P}[X \leq a]=\int_{-\infty}^{a} f(x) d x \\
& f(x)
\end{aligned}
$$

CDF properties

- While PDF is not a probability, CDF is.
- If you learn to use CDFs, you can avoid integrating the PDF.
- It is a matter of convention that CDF is probability that a RV takes on a value less than (or equal to) the input value as opposed to greater than.
- Useful examples of using CDF:

Probability question	Solution
$\mathbf{P}[X \leq a]$	$F(a)$
$\mathbf{P}[X<a]$	$F(a)$
$\mathbf{P}[X>a]$	$1-F(a)$
$\mathbf{P}[a<X<b]$	$F(b)-F(a)$

Explanation
Definition of CDF
Note that $\mathbf{P}[X=a]=0$
$\mathbf{P}[X \leq a]+\mathbf{P}[X>a]=1$
$F(a)+\mathbf{P}[a<X<b]=F(b)$

Computing CDF

$$
\begin{aligned}
F(b)-F(a) & =\int_{-\infty}^{b} f(x) d x-\int_{-\infty}^{a} f(x) d x \\
& =\left(\int_{-\infty}^{a} f(x) d x+\int_{a}^{b} f(x) d x\right)-\int_{-\infty}^{a} f(x) d x \\
& =\int_{a}^{b} f(x) d x=\mathbf{P}[a<x<b]=\mathbf{P}[a \leq X \leq b]
\end{aligned}
$$

Expectation and variance for continuous RV

Discrete RV X

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{x} x p(x) \\
\mathbf{E}[g(X)] & =\sum_{x} g(x) p(x)
\end{aligned}
$$

Continuous RV X

$$
\begin{gathered}
\mathbf{E}[X]=\int_{-\infty}^{\infty} x f(x) d x \\
\mathbf{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
\end{gathered}
$$

Both continuous and discrete RVs

$$
\begin{aligned}
\mathbf{E}[a X+b]=a \mathbf{E}[X]+b & \text { Linearity of expectation } \\
\mathbf{V}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-\left(\mathbf{E}[X]^{2}\right) & \text { Properties of } \\
\mathbf{V}[a X+b]=a^{2} \mathbf{V}[X] & \text { variance }
\end{aligned}
$$

Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable

Uniform continuous RV

Uniform continuous random variable

A uniform continuous random variable X is defined as follows:

$$
\mathbf{X} \sim \mathbf{U n i}(\alpha, \beta)
$$

Range: $[\alpha, \beta]$, sometimes (α, β)

$$
\text { PDF: } f(x)= \begin{cases}\frac{1}{\beta-\alpha} & \text { when } \alpha \leq x \leq \beta \\ 0 & \text { otherwise }\end{cases}
$$

Expectation: $\mathbf{E}[X]=\frac{\alpha+\beta}{2}$

$$
\text { Variance: } \quad \mathbf{V}[X]=\frac{(\beta-\alpha)^{2}}{12}
$$

- Notice that the density $\frac{1}{\beta-\alpha}$ is exactly the same regardless of the value of x. This makes it uniform.
- The PDF is $\frac{1}{\beta-\alpha}$ since it is a constant such that the integral over all possible inputs evaluates to 1 .

Public transport example

Example

The University bus arrives at the Computer Lab bus stop at 7:00, 7:15 and so on at 15 minute intervals. You arrive at the bus stop a time uniformly distributed in the interval between 1 pm and $1: 30 \mathrm{pm}$. What is the probability that you wait less than 5 minutes for the bus?

Let X be a RV for the time you arrive after 1 pm to the bus stop.
Define RVs: $X \sim \operatorname{Uni}(0,30)$
Solve:

Expectation for Uniform RV

$$
\mathbf{E}[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x=\int_{\alpha}^{\beta} x \cdot \frac{1}{\beta-\alpha} d x
$$

$$
=\left.\frac{1}{\beta-\alpha} \frac{1}{2} x^{2}\right|_{\alpha} ^{\beta}=\frac{1}{\beta-\alpha} \frac{1}{2}\left(\beta^{2}-\alpha^{2}\right)
$$

$$
=\frac{1}{2} \frac{(\beta+\alpha)(\beta-\alpha)}{\beta-\alpha}=\frac{\alpha+\beta}{2}
$$

Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable

Exponential continuous RV

Exponential continuous random variable

An exponential random variable X represents the time until an event (first success) occurs. It is parametrised by $\lambda>0$, the constant rate at which the event occurs.

$$
\mathbf{X} \sim \operatorname{Exp}(\lambda)
$$

Range: $[0, \infty)$

$$
\text { PDF: } f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { when } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Expectation: $\mathrm{E}[X]=\frac{1}{\lambda} \quad$ (time)
Variance: $\quad \mathrm{V}[X]=\frac{1}{\lambda^{2}}$

- Examples: time until next earthquake, time for request to reach web server, time until end of mobile phone contract.
- Note that λ is the same as the one in the Poisson RV.
- Poisson RV counts \# of events that occur in a fixed interval, exponential RV measures the amount of time until the next event occurs.

Pandemic example

Example

Major pandemics occur once every 100 years. What is the probability of a major pandemic in the next 5 years? What is the standard deviation of years until the next pandemic?
\qquad
Let X be a RV for the time when the next pandemic happens.
Let a unit of time be 1 year.
Define RVs: $X \sim \operatorname{Exp}(\lambda), \mathbf{E}[X]=\frac{1}{\lambda}=100$, thus $\lambda=\frac{1}{100}=0.01$ $X \sim \operatorname{Exp}(\lambda=0.01)$.
Solve: Compute $\mathbf{P}[X<5]$, $\mathbf{S D}[X]$.

CDF of Exponential RV

CDF for Exponential RV

If X is an exponential continuous random variable, $X \sim \operatorname{Exp}(\lambda)$, then its cumulative distribution function CDF (where $x \geq 0$) is

$$
F(x)=1-e^{-\lambda x}
$$

Proof:

$$
\begin{aligned}
F(x) & =\mathbf{P}[X \leq x]=\int_{0}^{x} \lambda e^{-\lambda x} d x \\
& =\left.\lambda \frac{1}{-\lambda} e^{-\lambda x}\right|_{0} ^{x} \\
& =-1\left(e^{-\lambda x}-e^{-\lambda 0}\right) \\
& =1-e^{-\lambda x}
\end{aligned}
$$

Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable

Normal continuous RV

Normal continuous random variable

A normal random variable X, parametrised over mean μ and variance σ^{2} is defined as

$$
\begin{aligned}
& \mathbf{X} \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
& \text { Range: }(-\infty, \infty) \\
& \text { PDF: } f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
& \text { Expectation: } \mathbf{E}[X]=\mu \\
& \text { Variance: } \mathbf{V}[X]=\sigma^{2}
\end{aligned}
$$

- The most important random variable type, AKA Gaussian RV and Bell curve.
- Generated from summing independent RV, thus occurs often in nature (cf. Central Limit Theorem in Lecture 8).
- Used to model entropic (conservative) distribution of data with mean and variance.

Normal RV paradigm

Goal: translate problem statement into a RV - model real life situation with probability distributions (e.g., height distribution in a class).

Perfect fit!
But what about another class? Overfit?

Same mean and variance! Generalises well.

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. PDF of X :

Walking example

Example

You spent X minutes walking to the department every day. The average time you spend is $\mu=10$ minutes. The variance from day to day of the time spent to get to the department is $\sigma^{2}=2$ minutes 2. Suppose X is normally distributed. What is the probability you spend ≥ 12 minutes travelling to the department?

$$
X \sim \mathcal{N}\left(\mu=10, \sigma^{2}=2\right)
$$

$$
\mathbf{P}[X \geq 12]=\int_{12}^{\infty} f(x) d x=\int_{12}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

Cannot be solved analytically!

That is, no closed form for the integral of the Normal PDF. (But...)

Properties for Normal RV

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with CDF $\mathbf{P}[X \leq x]=F(x)$.

- Linear tranformations of Normal RVs are also Normal RVs.

$$
\text { If } Y=a X+b \text {, then } Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

Proof outline:

- $\mathbf{E}[Y]=\mathbf{E}[a X+b]=a \mathbf{E}[X]+b=a \mu+b$ (linearity of expectation)
- $\mathbf{V}[Y]=\mathbf{V}[a X+b]=a^{2} \mathbf{V}[X]=a^{2} \sigma^{2}$
- Y is also Normal.
- The PDF of a Normal RV is symmetric about the mean μ.

$$
F(\mu-x)=1-F(\mu+x)
$$

Computing probabilities with Normal RV

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. How do we compute CDF, $\mathbf{P}[X \leq x]=F(x)$?

- We cannot analytically solve the integral (it has no closed form).
- But we can solve numerically using a function Φ, which is a precomputed function:

CDF of the Standard Normal, Z

Z: Standard Normal RV

Standard Normal random variable Z

The Standard Normal continuous random variable Z is defined as
$\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$

Expectation: $\quad \mathbf{E}[Z]=\mu=0$ (zero mean)
Variance: $\mathrm{V}[Z]=\sigma^{2}=1$ (unit variance)

- Not a new distribution: a special case of the $\operatorname{Normal}\left(\mathcal{N}\left(\mu, \sigma^{2}\right)=\mu+\sigma \mathcal{N}(0,1)\right)$.
- CDF of Z defined as $\mathbf{P}[Z \leq z]=\Phi(z)$.

Table A. 3 Standard Normal Curve Areas (cont.)
$\Phi(z)=P(Z \leq z)$

$\mathbf{P}[Z \leq 0.83]=\Phi(0.83)=0.7967$

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	.5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	.6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	.6554	.6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	.7291	. 7324	. 7357	. 7389	.7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	.7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	.8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	.8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	.9032	.9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9278	. 9292	. 9306	. 9319
1.5	. 9332	9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6 N	orn9452	946an	rap448tm	var9at8te	.9495	. 9505	.9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	.9591	. 9599	. 9608	. 9616	. 9625	. 9633

Walking example revisited

Example

You spent X minutes walking to the department every day. The average time you spend is $\mu=10$ minutes. The variance from day to day of the time spent to get to the department is $\sigma^{2}=2$ minutes 2. Suppose X is normally distributed. What is the probability you spend ≥ 12 minutes travelling to the department?
$X \sim \mathcal{N}\left(\mu=10, \sigma^{2}=2\right)$
(But $\mathbf{P}[x \geq 12]=\int_{12}^{\infty} f(x) d x$ has no analytic solution.)

1. Compute $z=\frac{(x-\mu)}{\sigma}$:
2. Look up $\Phi(z)$ in table:
