Foundations of Computer Science Lecture \#9: Sequences, or Lazy Lists

Anil Madhavapeddy
26th October 2022

Warm-Up

Question 1: What is the type of this function?

```
let cf y x = y;;
Out: val cf : 'a -> 'b -> 'a = <fun>
```

Question 2: What does (cf y) return?
It returns a constant function.

Question 3: We have the following: let add a b $=\mathrm{a}+\mathrm{b}$; ; Use a partial application of add to define an increment function:

$$
\begin{aligned}
& \text { In }: \text { let increment }=? ? ? \\
& \text { In }: \text { let increment }=\text { add } 1 ; ;
\end{aligned}
$$

Warm-Up

What is the type of f ?

type (z) :
return-type (y) :
return-type (x) :
input-type (y) :
'a
'a -> 'b
input-type (x) :

Step 1: analyze the right-hand side expression

Step 2: what are the unknown types?

Step 3: set those types.

Step 4: infer the input types.
'a -> 'b
'a -> 'b -> 'c
'a
type (y) :
type (x) :
type $(z):$
let $f x y z=x z(y z) ;$; Step 6: infer function type.

Warm-Up

Question 4: Is this function tail-recursive? Why?

```
let rec exists p = function
| [] -> false
| x::xs -> (p x) || exists p xs
It is...
let rec exists p = function
    [] -> false
    x::xs ->
    if p x then
        true else
    exists p xs
```


Data Streams - Intro

An example:
perception-action loops (basic building block of autonomy)

while(true)
get sensor data
act upon sensor data repeat

Data Streams - Intro

Sequential programs - examples include:

> "fully-defined"

- Exhaustive search
- search a book for a keyword
- search a graph for the optimal path
- Data processing
- image processing (enhance / compress)
- outlier removal / de-noise

Reactive programs - examples include:

- Control tasks
- flying a plane
- robot navigation (obstacle avoidance)

$$
\begin{aligned}
& \text { "event-triggered" } \\
& \text { "interactive" } \\
& \text { "closed-loop" }
\end{aligned}
$$

- Resource allocation
- computer processor
- Mobility-on-Demand (e.g. Uber)

A Pipeline

$$
\text { Producer } \rightarrow \text { Filter } \rightarrow \cdots \rightarrow \text { Filter } \rightarrow \text { Consumer }
$$

Produce sequence of items
Filter sequence in stages
Consume results as needed

Lazy lists join the stages together

Lazy Lists - or Streams

Lists of possibly INFINITE length

- elements computed upon demand
- avoids waste if there are many solutions
- infinite objects are a useful abstraction

In OCaml: implement laziness by delaying evaluation of the tail

In OCaml: ‘streams' reserved for input/output channels, so we use term 'sequences'

Lazy Lists in OCaml

The type unit has one element: empty tuple ()

Uses:

- Can appear in data-structures (e.g., unit-valued dictionary)
- Can be the argument of a function
- Can be the argument or result of a procedure (seen later in course)

Behaves as a tuple, is a constructor, and allowed in pattern matching:

$$
\begin{array}{ll}
\text { let } f()=. . . & \text { let } f=\text { function } \\
& \mid()->
\end{array}
$$

Expression E not evaluated until the function is applied:

```
fun () -> E
```


Lazy Lists in OCaml

```
type 'a seq =
| Nil
    Cons of 'a * (unit -> 'a seq)
let head (Cons (x, _)) = x
# val head : 'a seq -> 'a = <fun>
```


Lazy Lists in OCaml

```
type 'a seq =
    Nil
    Cons of 'a * (unit -> 'a seq)
let head (Cons (x, _)) = x
# val head : 'a seq -> 'a = <fun>
let tail (Cons (_, xf)) = xf ()
# val tail : 'a seq -> 'a seq = <fun>
```


Lazy Lists in OCaml

```
type 'a seq =
    Nil
    Cons of 'a * (unit -> 'a seq)
let head (Cons (x, _)) = x
# val head : 'a seq -> 'a = <fun>
let tail (Cons (_, xf)) = xf ()
# val tail : 'a seq -> 'a seq}== <fun>
apply xf Co () Eo evaluale
```

Cons $(x, x f)$ has head x and tail function $x f$

The Infinite Sequence, $k, k+1, k+2, \ldots$

```
let rec from k = Cons (k, fun () -> from (k + 1));;
val from : int -> int seq = <fun>
let it = from 1;;
val it : int seq = Cons (1, <fun>)
let it = tail it;;
val it : int seq = Cons (2, <fun>)
tail it;;
- : int seq = Cons (3, <fun>)
```

Recall:
let tail $($ Cons(_, xf)) $=x f() ;$ force the evalualion

Consuming a Sequence

let rec get n s =
if $\mathrm{n}=0$ then []
else
force the list
match s with
Nil -> []
Cons (x, xf) -> x : : get (n - 1) (xf ())
Get the first n elements as a list
xf () forces evaluation

Sample Evaluation

```
get 2 (from 6)
    g get 2 (Cons (6, fun () -> from (6 + 1)))
    # 6 :: get 1 (from (6 + 1))
    = 6:: get 1 (Cons (7, fun () -> from (7 + 1)))
    = 6 :: 7 :: get 0 (from (7 + 1))
    => 6 :: 7 :: get 0 (Cons (8, fun () -> from (8 + 1)))
    => 6 :: 7 :: []
    => [6; 7]
```


Joining Two Sequences

let rec appendq $\mathrm{xq} \mathrm{yq}=$
match xq with
| Nil -> yq
| Cons (x, xf) ->
Cons (x, fun () -> appendq (xf ()) yq)

Joining Two Sequences

let rec appendq $\mathrm{xq} \mathrm{yq}=$
match xq with
| Nil -> yq
Cons ($x, x f$) ->
Cons (x, fun () -> appendq (xf ()) yq)

A fair alternative...
let rec interleave $x q$ yq =
match xq with
| Nil -> yq
Cons ($x, x f$) ->
Cons (x, fun () -> interleave yq (xf ()))

Functionals for Lazy Lists

```
let rec filter p = function
| [] -> []
    x::xs ->
    if p x then
        x :: filter p xs
    else
        filter p xs
val filter : ('a -> bool) -> 'a list -> 'a list = <fun>
```

We want:
val filterq : ('a -> bool) -> 'a seq -> 'a seq = <fun>

Functionals for Lazy Lists

```
filtering
let rec filterq p = function
| Nil -> Nil
Cons (x, xf) ->
    if p x then
        Cons (x, fun () -> filterq p (xf ()))
        else
        filterq p (xf ()) What happens here?
            The infinite sequence x,f(x),f(f(x)),\ldots
    let rec iterates f x =
    Cons (x, fun () -> iterates f (f x))
val filterq : ('a -> bool) -> 'a seq -> 'a seq = <fun>
val iterates : ('a -> 'a) -> 'a -> 'a seq = <fun>
```


Functionals for Lazy Lists

Example:

```
val filterq : ('a -> bool) -> 'a seq -> 'a seq
val iterates : ('a -> 'a) -> 'a -> 'a seq
> let myseq = iterates (fun x -> x + 1) 1;;
# val myseq : int seq = Cons (1, <fun>)
> filterq (fun x -> x = 1) myseq;;
# - : int seq = Cons (1, <fun>)
> filterq (fun x -> x = 100) myseq;;
# - : int seq = Cons (100, <fun>)
> filterq (fun x -> x = 0) myseq;;
```


Reusing Functionals for Lazy Lists

Same Examples, but with no new functions:
$>$ succ;

- : int -> int $=$ <fun>
$>$ succ $1 ; i \quad$ Adding 1 has a buill-in funckion!
- : 2 = int
$>(=) 12$
- : bool = false
> let myseq $=$ iterates succ 1; ;
val myseq : int seq $=$ Cons (1, <fun>)
> filterq ((=) 1) myseq; ;
- : int seq $=$ Cons (1, <fun>)
$>$ filterq ((=) 100) myseq; ;
- : int seq =Cons (100, <fun>)
$>$ filterq ((=) 0) myseq; ; " \quad " funclion, parkially applied

Functionals for Lazy Lists

Example:

```
val filterq : ('a -> bool) -> 'a seq -> 'a seq
val iterates : ('a -> 'a) -> 'a -> 'a seq
val get : int -> 'a seq -> 'a list
> val myseq = iterates (fun x -> x + 1) 1;;
val myseq : int seq Cons (1, <fun>)
> let it = filterq (fun x -> x mod 2 = 0) myseq;;
val it : int seq = Cons (2, <fun>)
> get 5 it;;
- : int list = [2; 4; 6; 8; 10]
```

Numerical Computations on Infinite Sequences

$$
\begin{aligned}
& \text { find } \operatorname{sgrt}(a) \\
& \text { let next } a x=(a / \cdot x+. x) / \cdot 2.0
\end{aligned}
$$

Numerical Computations on Infinite Sequences

Aside: Newton-Raphson Method

Series is:

$$
\begin{array}{rlc}
x_{1} & = & x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{2} & = & x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
x_{3} & = & \vdots \\
x_{4} & = & \vdots \\
x_{5} & = & \vdots
\end{array}
$$

So if we want to find $\operatorname{sqrt}(k)$ we use:

$$
\begin{aligned}
& x^{2}=k \\
& f(x)=x^{2}-k \\
& f^{\prime}(x)=2 x
\end{aligned}
$$

Numerical Computations on Infinite Sequences

Aside: Newton-Raphson Method

Series is:

$$
\begin{array}{rlc}
x_{1} & = & x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{2} & = & x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
x_{3} & = & \vdots \\
x_{4} & = & \vdots \\
x_{5} & = & \vdots
\end{array}
$$

So if we want to find $\operatorname{sqrt}(k)$ we use:

$$
\begin{aligned}
& x^{2}=k \\
& f(x)=x^{2}-k \\
& f^{\prime}(x)=2 x
\end{aligned}
$$

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{k}{x_{n}}\right)
$$

Numerical Computations on Infinite Sequences

$$
\begin{aligned}
& \text { find sort }(a) \quad x_{n} \\
& \text { let next } \mathrm{a} x=(\mathrm{a} / \mathrm{x}+\mathrm{x} \text {) /. } 2.0 \\
& \text { Close enough? } \\
& x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{k}{x_{n}}\right)
\end{aligned}
$$

Numerical Computations on Infinite Sequences

```
find sqret(a)
let next a x = (a /. x +. x) /. 2.0
Close enough?
```

```
let rec within eps = function
```

let rec within eps = function
| Cons (x, xf) ->
| Cons (x, xf) ->
match xf () with
match xf () with
| Cons (y, yf) ->
| Cons (y, yf) ->
if abs_float (x -. y) <= eps then y
if abs_float (x -. y) <= eps then y
else within eps (Cons (y, yf)) (xo: inilial guess
Square Roots!
let root a = within 1e-6 (iterates (next a) 1.0)
epsilon
sequence

```
\(>\) root 3.0; ;
_ : float \(=1.73205080756887719\)```

