Foundations of Computer Science Lecture \#8: Currying

Anil Madhavapeddy
2022-2023

Warm-Up

Question 1: How many arguments does this function have?

$$
\begin{aligned}
& \text { let rec append }=\text { function } \\
& \text { ([], ys) }->\text { ys } \\
& (x:: x s, y s)->\text { x : append (xs,ys) } \\
& \text { One (the argument is a tuple) }
\end{aligned}
$$

Question 2: What property does an inorder conversion of a binary tree to a list preserve?

List will be sorted

Question 3: What is the depth of a balanced binary search tree with n elements?

O ($\log n$)

Functions as Values

In OCaml, functions can be

- passed as arguments to other functions,
- returned as results, say "Lambda"
- put into lists, tree, etc.:
[(fun n -> n * 2); (fun n $->n$ * 3); (fun k -> k + 1)];
- : (int -> int) list = [<fun>; <fun>; <fun>]
- but not tested for equality.

Functions without Names

fun $\mathrm{x}->E$ is the function f such that $f(x)=E$

The function (fun $n->n * 2$) is a doubling function.
(fun n -> n * 2); ;

- : int -> int = <fun>
(fun n -> n * 2) 17;
- : int $=34$

Functions without Names

```
In : (fun n -> n * 2) 2;;
Out: - : int = 4
```

... can be given a name by a let declaration

```
In : let double = fun n -> n * 2;;
Out: val double : int -> int = <fun>
In : let double n = n * 2;;
Out: val double : int -> int = <fun>
```

In both cases:
In : double 2;
Out: - : int $=4$

Functions without Names

function can be used for pattern-matching:

$$
\text { function } P_{1} \rightarrow>E_{1}|\ldots| P_{n} \rightarrow>E_{n}
$$

for example:
function 0 -> true | _ -> false
which is equivalent to:
fun x -> match x with 0 -> true | _ -> false
let is_zero = fun x -> match x with 0 -> true | _ -> false
let is_zero = function 0 -> true | _ -> false

Curried Functions

- Consider that a function can only have one argument
- Two options for multiple arguments:

1. tuples (e.g., pairs) [as seen in previous lectures]
2. a function that returns another function as a result
\rightarrow this is called currying (after H. B. Curry) ${ }^{1}$

- Currying: expressing a function taking multiple arguments as nested functions.

1 Credited to Schönfinkel, but Schönfinkeling didn't catch on...

Curried Functions

Taking multiple arguments as nested functions, so, instead of:

```
In : fun (n, k) -> n * 2 + k;;
Out: - : int * int -> int = <fun>
```

We can nest the fun-notation:
In : let it $=$ fun k-> (fun $n->n+2+k) ;$
Out: val it : int -> int -> int = <fun>

In : it 1 3;
Out: - : int = 7

Curried Functions

A curried function returns another function as its result.

prefix yields functions of type string -> string.
let promote = prefix "Professor ";
val promote : string -> string = <fun>
promote "Mopp";

- : string = "Professor Mopp"

Shorthand for Curried Functions

A function-returning function is just a function of two arguments
A function over pairs has type $(\sigma 1 \times \sigma 2) \rightarrow \tau$. A curried function has type $\sigma 1 \rightarrow(\sigma 2 \rightarrow \tau)$.

This curried function is nicer than nested fun binders:

Syntax:

$$
\text { let prefix } a b=a{ }^{\wedge} b ;
$$

val prefix : string -> (string -> string)

$$
\begin{aligned}
& \text { let dub }=\text { prefix "Lady ";; } \\
& \text { val dub : string -> string }=\text { <fun> }
\end{aligned}
$$

Curried functions allows partial application (to the first argument).

Partial Application: A Curried Insertion Sort

Key question: How to generalize <= to any data type?

```
let rec insort lessequal =
    let rec ins = function
    | x, [] -> [x]
    | \(x, y:=y s\)->
            if lessequal \(x y\) then \(x: y:: y s\)
            else \(y\) : : ins ( \(x, y s\) )
    in
    let rec sort \(=\) function
    | [] -> []
    \(x:: x s->\) ins (x, sort \(x s)\)
    in
        sort
```

val insort : ('a -> 'a -> bool) -> ('a list -> 'a list)

Partial Application: A Curried Insertion Sort

Note: (<=) denotes comparison operator as a function

```
In : insort (<=) [5; 3; 9; 8];;
Out: - : int list = [3; 5; 8; 9]
In : insort (>=) [5; 3; 9; 8];;
Out: - : int list = [9; 8; 5; 3]
In : insort (<=) ["bitten"; "on"; "a"; "bee"];;
Out: - : string list = ["a"; "bee"; "bitten"; "on"]
```


map: the 'Apply to All' Functional

```
                    noke: builk-in as Lisk.map
let rec map f = function
| [] -> []
x::xs -> (f x) :: map f xs
In : map (fun s -> s ^ "ppy");
Out: -: string list -> string list = <fun>
```

```
In : map (fun s -> s ^ "ppy") ["Hi"; "Ho"];;
Out: - : string list = ["Hippy"; "Hoppy"]
In : map (map double) [[1]; [2; 3]]; ;
Out: - : int list list = [[2]; [4; 6]]
```


Example: Matrix Transpose

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)^{T}=\left(\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right)
$$

```
let rec transp = function
| [] :: _ -> []
    rows -> (map List.hd rows) ::
    (transp (map List.tl rows))
```


Example: Matrix Transpose

```
let rec transp = function
| [] :: _ -> []
rows -> (map List.hd rows) ::
    (transp (map List.tl rows))
In : let rows = [[1; 2; 3]; [4; 5; 6]];;
In : List.hd;;
Out: - : 'a list -> ‘a = <fun>
In : transp;
Out: - : 'a list list -> 'a list list
In : map List.hd rows;
Out: - : int list = [1; 4]
In : map tl rows;
Out: - : int list list = [[2; 3]; [5; 6]]
In : transp rows;
Out: - : int list list = [[1; 4]; [2; 5]; [3; 6]]
```


Review of Matrix Multiplication

$$
\left(\begin{array}{lll}
A_{1} & \cdots & A_{k}
\end{array}\right) \cdot\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{k}
\end{array}\right)=\left(A_{1} B_{1}+\cdots+A_{k} B_{k}\right)
$$

The right side is the vector dot product $\vec{A} \cdot \vec{B}$
Repeat for each row of A and column of B

Review of Matrix Multiplication

$$
\begin{gathered}
\boldsymbol{A} \\
\left(\begin{array}{cc}
2 & 0 \\
3 & -1 \\
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 2 \\
4 & -1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 4 \\
-1 & 1 & 6 \\
4 & -1 & 0 \\
5 & -1 & 2
\end{array}\right)
\end{gathered}
$$

For element (i, j) of $A \times B$: dot-product of row i and column j

Matrix Multiplication in OCaml

```
Dot product of two vectors-a curried function
let rec dotprod xs ys =
match xs, ys with
| [], [] -> 0.0
\(x:: x s, y:: y s ~->~ x ~ * . ~ y ~+. ~ d o t p r o d ~ x s ~ y s ~\)
```

Q: What is the type of this function?
float list -> float list -> float

Matrix product
let matprod arows brows =
let cols = transp brows in
map (fun row -> map (dotprod row) cols) arows

Matrix Multiplication in OCaml

```
let rec matprod arows brows =
    let cols = transp brows in
    map (fun row -> map (dotprod row) cols) arows
```


II

List Functionals for Predicates

```
let rec exists \(p=\) function
    [] -> false
    x::xs -> (p x) || (exists p xs)
val exists : ('a -> bool) -> ('a list -> bool) = <fun>
let rec filter \(p\) = function
    [] -> []
    x::xs ->
        if \(p\) x then
        x : : filter p xs
        else
            filter p xs
val filter : ('a -> bool) -> ('a list -> 'a list) \(=\) <fun>
```

(A predicate is a boolean-valued function.)

List Functionals for Predicates

Dual to exists:
let rec all p = function
[] -> true
$x:: x s->(p x) \& \& ~ a l l p x s$
val all : ('a -> bool) -> 'a list -> bool = <fun>
Example:
> exists (fun x-> $x \bmod 2=0)$ [1; 2; 3]; ;

- : bool = true
> filter (fun x-> x mod $2=0$) [1; 2; 3]; ;
- : int list = [2]
> all (fun x-> $x \bmod 2=0)$ [1; 2; 3]; ;
- : bool = false

Applications of the Predicate Functionals

```
let member y xs =
    exists (fun x -> x = y) xs;;
let inter xs ys =
    filter (fun x -> member x ys) xs;;
```

Testing whether two lists have no common elements
let disjoint xs ys =

```
all (fun x -> all (fun y -> x <> y) ys) xs
```

