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 Warm-Up  Warm-Up 

Question 3:   What is the depth of a balanced binary search tree with 
n elements?

Question 1:   How many arguments does this function have?

Question 2:  What property does an inorder conversion of a     
binary tree to a list preserve?

One (the argument is a tuple)

let rec append = function
| ([], ys)     -> ys
| (x::xs, ys) -> x :: append (xs,ys)

O (log n)

List will be sorted



In OCaml, functions can be

• passed as arguments to other functions,

• returned as results,

• put into lists, tree, etc.:

 [(fun n -> n * 2); (fun n -> n * 3); (fun k -> k + 1)];;
- : (int -> int) list = [<fun>; <fun>; <fun>]

• but not tested for equality.

Functions as ValuesFunctions as Values

say “lambda”



Functions without NamesFunctions without Names

fun x -> 

 

The function (fun n -> n * 2) is a doubling function.
(fun n -> n * 2);;

- : int -> int = <fun>

(fun n -> n * 2) 17;;

- : int = 34
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Functions Without Names

fn x => E is the function f such that f (x) = E

The function (fn n => n*2) is a doubling function.

(fn n => n*2);

> val it = fn : int -> int

(fn n => n*2) 17;

> val it = 34 : int

The main purpose of fn-notation is to package up small expressions that are to
be applied repeatedly using some other function. The expression (fn n => n*2)

has the same value as the identifier double, declared as follows:

fun double n = n*2

The fn-notation allows pattern-matching, just as in exception handlers, to ex-
press functions with multiple clauses:

fn P1 => E1 | . . . | Pn => En

This rarely-used expression abbreviates the local declaration

let fun f (P1) = E1 | . . . | f (Pn) = En

in f end

For example, the following declarations are equivalent:

val not = (fn false => true | true => false)

fun not false = true

| not true = false



In :  let double = fun n -> n * 2;;
Out:  val double : int -> int = <fun>  

In :  let double n = n * 2;;
Out:  val double : int -> int = <fun>

Functions without NamesFunctions without Names

… can be given a name by a let declaration

In : (fun n -> n * 2) 2;;
Out: - : int = 4

In : double 2;
Out: - : int = 4

In both cases:



Functions without NamesFunctions without Names

function can be used for pattern-matching:

function P1 -> E1  |  …  |  Pn -> En

function 0 -> true | _ -> false

for example:

fun x -> match x with 0 -> true | _ -> false

let is_zero = fun x -> match x with 0 -> true | _ -> false

let is_zero = function 0 -> true | _ -> false

which is equivalent to:



Curried FunctionsCurried Functions

• Consider that a function can only have one argument

• Two options for multiple arguments:


1.  tuples (e.g., pairs)  [as seen in previous lectures] 
2.  a function that returns another function as a result

→  this is called currying  (after H. B. Curry) 1  

1  Credited to Schönfinkel, but Schönfinkeling didn’t catch on…

• Currying: expressing a function taking multiple arguments as 
nested functions.



Curried FunctionsCurried Functions

Taking multiple arguments as nested functions, so, 
instead of:

In :  fun (n, k) -> n * 2 + k;;
Out:  - : int * int -> int = <fun>

In :  let it = fun k -> (fun n -> n * 2 + k);;
Out:  val it : int -> int -> int = <fun>

In :  it 1 3;
Out: - : int = 7

k n

We can nest the fun-notation:



Curried Functions
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Curried Functions

A curried function returns another function as its result.

val prefix = (fn a => (fn b => a^b));

> val prefix = fn: string -> (string -> string)

prefix yields functions of type string -> string.

val promote = prefix "Professor ";

> val promote = fn: string -> string

promote "Mopp";

> "Professor Mopp" : string

Currying is the technique of expressing a function taking multiple arguments as
nested functions, each taking a single argument. The fn-notation lets us package
n*2 as the function (fn n => n*2), but what if there are several variables, as in
(n*2+k)? A function of two arguments could be coded using pattern-matching on
pairs, writing

fn (n,k) => n*2+k

Currying is an alternative, where we nest the fn-notation:

fn k => (fn n => n*2+k)

Applying this curried function to the argument 1 yields another function, in which
k has been replaced by 1:

fn n => n*2+1

And this function, when applied to 3, yields the result 7. The two arguments are
supplied one after another.

The example on the slide is similar but refers to the expression a^b, where ^ is
the infix operator for string concatenation. Function promote binds the first argu-
ment of prefix to "Professor "; the resulting function prefixes that title to any
string to which it is applied.

Note: The parentheses may be omitted in (fn a => (fn b => E)). They may
also be omitted in (prefix "Doctor ") "Who".

Curried Functions
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Curried Functions

A curried function returns another function as its result.

val prefix = (fn a => (fn b => a^b));

> val prefix = fn: string -> (string -> string)

prefix yields functions of type string -> string.

val promote = prefix "Professor ";

> val promote = fn: string -> string

promote "Mopp";

> "Professor Mopp" : string

Currying is the technique of expressing a function taking multiple arguments as
nested functions, each taking a single argument. The fn-notation lets us package
n*2 as the function (fn n => n*2), but what if there are several variables, as in
(n*2+k)? A function of two arguments could be coded using pattern-matching on
pairs, writing

fn (n,k) => n*2+k

Currying is an alternative, where we nest the fn-notation:

fn k => (fn n => n*2+k)

Applying this curried function to the argument 1 yields another function, in which
k has been replaced by 1:

fn n => n*2+1

And this function, when applied to 3, yields the result 7. The two arguments are
supplied one after another.

The example on the slide is similar but refers to the expression a^b, where ^ is
the infix operator for string concatenation. Function promote binds the first argu-
ment of prefix to "Professor "; the resulting function prefixes that title to any
string to which it is applied.

Note: The parentheses may be omitted in (fn a => (fn b => E)). They may
also be omitted in (prefix "Doctor ") "Who".

let prefix = (fun a -> (fun b -> a ^ b))
val prefix : string -> string -> string = <fun>

let promote = prefix "Professor ";;
val promote : string -> string = <fun>

promote "Mopp";;
- : string = "Professor Mopp"



Shorthand for Curried FunctionsShorthand for Curried Functions
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Shorthand for Curried Functions

A function-returning function is just a function of two arguments.

This curried function syntax is nicer than nested fn binders:

fun prefix a b = a^b;

> val prefix = ... as before

val dub = prefix "Sir ";

> val dub = fn: string -> string

Curried functions allows partial application (to the first argument).

In ML, an n-argument curried function f can be declared using the syntax

fun f x1 . . . xn = E

and applied using the syntax f E1 . . . En . If f is not recursive, then it is equiva-
lent to the function expressed via nesting as follows:

fn x1 => · · · (fn xn => E)

We now have two ways of expressing functions of multiple arguments: either
by passing a pair of arguments or by currying. Currying allows partial application,
which is useful when fixing the first argument yields a function that is interesting in
its own right. An example from mathematics is the function x y , where fixing y = 2
yields a function in x alone, namely squaring. Similarly, y = 3 yields cubing, while
y = 1 yields the identity function.

Though the function hd (which returns the head of a list) is not curried, it may
be used with the curried application syntax in some expressions:

hd [dub, promote] "Hamilton";

> val "Sir Hamilton" : string

Here hd is applied to a list of functions, and the resulting function (dub) is then ap-
plied to the string "Hamilton". The idea of executing code stored in data structures
reaches its full development in object-oriented programming, like in Java.

fun x1   x2  …  xn  ->  E 

Syntax:

A function over pairs has type (σ1 × σ2 ) → τ. 

A curried function has type σ1 → (σ2 → τ). 

A function-returning function is just a function of two arguments

val prefix : string -> string -> string          

the symbol -> associates to the right

( )

This curried function is nicer than nested fun binders:

let prefix a b = a ^ b;;

let dub = prefix “Lady ";;
val dub : string -> string = <fun>

let f x1   x2  …  xn  =  E 



Partial Application: A Curried Insertion SortPartial Application: A Curried Insertion Sort

val insort : ('a -> 'a -> bool) -> 'a list -> 'a list

Key question: How to generalize <= to any data type?

lessequal sort

IN OUT

( )

let rec insort lessequal =
  let rec ins = function
  | x, [] -> [x]
  | x, y::ys ->
      if lessequal x y then x::y::ys
      else y :: ins (x, ys)
  in
  let rec sort = function
  | [] -> []
  | x::xs -> ins (x, sort xs)
  in
    sort 



In : insort (<=) [5; 3; 9; 8];;
Out: - : int list = [3; 5; 8; 9]

In : insort (>=) [5; 3; 9; 8];;
Out: - : int list = [9; 8; 5; 3]

In : insort (<=) ["bitten"; "on"; "a"; "bee"];;
Out: - : string list = ["a"; "bee"; "bitten"; "on"]

Partial Application: A Curried Insertion SortPartial Application: A Curried Insertion Sort

Note:  (<=)  denotes comparison operator as a function



map: the ‘Apply to All’ Functionalmap: the ‘Apply to All’ Functional

note: built-in as List.map

In : map (fun s -> s ^ "ppy");
Out: -: string list -> string list = <fun>

let rec map f = function
| []    -> []
| x::xs -> (f x) :: map f xs 

In : map (fun s -> s ^ "ppy") ["Hi"; "Ho"];;
Out: - : string list = ["Hippy"; "Hoppy"]

In : map (map double) [[1]; [2; 3]];;
Out: - : int list list = [[2]; [4; 6]]



Example: Matrix Transpose
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Example: Matrix Transpose




a b c

d e f





T

=







a d

b e

c f







fun hd (x::_) = x;

fun tl (_::xs) = xs;

fun transp ([]::_) = []

| transp rows = (map hd rows) ::

(transp (map tl rows))

A matrix can be viewed as a list of rows, each row a list of matrix elements. This
representation is not especially efficient compared with the conventional one (using
arrays). Lists of lists turn up often, though, and we can see how to deal with them
by taking familiar matrix operations as examples. ML for the Working Programmer

goes as far as Gaussian elimination, which presents surprisingly few difficulties.

The transpose of the matrix
(

a b c
d e f

)

is

(

a d
b e
c f

)

, which in ML corresponds to the

following transformation on lists of lists:

[[a,b,c], [d,e,f]] !→ [[a,d], [b,e], [c,f]]

The workings of function transp are simple. If rows is the matrix to be trans-
posed, then map hd extracts its first column and map tl extracts its second column:

map hd rows !→ [a,d]

map tl rows !→ [[b,c], [e,f]]

A recursive call transposes the latter matrix, which is then given the column [a,d]

as its first row.
The two functions expressed using map would otherwise have to be declared

separately.

Example: Matrix Transpose

let rec transp = function
| [] :: _ -> []
| rows  -> (map List.hd rows) ::
           (transp (map List.tl rows))



let rec transp = function
| [] :: _ -> []
| rows  -> (map List.hd rows) ::
           (transp (map List.tl rows))

In : let rows = [[1; 2; 3]; [4; 5; 6]];;

In : List.hd;;
Out: - : 'a list -> ‘a = <fun>
In : transp;
Out: - : 'a list list -> 'a list list

In : map List.hd rows;
Out: - : int list = [1; 4]
In : map tl rows;
Out: - : int list list = [[2; 3]; [5; 6]]
In : transp rows;
Out: - : int list list = [[1; 4]; [2; 5]; [3; 6]]

Example: Matrix TransposeExample: Matrix Transpose



Review of Matrix Multiplication
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Review of Matrix Multiplication

(

A1 · · · Ak

)

·








B1

...

Bk








=
(

A1 B1 + · · · + Ak Bk

)

The right side is the vector dot product !A · !B

Repeat for each row of A and column of B

The dot product of two vectors is

(a1, . . . , ak) · (b1, . . . , bk) = a1b1 + · · · + akbk .

A simple case of matrix multiplication is when A consists of a single row and
B consists of a single column. Provided A and B contain the same number k of
elements, multiplying them yields a 1 × 1 matrix whose single element is the dot
product shown above.

If A is an m × k matrix and B is a k × n matrix then A × B is an m × n matrix.
For each i and j , the (i, j ) element of A × B is the dot product of row i of A with
column j of B.







2 0
3 −1
0 1
1 1







(

1 0 2
4 −1 0

)

=







2 0 4
−1 1 6
4 −1 0
5 −1 2







The (1,1) element above is computed by

(2, 0) · (1, 4) = 2 × 1 + 0 × 4 = 2.

Coding matrix multiplication in a conventional programming language usually
involves three nested loops. It is hard to avoid mistakes in the subscripting, which
often runs slowly due to redundant internal calculations.

Review of Matrix Multiplication
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2 0
3 −1
0 1
1 1







(

1 0 2
4 −1 0

)

=







2 0 4
−1 1 6
4 −1 0
5 −1 2







The (1,1) element above is computed by

(2, 0) · (1, 4) = 2 × 1 + 0 × 4 = 2.

Coding matrix multiplication in a conventional programming language usually
involves three nested loops. It is hard to avoid mistakes in the subscripting, which
often runs slowly due to redundant internal calculations.

For element (i,j) of A x B: 

dot-product of row i and column j

A x BA B

Review of Matrix MultiplicationReview of Matrix Multiplication



Matrix Multiplication in ML
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Matrix Multiplication in ML

Dot product of two vectors—a curried function

fun dotprod [] [] = 0.0

| dotprod(x::xs)(y::ys) = x*y + dotprod xs ys

Matrix product

fun matprod(Arows,Brows) =

let val cols = transp Brows

in map (fn row => map (dotprod row) cols)

Arows

end

The transp Brows converts B into a list of columns. It yields a list, whose
elements are the columns of B. Each row of A × B is obtained by multiplying a
row of A by the columns of B.

Because dotprod is curried, it can be applied to a row of A. The resulting
function is applied to all the columns of B. We have another example of currying
and partial application.

The outer map applies dotprod to each row of A. The inner map, using fn-
notation, applies dotprod row to each column of B. Compare with the version in
ML for the Working Programmer, page 89, which does not use map and requires
two additional function declarations.

In the dot product function, the two vectors must have the same length. Other-
wise, exception Match is raised.

Matrix Multiplication in OCaml

float list -> float list -> float
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Matrix Multiplication in ML

Dot product of two vectors—a curried function

fun dotprod [] [] = 0.0

| dotprod(x::xs)(y::ys) = x*y + dotprod xs ys

Matrix product

fun matprod(Arows,Brows) =

let val cols = transp Brows

in map (fn row => map (dotprod row) cols)

Arows

end

The transp Brows converts B into a list of columns. It yields a list, whose
elements are the columns of B. Each row of A × B is obtained by multiplying a
row of A by the columns of B.

Because dotprod is curried, it can be applied to a row of A. The resulting
function is applied to all the columns of B. We have another example of currying
and partial application.

The outer map applies dotprod to each row of A. The inner map, using fn-
notation, applies dotprod row to each column of B. Compare with the version in
ML for the Working Programmer, page 89, which does not use map and requires
two additional function declarations.

In the dot product function, the two vectors must have the same length. Other-
wise, exception Match is raised.

Q: What is the type of this function?

let rec dotprod xs ys =
  match xs, ys with
  | [], [] -> 0.0
  | x::xs, y::ys -> x *. y +. dotprod xs ys

let matprod arows brows =
  let cols = transp brows in
  map (fun row -> map (dotprod row) cols) arows



inner map

ou
te

r m
ap

=x

=x

let rec matprod arows brows =
  let cols = transp brows in
  map (fun row -> map (dotprod row) cols) arows

Matrix Multiplication in MLMatrix Multiplication in OCaml



List Functionals for Predicates
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List Functionals for Predicates

fun exists p [] = false

| exists p (x::xs) = (p x) orelse exists p xs;

> exists: ('a -> bool) -> ('a list -> bool)

fun filter p [] = []

| filter p (x::xs) =

if p x then x :: filter p xs

else filter p xs;

> filter: ('a -> bool) -> ('a list -> 'a list)

(A predicate is a boolean-valued function.)

The functional exists transforms a predicate into a predicate over lists. Given
a list, exists p tests whether or not some list element satisfies p (making it return
true). If it finds one, it stops searching immediately, thanks to the behaviour of
orelse.

Dually, we have a functional to test whether all list elements satisfy the predi-
cate. If it finds a counterexample then it, too, stops searching.

fun all p [] = true

| all p (x::xs) = (p x) andalso all p xs;

> all: ('a -> bool) -> ('a list -> bool)

The filter functional is related to map. It applies a predicate to all the list
elements, but instead of returning the resulting values (which could only be true

or false), it returns the list of elements satisfying the predicate.

List Functionals for Predicates

let rec exists p = function
| [] -> false
| x::xs -> (p x) || (exists p xs)
val exists : ('a -> bool) -> ('a list -> bool) = <fun>

let rec filter p = function
| [] -> []
| x::xs ->
    if p x then
      x :: filter p xs
    else
      filter p xs
val filter : ('a -> bool) -> ('a list -> 'a list) = <fun>



let rec all p = function
| [] -> true
| x::xs -> (p x) && all p xs
 
val all : ('a -> bool) -> 'a list -> bool = <fun>

List Functionals for PredicatesList Functionals for Predicates

Dual to exists: 

> exists (fun x -> x mod 2 = 0) [1; 2; 3];;
- : bool = true

> filter (fun x -> x mod 2 = 0) [1; 2; 3];;
- : int list = [2]

> all (fun x -> x mod 2 = 0) [1; 2; 3];;
- : bool = false

Example:



Applications of the Predicate Functionals
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Applications of the Predicate Functionals

fun member(y,xs) =

exists (fn x => x=y) xs;

fun inter(xs,ys) =

filter (fn x => member(x,ys)) xs;

Testing whether two lists have no common elements

fun disjoint(xs,ys) =

all (fn x => all (fn y => x<>y) ys) xs;

> val disjoint = fn: ''a list * ''a list -> bool

Lecture 4 presented the function member, which tests whether a specified value
can be found as a list element, and inter, which returns the “intersection” of two
lists: the list of elements they have in common.

But remember: the purpose of list functionals is not to replace the declarations
of popular functions, which probably are available already. It is to eliminate the
need for separate declarations of ad-hoc functions. When they are nested, like the
calls to all in disjoint above, the inner functions are almost certainly one-offs,
not worth declaring separately.

Our primitives themselves can be seen as a programming language. Part of the
task of programming is to extend our programming language with notation for solv-
ing the problem at hand. The levels of notation that we define should correspond to
natural levels of abstraction in the problem domain.

Historical Note: Alonzo Church’s λ-calculus gave a simple syntax, λ-notation,
for expressing functions. It is the direct precursor of ML’s fn-notation. It was soon
shown that his system was equivalent in computational power to Turing machines,
and Church’s thesis states that this defines precisely the set of functions that can be
computed effectively.

The λ-calculus had a tremendous influence on the design of functional pro-
gramming languages. McCarthy’s Lisp was something of a false start; it interpreted
variable binding incorrectly, an error that stood for some 20 years. But in 1966, Pe-
ter Landin (of Queen Mary College, University of London) sketched out the main
features of functional languages.

Applications of the Predicate Functionals

let member y xs =
  exists (fun x -> x = y) xs;;

let inter xs ys =
  filter (fun x -> member x ys) xs;;

let disjoint xs ys =
  all (fun x -> all (fun y -> x <> y) ys) xs




