
Foundations of Computer Science
Lecture #4: More on Lists

Anil Madhavapeddy

2022-23

 Warm-Up Warm-Up

Question 1a: What is the cost of evaluating xs @ ys?

O(List.length xs)

Question 2: What is the type of this function?
let rec flatten = function
 | [] -> []
 | l :: ls -> l @ flatten ls

Out: val flatten : 'a list list -> 'a list = <fun>

Question 1b: What is the cost of evaluating x :: xs?

O(1)

In [1]: let a = [2];;
Out[1]: val a : int list = [2]
In [2]: let b = [3; 4; 5];;
Out[2]: val b : int list = [3; 4; 5]
In [3]: a::b;;

In [3]: let b = [b];
Out[3]: val b : int list list = [[3; 4; 5]]
In [4]: a::b;;
Out[4]: - : int list list = [[2]; [3, 4, 5]]

Error: This expression has type int list
 but an expression was expected of type int list list
 Type int is not compatible with int list

Question 3a: What does this return?

Question 3c: Redefine b so that a::b works.

In [4]: a @ b;;
Out[4]: - : int list = [2; 3; 4; 5]

Question 3b: How to concatenate a and b?

A Note on Notation

let rec append1 = function
 | ([], ys) -> ys
 | (x::xs, ys) -> x :: append1 (xs, ys)

val append : 'a list * 'a list -> 'a list = <fun>

let rec append2 pair =
 match pair with
 | ([], ys) -> ys
 | (x::xs, ys) -> x :: append2 (xs, ys)

val append2 : 'a list * 'a list -> 'a list = <fun>

In :

Out:

In :

Out:

A Note on Notation

let rec append3 xs ys =
 match (xs, ys) with
 | ([], ys) -> ys
 | (x::xs, ys) -> x :: append3 xs ys

val append3 : 'a list -> 'a list -> 'a list = <fun>

let rec append4 xs ys =
 match xs with
 | [] -> ys
 | x::xs -> x :: append4 xs ys

val append : 'a list -> 'a list -> 'a list = <fun>

In :

Out:

In :

Out:

IV Foundations of Computer Science 39

Slide 401

List Utilities: take and drop

Removing the first i elements

fun take ([], _) = []

| take (x::xs, i) = if i>0

then x :: take(xs, i-1)

else [];

fun drop ([], _) = []

| drop (x::xs, i) = if i>0 then drop(xs,i-1)

else x::xs;

This lecture examines more list utilities, illustrating more patterns of recursion,
and concludes with a small program for making change.

The functions take and drop divide a list into parts, returning or discarding the
first i elements.

xs = [x0, . . . , xi−1
︸ ︷︷ ︸

take(xs, i)

, xi , . . . , xn−1
︸ ︷︷ ︸

drop(xs, i)

]

Applications of take and drop will appear in future lectures. Typically, they divide
a collection of items into equal parts for recursive processing.

The special pattern variable _ appears in both functions. This wildcard pattern

matches anything. We could have written i in both positions, but the wildcard
reminds us that the relevant clause ignores this argument.

Function take is not iterative, but making it so would not improve its efficiency.
The task requires copying up to i list elements, which must take O(i) space and
time.

Function drop simply skips over i list elements. This requires O(i) time but
only constant space. It is iterative and much faster than take. Both functions use
O(i) time, but skipping elements is faster than copying them: drop’s constant factor
is smaller.

Both functions take a list and an integer, returning a list of the same type. So
their type is ’a list * int -> ’a list.

 List Utilities: take and drop List Utilities: take and drop

 List Utilities: take and drop List Utilities: take and drop

wildcard pattern
let rec take = function
| ([], _) -> []
| (x::xs, i) ->
 if i > 0 then
 x :: take (xs, i - 1)
 else
 []

let rec drop = function
| ([], _) -> []
| (x::xs, i) ->
 if i > 0 then
 drop (xs, i - 1)
 else
 x::xs

Out: val take : 'a list * int -> 'a list = <fun>
Out: val drop : 'a list * int -> 'a list = <fun>
 
 

In : let a = [1; 2; 3; 4; 5; 6];;
In : take (a, 3);;
Out: - : int list = [1; 2; 3]

In: drop (a, 3);;
Out: - : int list = [4; 5; 6]

 List Utilities: take and drop List Utilities: take and drop

Linear Search

IV Foundations of Computer Science 40

Slide 402

Linear Search

find x in list [x1, . . . , xn] by comparing with each element

obviously O(n) TIME

simple & general

ordered searching needs only O(log n)

indexed lookup needs only O(1)

Linear search is the obvious way to find a desired item in a collection: simply
look through all the items, one at a time. If x is in the list, then it will be found in
n/2 steps on average, and even the worst case is obviously O(n).

Large collections of data are usually ordered or indexed so that items can be
found in O(log n) time, which is exponentially better than O(n). Even O(1) is
achievable (using a hash table), though subject to the usual proviso that machine
limits are not exceeded.

Efficient indexing methods are of prime importance: consider Web search en-
gines. Nevertheless, linear search is often used to search small collections because
it is so simple and general, and it is the starting point for better algorithms.

Linear Search

more about search in Lecture 10…

Types with Equality

IV Foundations of Computer Science 41

Slide 403

Types with Equality

The membership test has a strange polymorphic type.

fun member(x, []) = false

| member(x, y::l) = (x=y) orelse member(x,l);

> val member = fn : ''a * ''a list -> bool

Here, ”a stands for any equality type.

Equality testing is OK for integers but NOT for functions.

All the list functions we have encountered up to now have been polymorphic,
working for lists of any type. Function member uses linear search to report whether
or not x occurs in l. Its polymorphism is restricted to the so-called equality types.
These include integers, strings, booleans, and tuples or lists of other equality types.

Equality testing is not available for every type, however. Functions are values
in ML, and there is no way of comparing two functions that is both practical and
meaningful. Abstract types can be declared in ML, hiding their internal representa-
tion, including its equality test. Equality is not even allowed for type real, making
you write instead Real.==(x,y), though some ML systems ignore this rule.

We shall discuss function values and abstract types later.
If a function’s type contains equality type variables, such as ’’a, ’’b, then it

uses polymorphic equality testing.

Equality Tests

if (x=y) then true, else …

let rec member x = function
| [] -> false
| y::l ->
 x = y || member x l

 Equality Polymorphism Equality Tests (cont.)

let rec inter xs ys =
 match xs, ys with
 | [], ys -> []
 | x::xs, ys ->
 if member x ys then
 x :: inter xs ys
 else
 inter xs ys

Building a List of Pairs

IV Foundations of Computer Science 43

Slide 405

Building a List of Pairs

fun zip (x::xs,y::ys) = (x,y) :: zip(xs,ys)

| zip _ = [];

[x1, . . . , xn]
[y1, . . . , yn]

}

!−→ [(x1, y1), . . . , (xn, yn)]

The wildcard pattern (_) matches anything.

THE PATTERNS ARE TESTED IN ORDER.

A list of pairs of the form [(x1, y1), . . . , (xn, yn)] associates each xi with yi .
Conceptually, a telephone directory could be regarded as such a list, where xi ranges
over names and yi over the corresponding telephone number. Linear search in such
a list can find the yi associated with a given xi , or vice versa—very slowly.

In other cases, the (xi , yi) pairs might have been generated by applying a func-
tion to the elements of another list [z1, . . . , zn].

The functions zip and unzip build and take apart lists of pairs: zip pairs up
corresponding list elements and unzip inverts this operation. Their types reflect
what they do:

zip : ('a list * 'b list) -> ('a * 'b) list

unzip : ('a * 'b) list -> ('a list * 'b list)

If the lists are of unequal length, zip discards surplus items at the end of the longer
list. Its first pattern only matches a pair of non-empty lists. The second pattern is
just a wildcard and could match anything. ML tries the clauses in the order given,
so the first pattern is tried first. The second only gets arguments where at least one
of the lists is empty.

Building a List of Pairs

let rec zip xs ys =
 match xs, ys with
 | (x::xs, y::ys) -> (x, y) :: zip xs ys
 | _ -> []

Building a List of Pairs

IV Foundations of Computer Science 43

Slide 405

Building a List of Pairs

fun zip (x::xs,y::ys) = (x,y) :: zip(xs,ys)

| zip _ = [];

[x1, . . . , xn]
[y1, . . . , yn]

}

!−→ [(x1, y1), . . . , (xn, yn)]

The wildcard pattern (_) matches anything.

THE PATTERNS ARE TESTED IN ORDER.

A list of pairs of the form [(x1, y1), . . . , (xn, yn)] associates each xi with yi .
Conceptually, a telephone directory could be regarded as such a list, where xi ranges
over names and yi over the corresponding telephone number. Linear search in such
a list can find the yi associated with a given xi , or vice versa—very slowly.

In other cases, the (xi , yi) pairs might have been generated by applying a func-
tion to the elements of another list [z1, . . . , zn].

The functions zip and unzip build and take apart lists of pairs: zip pairs up
corresponding list elements and unzip inverts this operation. Their types reflect
what they do:

zip : ('a list * 'b list) -> ('a * 'b) list

unzip : ('a * 'b) list -> ('a list * 'b list)

If the lists are of unequal length, zip discards surplus items at the end of the longer
list. Its first pattern only matches a pair of non-empty lists. The second pattern is
just a wildcard and could match anything. ML tries the clauses in the order given,
so the first pattern is tried first. The second only gets arguments where at least one
of the lists is empty.

Building a List of Pairs

wildcard

For example, _ will match: ([], (y::ys))

let rec zip xs ys =
 match xs, ys with
 | (x::xs, y::ys) -> (x, y) :: zip xs ys
 | _ -> []

In : zip [1;2;3;4] [‘a';'b';'c'];;
Out: - : (int * char) list = [(1,'a'); (2,'b'); (3,'c')]

Building a List of PairsBuilding a List of Pairs

Two functions: zip and unzip

zip : 'a list -> 'b list -> ('a * 'b) list
unzip : ('a * 'b) list -> ('a list * 'b list)

Some Syntax

IV Foundations of Computer Science 48

Slide 410

Syntax You Must Know

Declarations

val Pat = E

Expressions

let D in E end

Value declarations have been generalised in this lecture: a pattern can be given
on the left-hand side rather than just an identifier. Then the expression E , once eval-
uated, is matched against this pattern (in case of failure, an exception will occur).
This version takes apart in a structured value.

The local declaration let D in E end embeds the declaration D within the
expression E . It is useful within a function, to perform intermediate computations
using the arguments. D can be a single value or function declaration, or a long
series of declarations.1

1A series of declarations, each optionally terminated using a semicolon, is actually regarded as a
single declaration in ML.

Some Syntax

• Embeds declaration D within expression E

• Useful within a function

• Can perform intermediate computations with

function arguments

Building a Pair of ResultsBuilding a Pair of Results

declaration

Version 1: With a local declaration.

expression

let rec unzip = function
| [] -> ([], [])
| (x, y)::pairs ->
 let xs, ys = unzip pairs in
 (x::xs, y::ys)

The let construct binds xs and ys to the results of the recursive call.

In : unzip [(1,’a');(2,'b')];;
Out: - : int list * char list = ([1; 2], ['a'; 'b'])

Example:

Version 2: Replacing local declaration by a function.

Building a Pair of ResultsBuilding a Pair of Results

let conspair ((x, y), (xs, ys)) = (x::xs, y::ys)

val conspair :
 ('a * 'b) * ('a list * 'b list) ->
 'a list * 'b list = <fun>

let rec unzip = function
| [] -> ([], [])
| xy :: pairs -> conspair (xy, unzip pairs)

1 pair pair of lists
list

(of pairs)

let rec revUnzip = function
| ([], xs, ys) -> (xs, ys)
| ((x, y)::pairs, xs, ys) ->
 revUnzip (pairs, x::xs, y::ys)

Version 3: Iterative.

Question: How to call revUnzip?
revUnzip (pairs, [], []);

Question: What’s the result of the following?

let pairs = [("a", 1); ("b", 2)];;
revUnzip (pairs, [], []);;

Out: - : string list * int list = (["b"; "a"], [2; 1])

Building a Pair of ResultsBuilding a Pair of Results

accumulators

An Application: Making ChangeAn Application: Making Change

• Till has unlimited supply of coins, for certain coin values

• List of coins till is given in descending order

• Larger coins preferred (tried first)

An Application: Making ChangeAn Application: Making Change

list of possible coin values

IV Foundations of Computer Science 45

Slide 407

An Application: Making Change

fun change (till, 0) = []

| change (c::till, amt) =

if amt<c then change(till, amt)

else c :: change(c::till, amt-c)

> Warning: pattern matching is not exhaustive

> val change = fn : int list * int -> int list

• The recursion terminates when amt = 0.

• Tries the largest coin first to use large coins.

• The algorithm is greedy, and it CAN FAIL!

The till has unlimited supplies of coins. The largest coins should be tried first,
to avoid giving change all in pennies. The list of legal coin values, called till, is
given in descending order, such as 50, 20, 10, 5, 2 and 1. (Recall that the head of
a list is the element most easily reached.) The code for change is based on simple
observations.

• Change for zero consists of no coins at all. (Note the pattern of 0 in the first
clause.)

• For a nonzero amount, try the largest available coin. If it is small enough, use
it and decrease the amount accordingly.

• Exclude from consideration any coins that are too large.

Although nobody considers making change for zero, this is the simplest way to
make the algorithm terminate. Most iterative procedures become simplest if, in
their base case, they do nothing. A base case of one instead of zero is often a sign
of a novice programmer.

The function can terminate either with success or failure. It fails by raising ex-
ception Match, signifying that no pattern matches, namely if till becomes empty
while amt is still nonzero. (Exceptions will be discussed later.)

Unfortunately, failure can occur even when change can be made. The greedy
‘largest coin first’ approach is to blame. Suppose we have coins of values 5 and 2,
and must make change for 6; the only way is 6 = 2 + 2 + 2, ignoring the 5. Greedy

algorithms are often effective, but not here.

let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] -> raise (Failure "no more coins!")
 | c::till ->
 if amt < c then
 change till amt
 else
 c :: change (c::till) (amt - c)

let till = [50; 20; 10; 5; 2; 1];;
change till 43;;

- : int list = [20; 20; 2; 1]

An Application: Making ChangeAn Application: Making Change

let till = [5; 2];;
change till 16;;

Exception: Failure "no more coins!"

20 (amt=23) 2 (amt=1)20 (amt=3) 1 (amt=0)

5 (amt=11) 5 (amt=6) 5 (amt=1) ? amt≠0, till=[]

50 10 5

2

An Application: Making ChangeAn Application: Making Change

? amt≠0, till=[]

let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] -> raise (Failure "no more coins!")
 | c::till ->
 if amt < c then
 change till amt
 else
 c :: change (c::till) (amt - c)

let rec change till amt =
 if amt = 0 then
 [[]]
 else
 match till with
 | [] -> []
 | c::till ->
 if amt < c then
 change till amt
 else
 let rec allc = function
 | [] -> []
 | cs :: css -> (c::cs) :: allc css
 in
 allc (change (c::till) (amt - c)) @
 change till amt

ALL Ways of Making ChangeALL Ways of Making Change

success (zero)

failure

Disclaimer: This is kind of hard.

generates all
possible solutions

Out: val change : int list -> int -> int list list = <fun>

let rec allc = function
| [] -> []
| cs :: css -> (c::cs) :: allc css
in
 allc (change (c::till) (amt - c)) @
 change till amt

ALL Ways of Making ChangeALL Ways of Making Change

@

c::[…], c::[…], … […], […], …

cons c to solutions for amt-c solutions for amt

…

use coin c don’t use coin c

expression

declaration int list int list list

In : let till = [5; 3; 2];;
In : change till 6;;

ALL Ways of Making ChangeALL Ways of Making Change

Out: - : int list list = [[3; 3]; [2; 2; 2]]

In : let till = [5; 2];;
In : change till 16;;

Out: - : int list list =
 [[2; 2; 2; 5; 5]; [2; 2; 2; 2; 2; 2; 2; 2]]

ALL Ways of Making Change — Faster!ALL Ways of Making Change — Faster!

accumulators

use coin

solutions that don’t use coin

IV Foundations of Computer Science 47

Slide 409

ALL Ways of Making Change — Faster!

fun change(till, 0, chg, chgs) = chg::chgs

| change([], amt, chg, chgs) = chgs

| change(c::till, amt, chg, chgs) =

if amt<0 then chgs

else change(c::till, amt-c, c::chg,

change(till, amt, chg, chgs))

We’ve added another accumulating parameter!

Repeatedly improving simple code is called stepwise refinement.

Two extra arguments eliminate many :: and append operations from the pre-
vious slide’s change function. The first, chg, accumulates the coins chosen so far;
one evaluation of c::chg replaces many evaluations of allc. The second, chgs,
accumulates the list of solutions so far; it avoids the need for append. This version
runs several times faster than the previous one.

Making change is still extremely slow for an obvious reason: the number of
solutions grows rapidly in the amount being changed. Using 50, 20, 10, 5, 2 and 1,
there are 4366 ways of expressing 99.

Our three change functions illustrate a basic technique: program development
by stepwise refinement. Begin by writing a very simple program and add require-
ments individually. Add efficiency refinements last of all. Even if the simpler
program cannot be included in the next version and has to be discarded, one has
learned about the task by writing it.

let rec change till amt chg chgs =
 if amt = 0 then
 chg::chgs
 else
 match till with
 | [] -> chgs
 | c::till ->
 if amt < 0 then
 chgs
 else
 change (c::till) (amt - c) (c::chg)
 (change till amt chg chgs)

In : change [5;3;2] 6 [] [];;

Out: - : int list list = [[3; 3]; [2; 2; 2]]

ALL Ways of Making Change — Faster!ALL Ways of Making Change — Faster!

