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The Practical Classes
https://www.cl.cam.ac.uk/teaching/2223/OCaml/ 

• Executed online in the hub.cl.cam.ac.uk server


• There are 5 ticks, each of which have a deadline for submission 10 
days after they are issued (except last tick, which goes into Lent term).


  Tick 1: released 2022-10-07  due 2021-10-17


  Tick 2: released 2022-10-14  due 2021-10-24


  Tick 3: released 2022-10-21  due 2021-10-31


  Tick 4: released 2022-10-28  due 2021-11-07


  Tick 5: released 2022-11-04  due 2022-01-20

https://www.cl.cam.ac.uk/teaching/2122/OCaml/
http://hub.cl.cam.ac.uk


Expression Evaluation
 E0 → E1 → … → En → v



Expression Evaluation
 E0 → E1 → … → En → v

Focus on expressions; 
ignore side-effects for now.


This discipline of separating expression 
from effects is often known as 

functional programming 
 

We will return to side effects later in the 
course to make useful programs!



Expression Evaluation
 E0 → E1 → … → En → v

# let rec power x n =
    if n = 1 then x
    else if even n then
      power (x *. x) (n / 2)
    else
      x *. power (x *. x) (n / 2)



Expression Evaluation
 E0 → E1 → … → En → v

power(2, 12) ⇒
power(4, 6) ⇒
power(16, 3)  ⇒
16 × power(256, 1) ⇒
16 × 256 ⇒
4096

# let rec power x n =
    if n = 1 then x
    else if even n then
      power (x *. x) (n / 2)
    else
      x *. power (x *. x) (n / 2)



Summing first n integers
# let rec nsum n =
    if n = 0 then
      0
    else
      n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))
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nsum 3 ⇒ 3 + (nsum 2)
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Nothing can progress 
until the final expression 

is calculated!



Summing first n integers
# let rec nsum n =
    if n = 0 then
      0
    else
      n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))

Nothing can progress 
until the final expression 

is calculated!

Intermediate results are 
stored in the program 

stack which is usually of 
limited size.



Iteratively summing
# let rec summing n total =
    if n = 0 then
      total
    else
      summing (n - 1) (n + total)

# let rec nsum n =
    if n = 0 then
      0
    else
      n + nsum (n - 1)



Iteratively summing
# let rec summing n total =
    if n = 0 then
      total
    else
      summing (n - 1) (n + total)

summing 3 0 ⇒ summing 2 3
⇒ summing 1 5
⇒ summing 0 6
⇒ 6

# let rec nsum n =
    if n = 0 then
      0
    else
      n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))



Iteratively summing
# let rec summing n total =
    if n = 0 then
      total
    else
      summing (n - 1) (n + total)

summing 3 0 ⇒ summing 2 3
⇒ summing 1 5
⇒ summing 0 6
⇒ 6

Extra argument total 
acts as the accumulator 
to keep track explicitly 

instead of using the stack

Algorithms like this are 
known as iterative or 

tail recursive



Recursion vs iteration
• Why two terms iterative and tail recursive?

• “Iterative” normally refers to a loop: e.g. coded using while.

• “Tail-recursion” involves the recursive function call being the last 

thing that expression does.


• Tail-recursion is efficient only if the compiler detects it.

• Mainly it saves space, though iterative code can run faster.


• Do not make programs iterative unless you determine the 
gain is significant.



How can we 
analyse our 

programs for 
efficiency?



Silly summing first n integers
# let rec sillySum n =
    if n = 0 then
      0
    else
      n + (sillySum (n-1) + sillySum (n-1)) / 2

Recursively calls itself 
twice for every invocation



Silly summing first n integers
# let rec sillySum n =
    if n = 0 then
      0
    else
      n + (sillySum (n-1) + sillySum (n-1)) / 2

Recursively calls itself 
twice for every invocation

Should assign the result to 
a local variable to prevent 

evaluating it twice

# let x = 2.0 in
  let y = Float.pow x 20.0 in
  y *. (x /. y)



Asymptotic complexity refers to how 
program costs grow with increasing inputs

Usually space or time, with the latter usually being 
larger than the former.

Question: if we double our processing power, how 
much does our computation capability increase?



Time Complexity



Comparing Algorithms with O(n)
Formally, define        
provided that      

f(n) = O(g(n))
| f(n) | ≤ c |g(n) |



Comparing Algorithms with O(n)
Formally, define        
provided that      

f(n) = O(g(n))
| f(n) | ≤ c |g(n) |

Intuitively, consider the most significant term 
and ignore constant or smaller factors

E.g. simplify 3n2 + 34n + 433 → n2



Facts about O notation

O(2g(n)) is the same as O(g(n))
O(log10 n) is the same as O(ln n)

O(n2 + 50n + 36) is the same as O(n2)
O(n2) is contained in O(n3)
O(2n) is contained in O(3n)

O(log n) is contained in O( n)



Common complexity 
classes



Sample costs in O-notation



Simple recurrence relations



Mapping this to OCaml
# let rec nsum n =
    if n = 0 then
      0
    else
      n + nsum (n - 1)

Given (n+1), does a 
constant amount of 

work

Then calls itself 
with n
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    if n = 0 then
      0
    else
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Given (n+1), does a 
constant amount of 

work

Then calls itself 
with n
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Mapping this to OCaml
# let rec nsumsum n =
    if n = 0 then
      0
    else
      nsum n + nsumsum (n - 1)

Calls itself 
recursively once

Calls nsum which 
takes O(n)



Mapping this to OCaml
# let rec nsumsum n =
    if n = 0 then
      0
    else
      nsum n + nsumsum (n - 1)

Calls itself 
recursively once

Calls nsum which 
takes O(n)

Therefore, recurrence relations are: 
 T(0) = 1

T(n + 1) = T(n) + n



Mapping this to OCaml
# let rec nsumsum n =
    if n = 0 then
      0
    else
      nsum n + nsumsum (n - 1)

Calls itself 
recursively once

Calls nsum which 
takes O(n)

Therefore, recurrence relations are: 
 T(0) = 1

T(n + 1) = T(n) + n O(n2)



Mapping this to OCaml
# let rec power x n =
    if n = 1 then x
    else if even n then
      power (x *. x) (n / 2)
    else
      x *. power (x *. x) (n / 2)

Calls itself 
recursively once

Always divides 
iteration count by 2



Mapping this to OCaml
# let rec power x n =
    if n = 1 then x
    else if even n then
      power (x *. x) (n / 2)
    else
      x *. power (x *. x) (n / 2)

Calls itself 
recursively once

Always divides 
iteration count by 2

Therefore, recurrence relations are: 
 T(0) = 1

T(n) = T(n/2) + 1



Mapping this to OCaml
# let rec power x n =
    if n = 1 then x
    else if even n then
      power (x *. x) (n / 2)
    else
      x *. power (x *. x) (n / 2)

Calls itself 
recursively once

Always divides 
iteration count by 2

Therefore, recurrence relations are: 
 T(0) = 1

T(n) = T(n/2) + 1 O(log n)


