
Foundations of Computer
Science: Lecture 2

Recursion and Complexity 
Recursion and Complexity 

Recursion and Complexity 
Recursion and Complexity 

Recursion and Complexity
Recursion and Complexity

Recursion and Complexity
Recursion and Complexity

Recursion and Complexity
 

10th October 2022

Anil Madhavapeddy

The Practical Classes
https://www.cl.cam.ac.uk/teaching/2223/OCaml/

• Executed online in the hub.cl.cam.ac.uk server

• There are 5 ticks, each of which have a deadline for submission 10
days after they are issued (except last tick, which goes into Lent term).

 Tick 1: released 2022-10-07 due 2021-10-17

 Tick 2: released 2022-10-14 due 2021-10-24

 Tick 3: released 2022-10-21 due 2021-10-31

 Tick 4: released 2022-10-28 due 2021-11-07

 Tick 5: released 2022-11-04 due 2022-01-20

https://www.cl.cam.ac.uk/teaching/2122/OCaml/
http://hub.cl.cam.ac.uk

Expression Evaluation
 E0 → E1 → … → En → v

Expression Evaluation
 E0 → E1 → … → En → v

Focus on expressions; 
ignore side-effects for now.

This discipline of separating expression
from effects is often known as 

functional programming 
 

We will return to side effects later in the
course to make useful programs!

Expression Evaluation
 E0 → E1 → … → En → v

let rec power x n =
 if n = 1 then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)

Expression Evaluation
 E0 → E1 → … → En → v

power(2, 12) ⇒
power(4, 6) ⇒
power(16, 3) ⇒
16 × power(256, 1) ⇒
16 × 256 ⇒
4096

let rec power x n =
 if n = 1 then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)

Summing first n integers
let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))

Summing first n integers
let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))

Nothing can progress
until the final expression

is calculated!

Summing first n integers
let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))

Nothing can progress
until the final expression

is calculated!

Intermediate results are
stored in the program

stack which is usually of
limited size.

Iteratively summing
let rec summing n total =
 if n = 0 then
 total
 else
 summing (n - 1) (n + total)

let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

Iteratively summing
let rec summing n total =
 if n = 0 then
 total
 else
 summing (n - 1) (n + total)

summing 3 0 ⇒ summing 2 3
⇒ summing 1 5
⇒ summing 0 6
⇒ 6

let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))

Iteratively summing
let rec summing n total =
 if n = 0 then
 total
 else
 summing (n - 1) (n + total)

summing 3 0 ⇒ summing 2 3
⇒ summing 1 5
⇒ summing 0 6
⇒ 6

Extra argument total
acts as the accumulator
to keep track explicitly

instead of using the stack

Algorithms like this are
known as iterative or

tail recursive

Recursion vs iteration
• Why two terms iterative and tail recursive?

• “Iterative” normally refers to a loop: e.g. coded using while.

• “Tail-recursion” involves the recursive function call being the last

thing that expression does.

• Tail-recursion is efficient only if the compiler detects it.

• Mainly it saves space, though iterative code can run faster.

• Do not make programs iterative unless you determine the
gain is significant.

How can we
analyse our

programs for
efficiency?

Silly summing first n integers
let rec sillySum n =
 if n = 0 then
 0
 else
 n + (sillySum (n-1) + sillySum (n-1)) / 2

Recursively calls itself
twice for every invocation

Silly summing first n integers
let rec sillySum n =
 if n = 0 then
 0
 else
 n + (sillySum (n-1) + sillySum (n-1)) / 2

Recursively calls itself
twice for every invocation

Should assign the result to
a local variable to prevent

evaluating it twice

let x = 2.0 in
 let y = Float.pow x 20.0 in
 y *. (x /. y)

Asymptotic complexity refers to how
program costs grow with increasing inputs

Usually space or time, with the latter usually being
larger than the former.

Question: if we double our processing power, how
much does our computation capability increase?

Time Complexity

Comparing Algorithms with O(n)
Formally, define  
provided that

f(n) = O(g(n))
| f(n) | ≤ c |g(n) |

Comparing Algorithms with O(n)
Formally, define  
provided that

f(n) = O(g(n))
| f(n) | ≤ c |g(n) |

Intuitively, consider the most significant term
and ignore constant or smaller factors

E.g. simplify 3n2 + 34n + 433 → n2

Facts about O notation

O(2g(n)) is the same as O(g(n))
O(log10 n) is the same as O(ln n)

O(n2 + 50n + 36) is the same as O(n2)
O(n2) is contained in O(n3)
O(2n) is contained in O(3n)

O(log n) is contained in O(n)

Common complexity
classes

Sample costs in O-notation

Simple recurrence relations

Mapping this to OCaml
let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

Given (n+1), does a
constant amount of

work

Then calls itself
with n

Mapping this to OCaml
let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

Given (n+1), does a
constant amount of

work

Then calls itself
with n

Therefore, recurrence relations are: 
 T(0) = 1

T(n + 1) = T(n) + 1

Mapping this to OCaml
let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

Given (n+1), does a
constant amount of

work

Then calls itself
with n

Therefore, recurrence relations are: 
 T(0) = 1

T(n + 1) = T(n) + 1 O(n)

Mapping this to OCaml
let rec nsumsum n =
 if n = 0 then
 0
 else
 nsum n + nsumsum (n - 1)

Calls itself
recursively once

Calls nsum which
takes O(n)

Mapping this to OCaml
let rec nsumsum n =
 if n = 0 then
 0
 else
 nsum n + nsumsum (n - 1)

Calls itself
recursively once

Calls nsum which
takes O(n)

Therefore, recurrence relations are: 
 T(0) = 1

T(n + 1) = T(n) + n

Mapping this to OCaml
let rec nsumsum n =
 if n = 0 then
 0
 else
 nsum n + nsumsum (n - 1)

Calls itself
recursively once

Calls nsum which
takes O(n)

Therefore, recurrence relations are: 
 T(0) = 1

T(n + 1) = T(n) + n O(n2)

Mapping this to OCaml
let rec power x n =
 if n = 1 then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)

Calls itself
recursively once

Always divides
iteration count by 2

Mapping this to OCaml
let rec power x n =
 if n = 1 then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)

Calls itself
recursively once

Always divides
iteration count by 2

Therefore, recurrence relations are: 
 T(0) = 1

T(n) = T(n/2) + 1

Mapping this to OCaml
let rec power x n =
 if n = 1 then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)

Calls itself
recursively once

Always divides
iteration count by 2

Therefore, recurrence relations are: 
 T(0) = 1

T(n) = T(n/2) + 1 O(log n)

