Principle of Strong Induction
from basis ¢ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number <.
If both

(¥

» P({) and

; e
J}ﬂ- » ¥Yn > {inN. ((Vke ¢.n.P(k)) = P(ﬂ+”)

—_ hold, then

» Vm > {in N.P(m) holds.
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Fundamental Theorem of Arithmetic

Proposition 95 Every positive integer greater than or equal 2 is a
prime or a product of primes.
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Theorem 96 (Fundamental Theorem of Arithmetic) For every
positive integer n there is a unique finite ordered sequence of
primes (p; < --- < py) with{ € N such that

PROOF:

n =

1 __(]31,...,1%) .

E—

M B,JG_W\
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Euclid’s infinitude of primes

Theorem 99 The set of primes is infinite.

PROOF:%S\P\MA{_ ,!»trfa WEO&(//{;& ’%a)ﬁ here
ore o ol gef 34 im& -
171:2-) V2;3/€3‘:-.S} - -~ / fN /)\W‘l\}‘e‘”\f




Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
-

1,1 1,2)  o(1,3) 14)  o(1,5)

Q( .( ® .(

2,1) 2,2) 2,3) 2,4) 2,5)

o21)  o(22) (23] (24 ol

-
may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.m,n o2 o(1.2) o22) o(13) o(23) (14 o24) (1,5 .(2,5)]

D

for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Set membership

We write € for the membership predicate; so that
x € A stands for x is an element of A .
We further write

x & Afor—=(x € A) .

Example: 0 € {0,1}and 1 ¢ {0} are true statements.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

Vsets A\B. A=B & (Vx.x€ A &< x€B)

Example:

0; 7 10,17 = {1,0; # {2} = 12,2}
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BoCes (b= blime’ A b= b-Tinc')

el
Proposition 100 Forb,c € R, let

T
A = {xeC|x*—2bc+c=0}
B = {b++vbl—c,b—+vb?—c}
C = {b)

Then, x.écé Cart-2b¢ +c=.03

_ <ﬁ :c-:.«5+\n1—c‘ 1
1. A=B, and < y X:L_JTO'L_C_ )

2.B=C & b’=c.
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Subsets and supersets

%:@z’% ¥z (reh&S xg/'_?>>
(= )q/L.(\zé/A-;)leB) NEIER 2

; AC B R

AQB<~:§>}4 Vx.(z cA— 2€R )
A

A=R & @98%@92&3 O
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Lemma 103

1. Reflexivity.
For all sets A, A C A.

2. Transitivity.
Forall setsA,B,C, ACB ABCC) — A CC.

3. Antisymmetry.
For allsets A,B, ACB ANBCA) — A =B.
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acsaeh| Pl & (ach n o))

Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

xeA|Px)) S A

7
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Russell’s paradox

/Q,(_z)i 72@)(5%&4 TE T
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5vf>c.'1@e¢) = \"/"'&éqjé Mﬁc}

Empty set
Set theory has an
empty set ,
typically denoted
b or{},

with no elements.
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S|.

Example:
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Finite sets

The finite sets are those with cardinality a natural number.

Example: Forn € N,
n] = {xeN|x<n}

s finte of cardinality n. = § 0,1, %, -, A-11
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Powerset axiom

For any set, there is a set consisting of all its subsets.

— 326 —







