
Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If both

◮ P(ℓ) and

◮ ∀n ≥ ℓ in N.
�

�

∀k ∈ [ℓ..n]. P(k)
�

=⇒ P(n+ 1)
�

hold, then

◮ ∀m ≥ ℓ in N. P(m) holds.
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Fundamental Theorem of Arithmetic

Proposition 95 Every positive integer greater than or equal 2 is a

prime or a product of primes.

PROOF:
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Theorem 96 (Fundamental Theorem of Arithmetic) For every

positive integer n there is a unique finite ordered sequence of

primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
Q

(p1, . . . , pℓ) .

PROOF:
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Euclid ′s infinitude of primes

Theorem 99 The set of primes is infinite.

PROOF:
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Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,

�� ��

�� ��
•(1,1) •(1,2) •(1,3) •(1,4) •(1,5)

•(2,1) •(2,2) •(2,3) •(2,4) •(2,5)

may be a convenient way of picturing a certain set for some con-

siderations, but what is apparently the same set may be pictured

as

�� ��
�� ��•(1,1) •(2,1) •(1,2) •(2,2) •(1,3) •(2,3) •(1,4) •(2,4) •(1,5) •(2,5)

or even simply as

�� ��
�� ��• • • • • • • • • •

for other considerations.
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,

we will be naively looking at ubiquituous structures that are

available within it.
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Set membership

We write ∈ for the membership predicate; so that

x ∈ A stands for x is an element of A .

We further write

x 6∈ A for ¬(x ∈ A) .

Example: 0 ∈ { 0, 1 } and 1 6∈ { 0 } are true statements.

— 313 —



Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

∀ sets A,B. A = B ⇐⇒ ( ∀ x. x ∈ A ⇐⇒ x ∈ B ) .

Example:

{0} 6= {0, 1} = {1, 0} 6= {2} = {2, 2}

— 314 —



Proposition 100 For b, c ∈ R, let

A = { x ∈ C | x2 − 2bc+ c = 0 }

B = {b+
√
b2 − c , b−

√
b2 − c }

C = {b }

Then,

1. A = B, and

2. B = C ⇐⇒ b2 = c.
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Subsets and supersets
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Lemma 103

1. Reflexivity.

For all sets A, A ⊆ A.

2. Transitivity.

For all sets A, B, C, (A ⊆ B ∧ B ⊆ C) =⇒ A ⊆ C.

3. Antisymmetry.

For all sets A, B, (A ⊆ B ∧ B ⊆ A) =⇒ A = B.
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Separation principle

For any set A and any definable property P, there is a

set containing precisely those elements of A for which

the property P holds.

{ x ∈ A | P(x) }
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Russell ′s paradox
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Empty set

Set theory has an

empty set ,

typically denoted

∅ or { } ,

with no elements.
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,

then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S |.

Example:

#∅ = 0
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Finite sets

The finite sets are those with cardinality a natural number.

Example: For n ∈ N,

[n] = { x ∈ N | x < n }

is finite of cardinality n.
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Powerset axiom

For any set, there is a set consisting of all its subsets.

P(U)

∀X. X ∈ P(U) ⇐⇒ X ⊆ U .
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