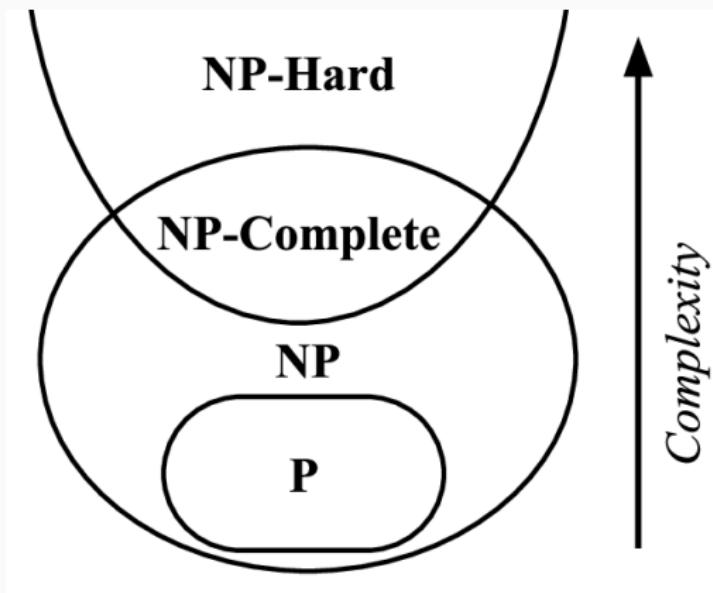


Complexity Theory

Lecture 7: coNP

Tom Gur

The story so far, in a picture



Protip

**Research is not just about finding answers –
it's also about asking the right questions!**

What are the big questions at this stage?

Bypassing NP-Completeness

Confronted by an NP-complete problem, what can we do?

- It's a single instance, does asymptotic complexity matter? (Chess?)
- What about abusing the representation?
- Are the inputs **structured**?
- Can we use **randomness**? **Quantum**?
- Is it enough to only deal with **average-case** instances?
- Will an **approximate** solution suffice? (**TODAY**: Ordered TSP)
- Can we **delegate** the computation?
- Are there useful heuristics that can constrain a search? SAT-solvers?

Beyond NP!

Unsatisfiability

We define **UNSAT** to be the set of all Boolean functions for which there are no satisfying assignments. (**algorithm?**)

By an exhaustive search algorithm similar to the one for **SAT**, **UNSAT** is in **TIME**($n^2 2^n$).

Is **UNSAT** \in **NP**?

Note that **UNSAT** is the **complement** of **SAT**!

Complementation

Question 1: If a language $L \in P$, then is $\bar{L} \in P$ as well?

Yes. Run the TM and switch ACCEPT with REJECT.

Question 2: If a language $L \in NP$, then is $\bar{L} \in NP$ as well?

Not necessarily: the quantifiers change – "there exists" becomes "for all".

This leads to the following natural definition:

co-NP – the languages whose complements are in NP.

Succinct Certificates

The complexity class **NP** can be characterised as the collection of languages of the form:

$$L = \{x \mid \exists y R(x, y)\}$$

Where **R** is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.
2. R is *polynomially balanced*. That is, there is a polynomial p such that if $R(x, y)$ and the length of x is n , then the length of y is no more than $p(n)$.

co-NP

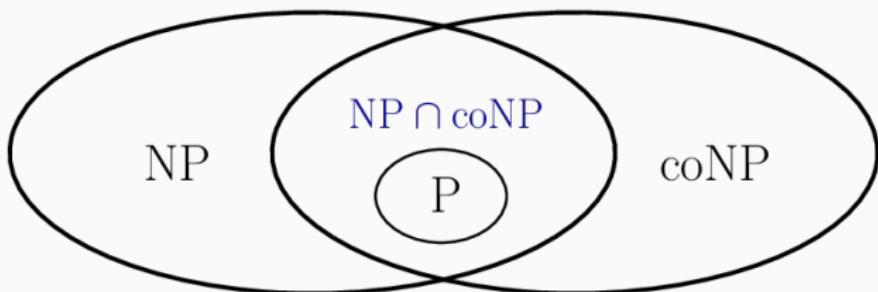
As **co-NP** is the collection of complements of languages in **NP**, hence can also be characterised as the collection of languages of the form:

$$L = \{x \mid \forall y \neg R(x, y)\}$$

Note that $\neg R$ is poly-time decidable
(as **P** is closed under complementation, and R is as before).

- NP** – the collection of languages with succinct certificates of membership.
- co-NP** – the collection of languages with succinct certificates of disqualification.

Extending our picture



Any of the situations is consistent with our present state of knowledge:

- $P = NP = co\text{-}NP$
- $P = NP \cap co\text{-}NP \neq NP \neq co\text{-}NP$
- $P \neq NP \cap co\text{-}NP = NP = co\text{-}NP$
- $P \neq NP \cap co\text{-}NP \neq NP \neq co\text{-}NP$

coNP-completeness

UNSAT – the collection of Boolean formulas that are not satisfiable is *co-NP-complete*.

Any language L that is the complement of an NP-complete language is *co-NP-complete*. (why?)

Any reduction of a language L_1 to L_2 is also a reduction of \bar{L}_1 to \bar{L}_2 .

Prime Numbers

Consider the decision problem PRIME:

Given a number x , is it prime?

Note again, the algorithm that checks for all numbers up to \sqrt{n} whether any of them divides n , is not polynomial, as \sqrt{n} is not polynomial in the size of the input string, which is $\log n$.

This problem is in co-NP. (why?)

Primality

Another way of putting this is that **Composite** is in **NP**.

Is **PRIME** is in **NP**?

Pratt (1976) showed that **PRIME** is in **NP**, by exhibiting succinct certificates of primality based on:

A number $p > 2$ is prime if, and only if, there is a number r , $1 < r < p$, such that $r^{p-1} \equiv 1 \pmod{p}$ and $r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$ for all prime divisors q of $p - 1$.

$\text{NP} \cap \text{co-NP} \setminus \text{P}$ is often where quantum might have a great potential!

Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p ,

$$(x - a)^p \equiv (x^p - a) \pmod{p}$$

if, and only if, p is a prime.

Checking this equivalence would take too long. Instead, the equivalence is checked *modulo* a polynomial $x^r - 1$, for “suitable” r .

The existence of suitable small r relies on deep results in number theory.

Factors

Consider the language **Factor**

$$\{(x, k) \mid x \text{ has a factor } y \text{ with } 1 < y < k\}$$

What is the relation to the search version?

In what complexity classes can we place **Factor**?

Factor \in NP \cap co-NP

Certificate of membership—a factor of x less than k .

Certificate of disqualification—the prime factorisation of x .

Graph Isomorphism

Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, is there a *bijection*

$$\iota : V_1 \rightarrow V_2$$

such that for every $u, v \in V_1$,

$$(u, v) \in E_1 \quad \text{if, and only if,} \quad (\iota(u), \iota(v)) \in E_2.$$

Graph Isomorphism

Graph Isomorphism is

- in NP
- not known to be in P
- not known to be in co-NP
- not known (or *expected*) to be NP-complete
- shown to be in *quasi-polynomial time*, i.e. in

$$\text{TIME}(n^{(\log n)^k})$$

for a constant *k*.

Afterthought: On “belief” in mathematics and CS