
Complexity Theory
Lecture 3: The class NP

Tom Gur



The four stages of learning complexity theory

1. 1) Effortless ignorance
2. 2) Effortful ignorance
3. 3) Effortful knowledge
4. 4) Effortless knowledge

1



Recap

• Goal: understand the complexity of computational problems
• Strategy: Divide problems into complexity classes
• Post-Turing: Focus on decidable languages.
• Resolution: Polynomial
• Most important class: P – tractable computation

Today we will go beyond tractable computation!

2



Composites

Consider the decision problem (or language) Composite defined by:

{x | x is not prime}

This is the complement of the language Prime.

Is Composite ∈ P?

Clearly, the answer is yes if, and only if, Prime ∈ P.

Is there a conceptual difference between the two?

3



Hamiltonian Graphs

Given a graph G = (V ,E ), a Hamiltonian cycle in G is a path in the
graph, starting and ending at the same node, such that every node in V
appears on the cycle exactly once.

The first of these graphs is not Hamiltonian, but the second one is. 4



Hamiltonian Graphs

Given a graph G = (V ,E ), a Hamiltonian cycle in G is a path in the
graph, starting and ending at the same node, such that every node in V
appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is HAM ∈ P?

5



Graph Isomorphism

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), is there a bijection

π : V1 → V2

such that for every u, v ∈ V1,

(u, v) ∈ E1 if, and only if, (π(u), π(v)) ∈ E2.

Is Graph Isomorphism ∈ P?

6



Polynomial Verification

The problems Composite, SAT, HAM and Graph Isomorphism have
something in common.

In each case, there is a search space of possible solutions.
the numbers less than x; truth assignments to the variables of ϕ;
lists of the vertices of G; a bijection between V1 and V2.

The size of the search is exponential in the length of the input.

Given a potential solution in the search space, it is easy to check whether
or not it is a solution.

7



Verifiers

A verifier V for a language L is an algorithm such that

L = {x | (x , c) is accepted by V for some c}

If V runs in time polynomial in the length of x , then we say that
L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution
to some design constraints or specifications.

8



Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ

being a function and instead allow an arbitrary relation, we obtain a
nondeterministic Turing machine.

δ ⊆ (Q × Σ)× ((Q ∪ {acc, rej})× Σ× {R, L, S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

{x | (s, ▷, x) →⋆
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as
well as rejecting states.

9



Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree
of successive configurations.

10



Nondeterministic Complexity Classes

Recall that for any function f : IN → IN, we say that a language L is in
TIME(f ) if there is a machine M, such that:

• L = L(M); and
• The running time of M is O(f ).

P =
∞∪

k=1
TIME(nk)

NTIME(f ) is defined as the class of those languages L which are
accepted by a nondeterministic Turing machine M, such that for every
x ∈ L, there is an accepting computation of M on x of length O(f (n)),
where n is the length of x .

NP =
∞∪

k=1
NTIME(nk)

11



Nondeterminism

For a language in NTIME(f ), the height of the tree can be bounded by
f (n) when the input is of length n.

12



Turing fact of the day

The problem of P vs NP can arguably be traced back to Turing!

13



Nondeterminism vs Verification

Theorem
A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V , which
runs in time p(n).

The following describes a nondeterministic algorithm that accepts L

1. input x of length n
2. nondeterministically guess c of length ≤ p(n)
3. run V on (x , c)

14



Nondeterminism vs Verification

In the other direction, suppose M is a nondeterministic machine that
accepts a language L in time nk .

We define the deterministic algorithm V which on input (x , c) simulates
M on input x .

At the ith nondeterministic choice point, V looks at the ith character in
c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

15



Why NP and not EXP?

15


