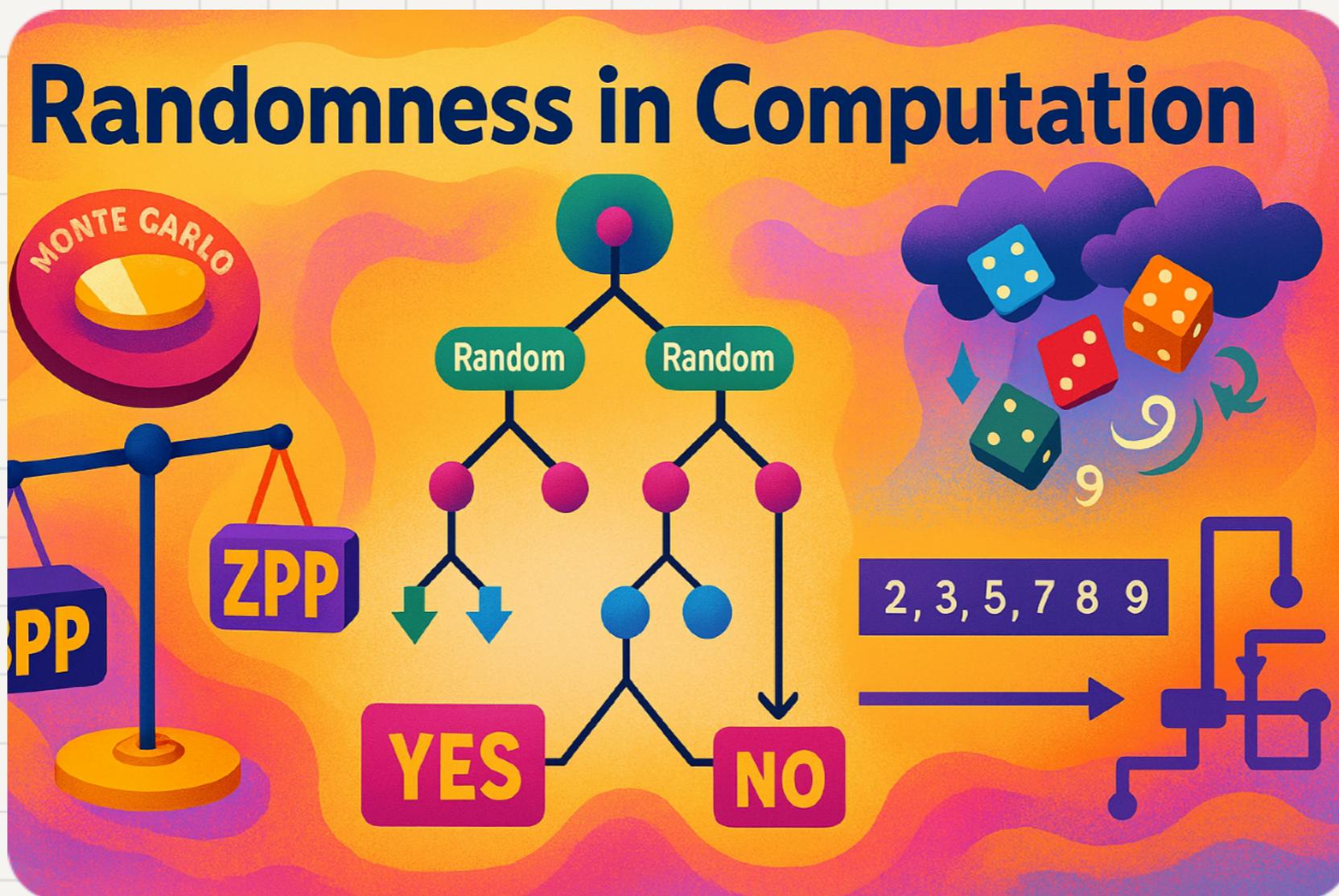


Complexity Theory



Randomness

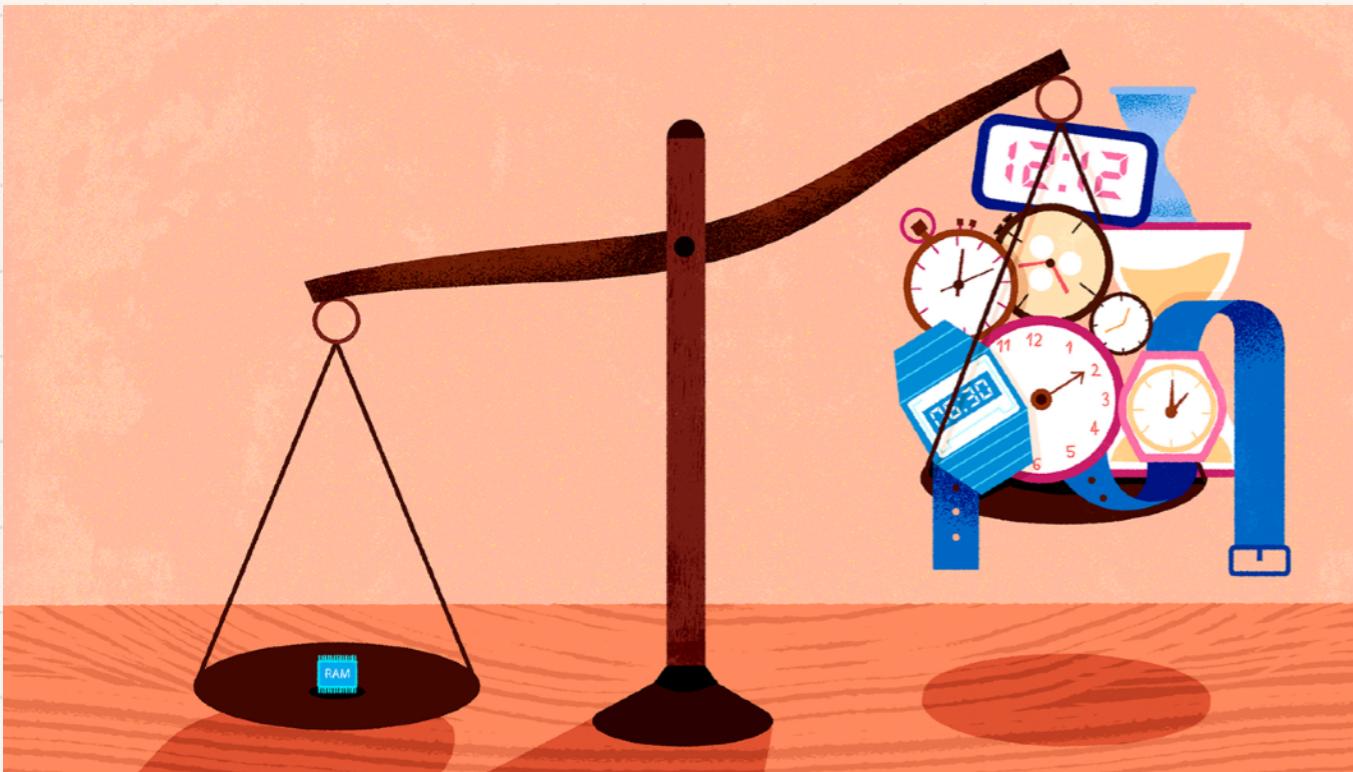
Last time: Time vs Space

COMPUTATIONAL COMPLEXITY

For Algorithms, a Little Memory Outweighs a Lot of Time

7 | 0

One computer scientist's "stunning" proof is the first progress in 50 years on one of the most famous questions in computer science.



[cs.CC] 25 Feb 2025

Simulating Time With Square-Root Space*

Ryan Williams[†]
MIT

Abstract

We show that for all functions $t(n) \geq n$, every multitape Turing machine running in time t can be simulated in space only $O(\sqrt{t} \log t)$. This is a substantial improvement over Hopcroft, Paul, and Valiant's simulation of time t in $O(t/\log t)$ space from 50 years ago [FOCS 1975, JACM 1977]. Among other results, our simulation implies that bounded fan-in circuits of size s can be evaluated on any input in only $\sqrt{s} \cdot \text{poly}(\log s)$ space, and that there are explicit problems solvable in $O(n)$ space which require $n^{2-\varepsilon}$ time on a multitape Turing machine for all $\varepsilon > 0$, thereby making a little progress on the P versus PSPACE problem.

Our simulation reduces the problem of simulating time-bounded multitape Turing machines to a series of implicitly-defined Tree Evaluation instances with nice parameters, leveraging the remarkable space-efficient algorithm for Tree Evaluation recently found by Cook and Mertz [STOC 2024].

<https://www.quantamagazine.org/for-algorithms-a-little-memory-outweighs-a-lot-of-time-20250521/>

Conceptual questions we must ask

What is randomness?

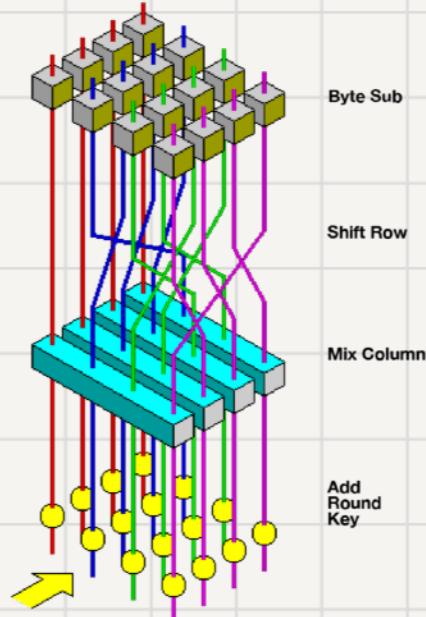
Does randomness exist? *Can free will exists in a deterministic world?*

How do we generate randomness?

Is randomness in the eye of the beholder?

Probability or uncertainty?

How do we model randomness?



random
input
string
Probabilistic Turing Machines $M(x; r)$

Primality testing

Problem: Given an integer $n \in \mathbb{N}$, is n a prime number?

Recall the naive algorithm:

Check divisibility by all $a < n$

Exponential complexity

Can randomness help? Idea—create a random test satisfying:

- If n a prime number, the test will always pass
- If n is not a prime number, the test will fail with high probability

Miller-Rabin Primality testing

Let $n \in \mathbb{N}$. Write $n - 1 = 2^s d$.

For $a \in [n]$, let $\text{MR}(n, a) = 1$ iff the following hold:

$$a^d \equiv 1 \pmod{n}$$

$$a^{2^r d} \equiv -1 \pmod{n} \quad \text{for some } r < s$$

Theorem • If n a prime number, $\text{MR}(n, a) = 1$

• If n is not a prime number, $\Pr[\text{MR}(n, a) = 0] \geq 3/4$

What if 75% is not enough?

RP (Randomised Polynomial-time)

A language L is in RP if and only if there exists a Polynomial-time Probabilistic TM (PPT) M such that

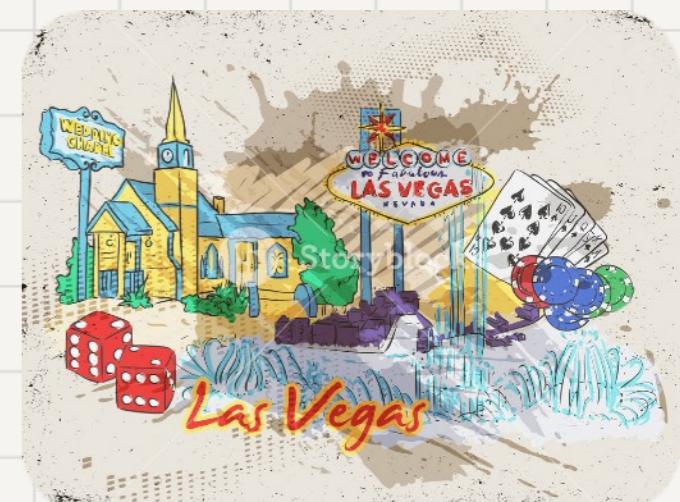
- If $x \in L$, then $\Pr_r[M(x; r) = 1] \geq 1/2$
- If $x \notin L$, then $\Pr_r[M(x; r) = 0] = 1$

Where does Primality Testing lie?

Bonus: the class ZPP (Zero-error Polynomial-time Probabilistic)

$ZPP \subseteq RP \cap coRP$

What's the catch?



RP Soundness amplification

A language L is in RP if and only if there exists a Polynomial-time Probabilistic TM (PPT) M such that

- If $x \in L$, then $\Pr_r[M(x; r) = 1] \geq 1/2$
- If $x \notin L$, then $\Pr_r[M(x; r) = 0] = 1$

Suppose that:
• If $x \in L$, then $\Pr_r[M(x; r) = 1] \geq \epsilon$

Run the algorithm t times; output 1 iff one of the invocations accepted.

$$\Pr_r[M'(x; r) = 1] = 1 - \Pr_r[M'(x; r) = 0] \geq 1 - (1 - \epsilon)^t$$

Choose $t = \log_{1-\epsilon}(\alpha)$ times, where α is the desired probability.

3SAT revisited

Consider a 3CNF formula ψ with the promise that:

- either at least 99% of the assignments satisfy ψ ; or
- either at most 1% of the assignments satisfy ψ .

What is the complexity of deciding which is the case?

Now suppose:

- more than 50% of the assignments satisfy ψ ; or
- at most 50% of the assignments satisfy ψ .

PP (Probabilistic Polynomial-time)

A language L is in PP if and only if there exists a Polynomial-time Probabilistic TM (PPT) M such that

- If $x \in L$, then $\Pr_r[M(x; r) = 1] > 1/2$
- If $x \notin L$, then $\Pr_r[M(x; r) = 1] \leq 1/2$

Is this the right notion?

Claim. $NP \subseteq PP$

Proof. Let $V(x, w)$ be the NP verifier of proof length $p(n)$

Consider the PP algorithm that on input $x \in \{0,1\}^n$:

- 1) Sample $w \in \{0,1\}^{p(n)}$
- 2) If $V(x, w) = 1$ output 1 o/w flip a coin!

Note that $\Pr_w[V(x, w) = 1] > 1/2$

BPP (Bounded-error Probabilistic Polynomial-time)

A language L is in BPP if and only if there exists a Polynomial-time Probabilistic TM (PPT) M such that

- If $x \in L$, then $\Pr_r[M(x; r) = 1] \geq 2/3$
- If $x \notin L$, then $\Pr_r[M(x; r) = 1] < 1/3$

Can we generalise to:

- If $x \in L$, then $\Pr_r[M(x; r) = 1] \geq 1 - \epsilon$
- If $x \notin L$, then $\Pr_r[M(x; r) = 1] < \epsilon$

Why can't we use the RP amplification?

BPP Soundness amplification

Claim 1 (Chernoff bound). *Let A_1, \dots, A_t be independent identically distributed random variables taking values in $\{0, 1\}$. Then,*

$$\Pr \left[\left| \frac{\sum_i A_i}{t} - \mathbb{E}[A_i] \right| \geq \delta \right] \leq 2e^{-t\delta^2/2}.$$

Let A_1, \dots, A_t be the outputs of invocations of $M(x)$.

Denote $A = \frac{1}{t} \sum_{i=1}^t A_i$ be the average output.

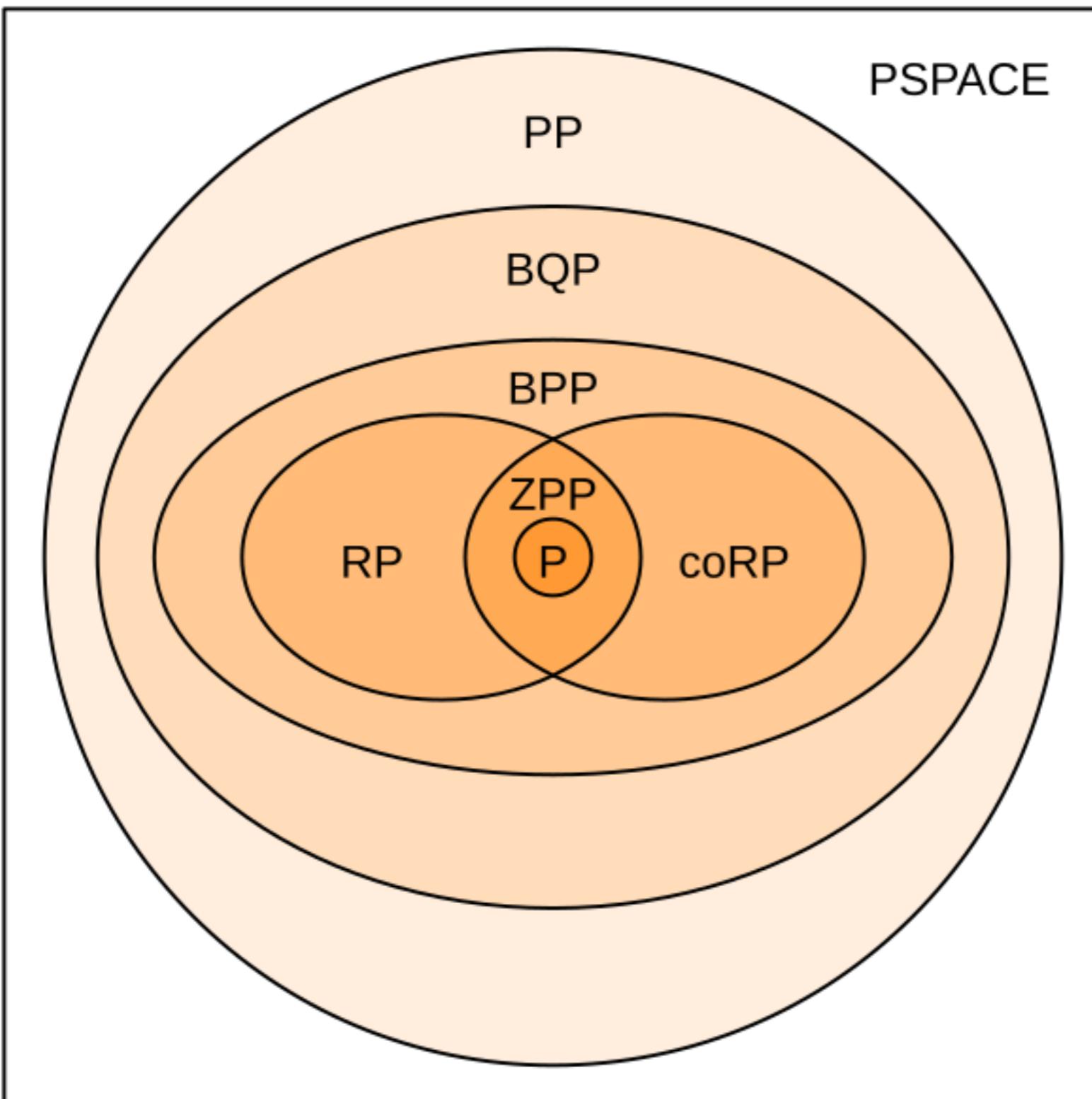
The amplified algorithm A' rules by majority.

On a 1-instance, $\mathbb{E}[A] \geq 2/3$, and the Chernoff bound gives

$$\Pr[|A - 2/3| \geq 1/6] \leq 2e^{-t(1/6)^2/2} = \exp(-t)$$

The analysis for 0-instances is symmetric.

Randomness complexity classes



Turing fact of the day

Pseudorandomness and derandomisation can be traced back to Turing!

