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Topic 5 – Transport
Our goals:
• understand principles 

behind transport layer 
services:
– multiplexing/demultiplexing
– reliable data transfer
– flow control

– congestion control
– buffers

• learn about transport layer 
protocols in the Internet:
– UDP: connectionless transport

– TCP: connection-oriented 
transport

– TCP congestion control

– TCP flow control
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Transport Layer
• Commonly a layer at end-hosts, between the 

application and network layer 

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B
Router
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Why a transport layer? 

• IP packets are addressed to a host but end-to-
end communication is between application/ 

processes/tasks at hosts

– Need a way to decide which packets go to which 
applications (more multiplexing)
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Why a transport layer? 
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Why a transport layer? 

• IP packets are addressed to a host but end-to-end 
communication is between application processes 
at  hosts
– Need a way to decide which packets go to which 

applications (mux/demux)
• IP provides a weak service model (best-effort)

– Packets can be corrupted, delayed, dropped, 
reordered, duplicated 

– No guidance on how much traffic to send and when
– Dealing with this is tedious for application developers
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Role of the Transport Layer

• Communication between application processes

– Multiplexing between application processes
– Implemented using ports

9



Role of the Transport Layer

• Communication between application processes

• Provide common end-to-end services for app 

layer [optional]

– Reliable, in-order data delivery
– Paced data delivery: flow and congestion-control

• too fast may overwhelm the network
• too slow is not efficient

(Just Like Computer Networking Lectures….)
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Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app 

layer [optional]

• TCP and UDP are the common transport 

protocols

– also SCTP, MTCP, SST, RDP, DCCP, … 
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Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app 

layer [optional]

• TCP and UDP are the common transport 

protocols

• UDP is a minimalist, no-frills transport protocol

– only provides mux/demux capabilities
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Role of the Transport Layer

• Communication between processes
• Provide common end-to-end services for app layer 

[optional]
• TCP and UDP are the common transport protocols
• UDP is a minimalist, no-frills transport protocol
• TCP is the totus porcus protocol

– offers apps a reliable, in-order, byte-stream abstraction
– with congestion control 
– but no performance (delay, bandwidth, ...) guarantees
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Role of the Transport Layer

• Communication between processes

– mux/demux from and to application processes
– implemented using ports
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Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing as receiver:

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4

transport

application

physical
link

network

P3

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing as sender:

How demultiplexing works

# host receives IP datagrams
• each datagram has source IP 

address, destination IP address
• each datagram carries one 

transport-layer segment
• each segment has source, 

destination port number 
# host uses IP addresses & port 

numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP/UDP segment format

Connectionless demultiplexing

# when creating socket, must 
specify host-local port #:
DatagramSocket mySocket1        
= new 
DatagramSocket(12534);

when receiving host receives 
UDP segment:
• checks destination port # in 

segment
• directs UDP segment to socket 

with that port #

# when creating datagram to 
send into UDP socket, must 
specify
• destination IP address
• destination port #

IP/UDP datagrams with same 
dest. port #, but different source 
IP addresses and/or source port 

numbers will be directed to same 
socket at receiving host



transport
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mySocket = 
socket(AF_INET,SOCK_STREAM)
mySocket.bind(myaddr,9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

A

B

C

D

mySocket = 
socket(AF_INET,SOCK_STREAM)
mySocket.bind(myaddr,5775);

mySocket = 
socket(AF_INET,SOCK_DGRAM)
mySocket.bind(myaddr,6428);

Connectionless demultiplexing: an example Connection-oriented demultiplexing

# TCP socket identified by 
4-tuple: 
• source IP address
• source port number
• dest IP address
• dest port number

# server may support many 
simultaneous TCP sockets:
• each socket identified by its 

own 4-tuple
• each socket associated with 

a different connecting client

# demux: receiver uses all 
four values (4-tuple) to 
direct segment to 
appropriate socket

slight lie alert…. I should say that a common 
network tuple has FIVE values

• source IP address
• source port number
• dest IP address
• dest port number AND
• protocol e.g. TCP (6) or UDP (17)

Connection-oriented demultiplexing: example

transport

application

physical
link

network

P1
transport

application

physical
link

P4

transport

application

physical
link

network

P2

host: IP 
address A

host: IP 
address 

C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP 
address B

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

Summary
# Multiplexing, demultiplexing: based on segment, datagram 

header field values
# UDP: demultiplexing using destination port number (only)
# TCP: demultiplexing using 4-tuple: source and destination IP 

addresses, and port numbers

# Multiplexing/demultiplexing can happen at any layer



More on Ports

• Separate 16-bit port address space for UDP and TCP

• “Well known” ports (0-1023): everyone agrees which
services run on these ports
– e.g., ssh:22, http:80, https:443
– helps client know server’s port

• Ephemeral ports (most 1024-65535):  dynamically selected: as the 
source port for a client process

29

UDP: User Datagram Protocol 

• Lightweight communication between processes

– Avoid overhead and delays of ordered, reliable delivery

• UDP described in RFC 768 – (1980!)

– Destination IP address and port to support demultiplexing

– Optional error checking on the packet contents

• (checksum field of 0 means “don’t verify checksum”) not in IPv6!
• ((this idea of optional checksum is removed in IPv6))

SRC port DST port

checksum length

DATA 30

Why a transport layer? 

• IP packets are addressed to a host but end-to-
end communication is between application 

processes at  hosts

– Need a way to decide which packets go to which 
applications (mux/demux)

• IP provides a weak service model (best-effort)
– Packets can be corrupted, delayed, dropped, 

reordered, duplicated 
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Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

$ In a perfect world, reliable 
transport is easy

But the Internet default is best-effort

$ All the bad things best-effort can 
do
$ a packet is corrupted (bit errors)
$ a packet is lost 
$ a packet is delayed (why?)
$ packets are reordered (why?)
$ a packet is duplicated (why?)
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Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!
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Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

rdt_rcv()

udt_rcv()

Complexity of reliable data 
transfer protocol  will depend 

(strongly) on characteristics of 
unreliable channel (lose, corrupt, 

reorder data?)

35

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called by rdt to 
deliver data to upper

rdt_rcv()

udt_rcv()

udt_rcv(): called when packet 
arrives on rcv-side of channel

36

Reliable data transfer: getting started

We’ll:
• incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
• consider only unidirectional data transfer

– but control info will flow on both directions!

• use finite state machines (FSM)  to specify sender, 
receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely 

determined by next 
event

event
actions
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KR state machines – a note.

Beware
Kurose and Ross has a confusing/confused attitude to 

state-machines.
I’ve attempted to normalise the representation.
UPSHOT: these slides have differing information to the 

KR book (from which the RDT example is taken.)
in KR “actions taken” appear wide-ranging, my 

interpretation is more specific/relevant.

State
name

State
name

Relevant event causing state transition
Relevant action taken on state transitionstate: when in this “state”

next state uniquely 
determined by next 

event event
actions
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Rdt1.0: reliable transfer over a reliable channel

• underlying channel perfectly reliable
– no bit errors

– no loss of packets

• separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver read data from underlying channel

IDLE udt_send(packet)

rdt_send(data)

rdt_rcv(data)
IDLE

udt_rcv(packet)

sender receiver

Event

Action
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Rdt2.0: channel with bit errors

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells sender that 

packet received is OK

– negative acknowledgements (NAKs): receiver explicitly tells sender 
that packet had errors

– sender retransmits packet on receipt of NAK

• new mechanisms in rdt2.0 (beyond rdt1.0):
– error detection

– receiver feedback: control msgs (ACK,NAK) receiver->sender
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rdt2.0: FSM specification

IDLE

udt_send(packet)

rdt_rcv(data)

udt_send(ACK)

udt_rcv(packet) &&    

notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&

isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 

corrupt(packet)

Waiting
for reply

IDLE

sender

receiver
rdt_send(data)

L

Note: the sender holds a copy 
of the packet being sent until 
the delivery is acknowledged.
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rdt2.0: operation with no errors

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)

udt_send(ACK)

udt_rcv(packet) &&    

notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&

isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 

corrupt(packet)

rdt_send(data)
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rdt2.0: error scenario

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)

udt_send(ACK)

udt_rcv(packet) &&    

notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&

isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 

corrupt(packet)

rdt_send(data)
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rdt2.0 has a fatal flaw!

What happens if ACK/NAK 
corrupted?

• sender doesn’t know what 
happened at receiver!

• can’t just retransmit: possible 
duplicate

Handling duplicates: 
• sender retransmits current 

packet if ACK/NAK garbled
• sender adds sequence number

to each packet

• receiver discards (doesn’t  
deliver) duplicate packet

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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rdt2.1: sender, handles garbled ACK/NAKs

IDLE

sequence=0

udt_send(packet)

rdt_send(data)

Waiting
For reply

udt_send(packet)

udt_rcv(reply) &&  

( corrupt(reply) ||

isNAK(reply) )

sequence=1

udt_send(packet)

rdt_send(data)

udt_rcv(reply)   

&& notcorrupt(reply) 

&& isACK(reply) 

udt_send(packet)

udt_rcv(reply) &&  

( corrupt(reply) ||

isNAK(reply) )

udt_rcv(reply)   

&& notcorrupt(reply) 

&& isACK(reply)

IDLE
Waiting
for reply

LL



udt_rcv(packet) && corrupt(packet)
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rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 
0 from 
below

udt_send(NAK)

receive(packet) && 
not corrupt(packet) &&
has_seq0(packet)

udt_rcv(packet) && not corrupt(packet) 
&& has_seq1(packet)

udt_send(ACK)
rdt_rcv(data)

Wait for 
1 from 
below

udt_rcv(packet) && not corrupt(packet) 
&& has_seq0(packet) 

udt_send(ACK)
rdt_rcv(data)

udt_send(ACK)

receive(packet) && 
not corrupt(packet) &&
has_seq1(packet)

receive(packet) && corrupt(packet)

udt_send(ACK)

udt_send(NAK)

48

rdt2.1: discussion

Sender:
• seq # added to pkt
• two seq. #’s (0,1) will 

suffice.  Why?
• must check if received 

ACK/NAK corrupted 
• twice as many states

– state must “remember”
whether “current” pkt has a

0 or 1 sequence number

Receiver:
• must check if received 

packet is duplicate
– state indicates whether 0 or 1 

is expected pkt seq #

• note: receiver can not know 
if its last ACK/NAK received 
OK at sender
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rdt2.2: a NAK-free protocol

• same functionality as rdt2.1, using ACKs only
• instead of NAK, receiver sends ACK for last pkt received OK

– receiver must explicitly include seq # of pkt being ACKed

• duplicate ACK at sender results in same action as NAK: 
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free
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rdt2.2: sender, receiver fragments

Wait for call 
0 from 
above

sequence=0

udt_send(packet)

rdt_send(data)

udt_send(packet)

rdt_rcv(reply) &&  

( corrupt(reply) ||

isACK1(reply) )

udt_rcv(reply)   

&& not corrupt(reply) 

&& isACK0(reply)

Wait for 
ACK

0

sender FSM
fragment

Wait for 
0 from 
below

receive(packet) && not corrupt(packet) 

&& has_seq1(packet) 

send(ACK1)

rdt_rcv(data)

udt_rcv(packet) && 

(corrupt(packet) ||
has_seq1(packet))

udt_send(ACK1)
receiver FSM

fragment

L



rdt3.0: channels with errors and loss
New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help … 

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

rdt3.0: channels with errors and loss
Approach: sender waits “reasonable” amount of time for ACK 
# retransmits if no ACK received in this time
# if pkt (or ACK) just delayed (not lost):
• retransmission will be  duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

# use countdown timer to interrupt after “reasonable” amount 
of time

udt_rcv(reply) &&  
( corrupt(reply) ||
isACK(reply,1) )
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rdt3.0 sender

sequence=0
udt_send(packet)
start_timer

rdt_send(data)

Wait 
for 

ACK0

IDLE
state 1

sequence=1
udt_send(packet)
start_timer

rdt_send(data)

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply,0)

udt_rcv(packet) &&  
( corrupt(packet) ||
isACK(reply,0) )

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply,1)

stop_timer
stop_timer

udt_send(packet)
timeout

udt_send(packet)

timeout

udt_rcv(reply)

IDLE
state 0

Wait 
for 

ACK1

L
udt_rcv(reply)

L
L

L

rdt3.0 in action
sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack
0

ack0

no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1



rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt
1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack
0

ack0

ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt
1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0pkt0

ack
0

premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

ack1
send ack1send pkt0

rcv ack1
pkt0

rcv pkt0
send ack0ack0

pkt
1

(ignore)
rcv ack1
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R

 

U 
sender = .008 

30.008 
= 0.00027 

microsec
onds 

L / R 
RTT + L / R 

= 

Inefficient if
t << RTT
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Performance of rdt3.0 (stop-and-wait)

• rdt3.0 works, but performance stinks
• ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

• U sender: utilization – fraction of time sender busy sending

• 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link

• The network protocol limits use of physical resources!

 

U 
sender = .008 

30.008 
= 0.00027 

microsec
onds 

L / R 
RTT + L / R 

= 

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans
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Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver



Pipelining: increased utilization

first packet bit transmitted, t = 0
sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

 

U 
sender = 

.0024 
30.008 

= 0.00081  3L / R 
RTT + L / R 

= 

A Sliding Packet Window

• window = set of adjacent sequence numbers
– The size of the set is the window size; assume window size is n

• General idea: send up to n packets at a time 
– Sender can send packets in its window
– Receiver can accept packets in its window
– Window of acceptable packets “slides” on successful 

reception/acknowledgement

65

Acknowledgements w/ Sliding Window

• Two common options

– cumulative ACKs: ACK carries next in-order 

sequence number that the receiver expects

67

Cumulative Acknowledgements (1)

• At receiver
n

B
Received and ACK’d

Acceptable but not
yet received

Cannot be received

$ After receiving B+1, B+2

nBnew= B+2

$ Receiver sends ACK(Bnew+1)
68



Cumulative Acknowledgements (2)

• At receiver
n

B
Received and ACK’d

Acceptable but not
yet received

Cannot be received

$ After receiving B+4, B+5

nB

$ Receiver sends ACK(B+???)
69

Oh….
how do we 
recover?

Go-Back-N: sender
# sender: “window” of up to N, consecutive transmitted but unACKed pkts 

• k-bit seq # in pkt header

# cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
• on receiving ACK(n): move window forward to begin at n+1

# timer for oldest in-flight packet
# timeout(n): retransmit packet n and all higher seq # packets in window

Go-Back-N: receiver
# ACK-only: always send ACK for correctly-received packet so far, with 

highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

# on receipt of out-of-order packet: 
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not  ACKed

Not received

Receiver view of sequence number space:

… …

Go-Back-N in action
send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard, 
(re)send ack1

send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

pkt 2 timeout

receive pkt4, discard, 
(re)send ack1

receive pkt5, discard, 
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

rcv ack0, send 
pkt4

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send 
pkt5



Selective repeat
#receiver individually acknowledges all correctly received packets
• buffers packets, as needed, for eventual in-order delivery to upper 

layer

#sender times-out/retransmits individually for unACKed packets
• sender maintains timer for each unACKed pkt

#sender window
• N consecutive seq #s
• limits seq #s of sent, unACKed packets

Selective repeat: sender, receiver windows

Selective repeat: sender and receiver

data from above:
# if next available seq # in 

window, send packet

timeout(n):
# resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

# mark packet n as received
# if n smallest unACKed packet, 

advance window base to next 
unACKed seq # 

sender
packet n in [rcvbase, rcvbase+N-1]
# send ACK(n)
# out-of-order: buffer
# in-order: deliver (also deliver 

buffered, in-order packets), 
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]
# ACK(n)

otherwise:
# ignore 

receiver

Selective Repeat in action
send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

send  pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

rcv ack0, send 
pkt4

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send 
pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, 
send ack3

record ack3 arrived
receive pkt4, buffer, 

send ack4
receive pkt5, buffer, 

send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?



Selective repeat: 
a dilemma!

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 
# seq #s: 0, 1, 2, 3 (base 4 counting)
# window size=3

Selective repeat: 
a dilemma!

Q: what relationship is needed 
between sequence # size and 
window size to avoid problem 
in scenario (b)?

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 
# seq #s: 0, 1, 2, 3 (base 4 counting)
# window size=3

# receiver can’t 
see sender side

# receiver 
behavior 
identical in both 
cases!

# something’s 
(very) wrong!

Solution:

maximum allowable window size = 
half the sequence number space.

Observations

• With sliding windows, it is possible to fully utilize a 
link, provided the window size (n) is large enough.  
Throughput is ~ (n/RTT)
– Stop & Wait is like n = 1.

• Sender has to buffer all unacknowledged packets, 
because they may require retransmission

• Receiver may be able to accept out-of-order 
packets, but only up to its buffer limits

• Implementation complexity depends on protocol 
details (GBN vs. SR)

89

Recap: components of a solution
• Checksums (for error detection) 
• Timers (for loss detection) 
• Acknowledgments 

– cumulative 
– selective

• Sequence numbers (duplicates, windows)
• Sliding Windows (for efficiency) 

• Reliability protocols use the above to decide 
when and what to retransmit or acknowledge
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What does TCP do?

Most of our previous tricks + a few more beside
• Sequence numbers are byte offsets 
• Sender and receiver maintain a sliding window
• Receiver sends cumulative acknowledgements (like GBN)
• Sender maintains a single retx. timer 
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit : optimization that uses duplicate

ACKs to trigger early retx
• Introduces timeout estimation algorithms

TCP: overview  RFCs: 793,1122, 2018, 5681, 7323

# cumulative ACKs
# pipelining:
• TCP congestion and flow control 

set window size

# connection-oriented: 
• handshaking (exchange of control 

messages) initializes sender, 
receiver state before data 
exchange

# flow controlled:
• sender will not overwhelm receiver

# point-to-point:
• one sender, one receiver

# reliable, in-order byte 
steam:
• no “message boundaries"

# full duplex data:
• bi-directional data flow in 

same connection
• MSS: maximum segment size
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to mux 
and demux

What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 

96
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed 
over header 
and data

What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 
• Sequence numbers are byte offsets 

TCP: Segments and 
Sequence Numbers
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TCP “Stream of Bytes” Service…
Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Application @ Host A

Application @ Host B

Byte 80

Byte 80

100



… Provided Using TCP “Segments”

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Host A

Host B

Byte 80

TCP Data

TCP Data

Byte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out

101

TCP Segment

• IP packet
– No bigger than Maximum Transmission Unit (MTU)

– E.g., up to 1500 bytes with Ethernet

• TCP packet
– IP packet with a TCP header and data inside

– TCP header ³ 20 bytes long

• TCP segment
– No more than Maximum Segment Size (MSS) bytes

– E.g., up to 1460 consecutive bytes from the stream

– MSS = MTU – (IP header) – (TCP header)

IP Hdr

IP Data

TCP HdrTCP Data (segment)
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Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k bytes

103

Sequence Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

ACK sequence number 
= next expected byte

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte 
offset of data
carried in this
segment
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Sequence Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

Host A
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Sequence number
Acknowledgment

Data
Sequence number

Acknowledgment

Sequence number  
= 1st byte in segment = 

ISN + k

ACK sequence number 
= next expected byte

= seqno + length(data)

Host A- > B
DATA

Host B - > A
ACK

TCP Sequences and ACKS
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TCP is full duplex by default

• two independently flows of sequence numbers

Sequence acknowledgement is given in terms of BYTES 

(not packets); the window is in terms of bytes.

number of packets = window size (bytes) / Segment Size

Servers and Clients are not Source and Destination

Piggybacking increases efficiency but many flows may 

only have data moving in one direction

What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)



ACKing and Sequence Numbers

• Sender sends packet 

– Data starts with sequence number X

– Packet contains B bytes [X, X+1, X+2, ….X+B-1]

• Upon receipt of packet, receiver sends an ACK

– If all data prior to X already received:

• ACK acknowledges X+B (because that is next expected byte)

– If highest in-order byte received is Y s.t. (Y+1) < X

• ACK acknowledges Y+1
• Even if this has been ACKed before

109

Normal Pattern
• Sender: seqno=X, length=B
• Receiver: ACK=X+B
• Sender: seqno=X+B, length=B
• Receiver: ACK=X+2B
• Sender: seqno=X+2B, length=B

• Seqno of next packet is same as last ACK field

110
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment 
gives seqno just 
beyond highest 
seqno received in 
order
(“What Byte 

is Next”)

What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers can buffer out-of-sequence packets (like SR)
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Loss with cumulative ACKs

• Sender sends packets with 100B and seqnos.:
– 100, 200, 300, 400, 500, 600, 700, 800, 900, …

• Assume the fifth packet (seqno 500) is lost, 
but no others

• Stream of ACKs will be:

– 200, 300, 400, 500, 500, 500, 500,…
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What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers may not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
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Loss with cumulative ACKs

• “Duplicate ACKs” are a sign of an isolated loss
– The lack of ACK progress means 500 hasn’t been delivered
– Stream of ACKs means some packets are being delivered

• Therefore, could trigger resend upon receiving k 
duplicate ACKs

• TCP uses k=3

• But response to loss is trickier….
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Loss with cumulative ACKs

• Two choices:

– Send missing packet and increase W by the number 

of dup ACKs

– Send missing packet, and wait for ACK to increase W

• Which should TCP do?
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What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and 

retransmits on timeout
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Retransmission Timeout

• If the sender hasn’t received an ACK by 
timeout, retransmit the first packet in the 

window

• How do we pick a timeout value?

118

Timing Illustration

1

1

Timeout too long " inefficient

1

1

Timeout too short "
duplicate packets 

RTT

Timeout

Timeout

RTT
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Retransmission Timeout

• If haven’t received ack by timeout, retransmit 
the first packet in the window

• How to set timeout?

– Too long: connection has low throughput

– Too short: retransmit packet that was just delayed

• Solution: make timeout proportional to RTT

• But how do we measure RTT?
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RTT Estimation
• Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime− SendPacketTime
EstimatedRTT =α ×EstimatedRTT + (1−α)× SampleRTT
0 <α ≤1

Es
tim
at
ed
RT
T

Time

SampleRTT
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Exponential Averaging Example

RTT

time

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT
Assume RTT is constant " SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)
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Problem: Ambiguous Measurements

• How do we differentiate between the real ACK, and ACK of 
the retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

ACK
Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver
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Karn/Partridge Algorithm 
Discard junk measures

• Measure SampleRTT only for original transmissions

– Once a segment has been retransmitted, do not use it for any 
further measurements

• Computes EstimatedRTT using α = 0.875

• Timeout value (RTO)  = 2 × EstimatedRTT

• Employs exponential backoff

– Every time RTO timer expires, set RTO ¬ 2·RTO

– (Up  to maximum ³ 60 sec)

– Every time new measurement comes in (= successful original 
transmission), collapse RTO back to 2 × EstimatedRTT
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Jacobson/Karels Algorithm
Add a safety margin

• Problem: need to better capture variability in RTT

–Directly measure deviation

• Deviation = | SampleRTT – EstimatedRTT |
• EstimatedDeviation: exponential average of Deviation

• RTO = EstimatedRTT + 4 x EstimatedDeviation
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What does TCP do?

Most of our previous ideas, but some key 
differences
• Checksum 
• Sequence numbers are byte offsets 

• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and 

retransmits on timeout
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TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

Number of 4-byte 
words in TCP 
header;
5 = no options
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TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG
flag to indicate 
urgent data (not 
discussed further)

130



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

131

TCP Connection Establishment and 
Initial Sequence Numbers

132

Initial Sequence Number (ISN)
• Sequence number for the very first byte
• Why not just use ISN = 0?
• Practical issue

– IP addresses and port #s uniquely identify a connection

– Eventually, though, these port #s do get used again

– … small chance an old packet is still in flight

• TCP therefore requires changing ISN
• Hosts exchange ISNs when they establish a connection
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Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open; “synchronize sequence numbers”) to 

host B

– Host B returns a SYN acknowledgment (SYN ACK)

– Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells 
its ISN to the 
other host.
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG

135

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…
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Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags
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Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data 138



Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()
listen()
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What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
– Packet is lost inside the network, or:

– Server discards the packet (e.g., it’s too busy)

• Eventually, no SYN-ACK arrives
– Sender sets a timer and waits for the SYN-ACK

– … and retransmits the SYN if needed

• How should the TCP sender set the timer?
– Sender has no idea how far away the receiver is

– Hard to guess a reasonable length of time to wait

– SHOULD (RFCs 1122 & 2988) use default of 3 seconds
• Some implementations instead use 6 seconds
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Tearing Down the Connection

141

Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes
– FIN occupies one byte in the sequence space

• Other host acks the byte to confirm
• Closes A’s side of the connection, but not B’s

– Until B likewise sends a FIN
– Which A then acks

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B

FIN

A
CK

TIME_WAIT:

Avoid reincarnation
B will retransmit FIN 
if ACK is lost

Connection
now half-closed

Connection
now closed
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Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 + A

CK

A
CK

time
A

B

A
CK

Connection
now closed

TIME_WAIT:
Avoid reincarnation
Can retransmit
FIN ACK if ACK lost
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Abrupt Termination

• A sends a RESET (RST) to B
– E.g., because application process on A crashed

• That’s it
– B does not ack the RST
– Thus, RST is not delivered reliably
– And: any data in flight is lost
– But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T
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TCP State Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK 
exchanges 
are in here
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An Simpler View of the Client Side

CLOSED

TIME_WAIT

FIN_WAIT2

FIN_WAIT1

ESTABLISHED

SYN_SENT

SYN (Send)

Rcv. SYN+ACK,
Send ACK

Send FINRcv. ACK,
Send Nothing

Rcv. FIN, 
Send ACK
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
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• What does TCP do?

– ARQ windowing, set-up, tear-down

• Flow Control in TCP

148

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

Network layer 

delivering IP 

datagram payload 

into TCP socket 

buffers

from sender

Application removing 

data from TCP socket 

buffers

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

Network layer 

delivering IP 

datagram payload 

into TCP socket 

buffers

from sender

Application removing 

data from TCP socket 

buffers



TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

from sender

Application removing 

data from TCP socket 

buffers

receive window
flow control: # bytes 
receiver willing to accept

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster 
than application layer 
removes data from socket 
buffers?

receiver controls sender, so 

sender won’t overflow receiver’s 

buffer by transmitting too much, 

too fast

flow control

from sender

Application removing 

data from TCP socket 

buffers

TCP flow control
# TCP receiver “advertises” free buffer 

space in rwnd field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)
• many operating systems autoadjust
RcvBuffer

# sender limits amount of unACKed
(“in-flight”) data to received rwnd

# guarantees receive buffer will not 
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

TCP flow control
# TCP receiver “advertises” free buffer 

space in rwnd field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)
• many operating systems autoadjust
RcvBuffer

# sender limits amount of unACKed
(“in-flight”) data to received rwnd

# guarantees receive buffer will not 
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format



• What does TCP do?

– ARQ windowing, set-up, tear-down

• Flow Control in TCP

• Congestion Control in TCP

165

We have seen:
– Flow control: adjusting the sending rate to 

keep from overwhelming a slow receiver

Now lets attend…
– Congestion control: adjusting the sending rate 

to keep from overloading the network
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Congestion:
# informally: “too many sources sending too much data too fast for 

network to handle”

#manifestations:
• long delays (queueing in router buffers)
• packet loss (buffer overflow at routers)

# different from flow control!

Principles of congestion control

congestion 
control: too many 

senders, sending too fast

flow control: one sender 

too fast for one receiver

# a top-10 problem!

Causes/costs of congestion: scenario 1 
Simplest scenario:

maximum per-connection 

throughput: R/2

Host A

Host 
B

throughput:
lout

large delays as arrival 

rate lin approaches 

capacity

Q: What happens as 
arrival rate lin
approaches R/2?

original data: lin

R# two flows

# one router, infinite buffers 
# input, output link capacity: R infinite shared 

output link 
buffers

R# no retransmissions needed

R/2

d
e

la
y

lin

R/2

R/2

R/2

l o
ut

lin

th
ro

ug
hp

ut
: 



Causes/costs of congestion: scenario 2
# one router, finite buffers 

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output 
link buffers

# sender retransmits lost, timed-out packet
• application-layer input = application-layer output: lin = lout
• transport-layer input includes retransmissions : l’in lin

lou
t

RR

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output 
link buffers

Causes/costs of congestion: scenario 2

copy

free buffer space!

Idealization: perfect knowledge
# sender sends only when router buffers available 

lou
t

RR

R/2lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output 
link buffers

RR

Causes/costs of congestion: scenario 2

copy

no buffer space!

Idealization: some perfect knowledge
# packets can be lost (dropped at router) due  

to full buffers
# sender knows when packet has been 

dropped: only resends if packet known to be 
lost

Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output 
link buffers

RR

Causes/costs of congestion: scenario 2

free buffer space!

Idealization: some perfect knowledge
# packets can be lost (dropped at router) due  

to full buffers
# sender knows when packet has been 

dropped: only resends if packet known to be 
lost

when sending at 
R/2, some 
packets are 
needed 
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

“wasted” capacity 
due to 
retransmissions



Host A

Host B

lin : original data
l'in: original data, plus

retransmitted data

finite shared output 
link buffers

RR

Causes/costs of congestion: scenario 2

copytimeou
t

Realistic scenario: un-needed
duplicates

# packets can be lost, dropped at router due  to 

full buffers – requiring retransmissions

# but sender times can time out prematurely, 

sending two copies, both of which are 

delivered

free buffer space!

when sending at 
R/2, some packets 
are 
retransmissions, 
including needed 
and un-needed
duplicates, that are 
delivered!

“wasted” capacity 
due to un-needed 
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

Causes/costs of congestion: scenario 2

“costs” of congestion:
# more work (retransmission) for given receiver throughput
# unneeded retransmissions: link carries multiple copies of a packet

• decreasing maximum achievable throughput

Realistic scenario: un-needed
duplicates

# packets can be lost, dropped at router due  to 

full buffers – requiring retransmissions

# but sender times can time out prematurely, 

sending two copies, both of which are 

delivered

when sending at 
R/2, some packets 
are 
retransmissions, 
including needed 
and un-needed
duplicates, that are 
delivered!

“wasted” capacity 
due to un-needed 
retransmissions

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

Causes/costs of congestion: scenario 3
# four senders
# multi-hop paths
# timeout/retransmit

Q: what happens as lin and lin’ increase ?

A: as red  lin’ increases, all arriving blue pkts at upper 
queue are dropped, blue throughput g 0

finite shared 

output link 

buffers

Host 
A

lout

Host 
B

Host 
C

Host 
D

lin : original data

l'in: original data, plus
retransmitted data

Causes/costs of congestion: scenario 3

another “cost” of congestion: 
# when packet dropped, any upstream transmission capacity 

and buffering used for that packet was wasted!

R/2

R/2

l o
ut

lin
’



Causes/costs of congestion: insights

# upstream transmission capacity / 
buffering wasted for packets lost 
downstream

R/2

R/2

l o
ut

lin’

# delay increases as capacity approached 

R/2

de
la
y

lin

# un-needed duplicates further decreases 
effective throughput

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

# loss/retransmission decreases effective 
throughput

lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

R/2

# throughput can never exceed capacity 

R/2lin

R/2

l o
ut

th
ro

ug
hp

ut
: 

End-end congestion control:
• no explicit feedback from 

network

• congestion inferred from 
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

# approach taken by TCP

• TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion 
control:

# routers provide direct feedback 
to sending/receiving hosts with 
flows passing through congested 
router

# may indicate congestion level or 
explicitly set sending rate

Three Issues to Consider

• Discovering the available (bottleneck) 

bandwidth

• Adjusting to variations in bandwidth

• Sharing bandwidth between flows
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Abstract View

• Ignore internal structure of router and model it as 
having a single queue for a particular input-
output pair

Sending Host Buffer in Router Receiving Host

A B
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Discovering available bandwidth

• Pick sending rate to match bottleneck bandwidth
– Without any a priori knowledge
– Could be gigabit link, could be a modem

A B100 Mbps
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Adjusting to variations in bandwidth

• Adjust rate to match instantaneous bandwidth
– Assuming you have rough idea of bandwidth

A B
BW(t)
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Multiple flows and sharing bandwidth

Two Issues:

• Adjust total sending rate to match bandwidth

• Allocation of bandwidth between flows

A2 B2BW(t)

A1

A3 B3

B1
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Reality

Congestion control is a resource allocation problem involving many flows, 
many links, and complicated global dynamics
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View from a single flow 

• Knee – point after which 
– Throughput increases slowly
– Delay increases fast

• Cliff – point after which
– Throughput starts to drop to zero 

(congestion collapse)
– Delay approaches infinity

Load

Load

Th
ro

ug
hp

ut
De

la
y

knee cliff

congestion
collapse

packet
loss

188

General Approaches

(0) Send without care

– Many packet drops

189

General Approaches

(0) Send without care

(1) Reservations

– Pre-arrange bandwidth allocations

– Requires negotiation before sending packets

– Low utilization
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General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

– Don’t drop packets for the high-bidders

– Requires payment model

191

General Approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

– Hosts probe network; infer level of congestion; adjust 
– Network reports congestion level to hosts; hosts adjust
– Combinations of the above
– Simple to implement but suboptimal, messy dynamics
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General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

(3) Dynamic Adjustment

All three techniques have their place
• Generality of dynamic adjustment has proven powerful

• Doesn’t presume business model, traffic characteristics, 
application requirements; does assume good citizenship
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Who Takes Care of Congestion?

• Network?  End hosts? Both?

• TCP’s approach:

– End hosts adjust sending rate

– Based on implicit feedback from network

• Not the only approach

– A consequence of history rather than planning
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Some History: TCP in the 1980s

• Sending rate only limited by flow control
– Packet drops " senders (repeatedly!) retransmit a full 

window’s worth of packets 

• Led to “congestion collapse” starting Oct. 1986
– Throughput on the NSF network dropped from 

32Kbits/s to 40bits/sec

• “Fixed” by Van Jacobson’s development of TCP’s 
congestion control (CC) algorithms
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Jacobson’s Approach

• Extend TCP’s existing window-based protocol but adapt the 
window size in response to congestion
– required no upgrades to routers or applications!
– patch of a few lines of code to TCP implementations

• A pragmatic and effective solution 
– but many other approaches exist

• Extensively improved on since 
– topic now sees less activity in ISP contexts 
– but is making a comeback in datacenter environments
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TCP’s Approach in a Nutshell

• TCP connection has window

– Controls number of packets in flight 

• Sending rate: ~Window/RTT

• Vary window size to control sending rate
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Windows, Buffers, and TCP

198



Windows, Buffers, and TCP

• TCP connection has a window

– Controls number of packets in flight; 

filling a channel to improve throughput, and

vary window size to control sending rate

• Buffers adapt mis-matched channels 

– Buffers smooth bursts

– Adapt (re-time) arrivals  for multiplexing

199

Windows, Buffers, and TCP

Buffers & TCP can make link utilization 100%

but

Buffers add delay, variable delay
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Sizing Buffers in Routers

201

– Packet loss

• Queue overload, and subsequent packet loss

– End-to-end delay

• Transmission, propagation, and queueing delay

• The only variable part is queueing delay

– Router architecture

• Board space, power consumption, and cost

• On chip buffers: higher density, higher capacity

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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203 204

Rule-of-thumb – Intuition 

Rule for adjusting !
% If an ACK is received: W ← W+1/W
% If a packet is lost: W ← W/2

Only ! packets 
may be outstanding

Source Dest

t

Window size

205

Buffers in Routers
So how large should the buffers be? 

206

Buffer size matters

•

– End-to-end delay

• Transmission, propagation, and queueing delay

• The only variable part is queueing delay



Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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Buffers in Routers
So how large should the buffers be? 

208

Buffer size matters

•

•
•

– Router architecture

• Board space, power consumption, and cost

• On chip buffers: higher density, higher capacity

Synchronized Flows Many TCP Flows
• Aggregate window has same 

dynamics
• Therefore buffer occupancy has 

same dynamics
• Rule-of-thumb still holds.

• Independent, desynchronized

• Central limit theorem says the 
aggregate becomes Gaussian

• Variance (buffer size) 
decreases as N increases

Small Buffers – Intuition 

Probability
Distribution

t

Buffer Size

t
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Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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What size do we make the buffer?

Well it depends…

One TCP connection?

Many Synchronized TCP connections?

Just TCP – what about other applications?

Small BDP link?

Large BDP link?

How many devices?

W of flows?

How many flows?

How much do you know about your traffic?

What is best for your traffic?



TCP’s Approach in a Nutshell

• TCP connection has window

– Controls number of packets in flight 

• Sending rate: ~Window/RTT

• Vary window size to control sending rate
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All These Windows…

• Congestion Window: CWND
– How many bytes can be sent without overflowing routers
– Computed by the sender using congestion control algorithm

• Flow control window: AdvertisedWindow (RWND)
– How many bytes can be sent without overflowing receiver’s buffers
– Determined by the receiver and reported to the sender

• Sender-side window = minimum{CWND,RWND}
• Assume for this material that RWND >> CWND
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Note

• This lecture will talk about CWND in units of 
MSS 

– (Recall MSS: Maximum Segment Size, the amount of 

payload data in a TCP packet)

– This is only for pedagogical purposes

• In reality this is a LIE: Real implementations 

maintain CWND in bytes

213

Two Basic Questions

• How does the sender detect congestion?

• How does the sender adjust its sending rate?

– To address three issues

• Finding available bottleneck bandwidth

• Adjusting to bandwidth variations

• Sharing bandwidth
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(Recall) Detecting Congestion
• Packet delays 

– Tricky: noisy signal (delay often varies considerably)

• Router tell end-hosts they’re congested

• Packet loss
– Fail-safe signal that TCP already has to detect

– Complication: non-congestive loss (checksum errors)

• Two indicators of packet loss
– No ACK after certain time interval: timeout
– Multiple duplicate ACKs
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Not All Losses the Same

• Duplicate ACKs: isolated loss
– Still getting ACKs

• Timeout: much more serious
– Not enough packets in progress to trigger 

duplicate-acks, OR

– Suffered several losses

• We will adjust rate differently for each case
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Rate Adjustment

• Basic structure:

– Upon receipt of ACK (of new data): increase rate

– Upon detection of loss: decrease rate

• How we increase/decrease the rate depends on 
the phase of congestion control we’re in: 

– Discovering available bottleneck bandwidth vs.
– Adjusting to bandwidth variations
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Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth 
– start slow (for safety) 

– but ramp up quickly (for efficiency) 

• Consider
– RTT = 100ms, MSS=1000bytes

– Window size to fill 1Mbps of BW = 12.5 packets

– Window size to fill 1Gbps = 12,500 packets

– Either is possible! 
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“Slow Start” Phase
• Sender starts at a slow rate but increases 

exponentially until first loss

• Start with a small congestion window
– Initially, CWND = 1

– So, initial sending rate is MSS/RTT

• Double the CWND for each RTT with no loss 
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Slow Start in Action

• For each RTT: double CWND

• Simpler implementation: for each ACK, CWND += 1

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8
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Adjusting to Varying Bandwidth

• Slow start gave an estimate of available bandwidth 

• Now, want to track variations in this available 
bandwidth, oscillating around its current value
– Repeated probing (rate increase) and backoff (rate 

decrease)

• TCP uses: “Additive Increase Multiplicative 
Decrease” (AIMD)

– We’ll see why shortly…
221

AIMD

• Additive increase
– Window grows by one MSS for every RTT with no 

loss
– For each successful RTT, CWND = CWND + 1
– Simple implementation: 

• for each ACK, CWND = CWND+ 1/CWND

• Multiplicative decrease
– On loss of packet, divide congestion window in half
– On loss, CWND = CWND/2
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Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Window

223

Slow-Start vs. AIMD

• When does a sender stop Slow-Start and start 
Additive Increase?

• Introduce a “slow start threshold” (ssthresh)
– Initialized to a large value

– On timeout, ssthresh = CWND/2

• When CWND = ssthresh, sender switches from 
slow-start to AIMD-style increase

224
224

• What does TCP do?

– ARQ windowing, set-up, tear-down

• Flow Control in TCP

• Congestion Control in TCP

– AIMD (slow-start, congestion avoidance)

225

• What does TCP do?

– ARQ windowing, set-up, tear-down

• Flow Control in TCP

• Congestion Control in TCP

– AIMD (slow-start, congestion avoidance)

and Fast-Recovery

226



One Final Phase: Fast Recovery

• The problem: congestion avoidance too slow 
in recovering from an isolated loss 
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Example (in units of MSS, not bytes)

• Consider a TCP connection with:
– CWND=10 packets

– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight
– Packet 101 is dropped

– What ACKs do they generate?

– And how does the sender respond?
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The problem – A timeline

• ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
• ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
• ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
• RETRANSMIT 101 ssthresh=5  cwnd= 5
• ACK 101 (due to 105)  cwnd=5 + 1/5 (no xmit)
• ACK 101 (due to 106)  cwnd=5 + 2/5 (no xmit)
• ACK 101 (due to 107)  cwnd=5 + 3/5 (no xmit)
• ACK 101 (due to 108)  cwnd=5 + 4/5 (no xmit)
• ACK 101 (due to 109)  cwnd=5 + 5/5 (no xmit)
• ACK 101 (due to 110)  cwnd=6 + 1/5 (no xmit)
• ACK 111 (due to 101)  & only now can we transmit new packets
• Plus no packets in flight so ACK “clocking” (to increase CWND) stalls for 

another RTT
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Solution: Fast Recovery

Idea: Grant the sender temporary “credit” for each dupACK so as 
to keep packets in flight

• If dupACKcount = 3 
– ssthresh = cwnd/2
– cwnd = ssthresh + 3

• While in fast recovery
– cwnd = cwnd + 1 for each additional duplicate ACK

• Exit fast recovery after receiving new ACK
– set cwnd = ssthresh

230



Example

• Consider a TCP connection with:

– CWND=10 packets

– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight

– Packet 101 is dropped
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Timeline

• ACK 101 (due to 102)  cwnd=10  dup#1
• ACK 101 (due to 103)  cwnd=10  dup#2
• ACK 101 (due to 104)  cwnd=10  dup#3
• REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
• ACK 101 (due to 105)  cwnd= 9 (no xmit)
• ACK 101 (due to 106)  cwnd=10 (no xmit)
• ACK 101 (due to 107)  cwnd=11 (xmit 111)
• ACK 101 (due to 108)  cwnd=12 (xmit 112)
• ACK 101 (due to 109)  cwnd=13 (xmit 113)
• ACK 101 (due to 110)  cwnd=14 (xmit 114)
• ACK 111 (due to 101) cwnd = 5 (xmit 115)  & exiting fast recovery
• Packets 111-114 already in flight
• ACK 112 (due to 111) cwnd = 5 + 1/5  ! back in congestion avoidance

Summary: TCP congestion control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP Flavors 

• TCP-Tahoe
– cwnd =1 on triple dupACK

• TCP-Reno
– cwnd =1 on timeout
– cwnd = cwnd/2 on triple dupack

• TCP-newReno
– TCP-Reno + improved fast recovery

• TCP-SACK
– incorporates selective acknowledgements 



TCP Throughput Equation
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A

A Simple Model for TCP Throughput

Loss

t

cwnd

1

RTT

maxW

2
maxW

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTTs
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A

A Simple Model for TCP Throughput

Loss

t

cwnd

maxW

2
maxW

Packet drop rate, p =1/ A,  where A = 3
8
Wmax

2

Throughput, B = A
Wmax

2
!

"
#

$

%
&RTT

=
3
2

1
RTT p
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Implications (1): Different RTTs

• Flows get throughput inversely proportional to RTT

• TCP unfair in the face of heterogeneous RTTs!

Throughput = 3
2

1
RTT p

A1

A2 B2

B1

bottleneck
link

100ms

200ms
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Implications (2): High Speed TCP

• Assume RTT = 100ms, MSS=1500bytes

• What value of p is required to reach 100Gbps throughput
– ~ 2 x 10-12

• How long between drops?
– ~ 16.6 hours

• How much data has been sent in this time?
– ~ 6 petabits

• These are not practical numbers!

Throughput = 3
2

1
RTT p

242

Adapting TCP to High Speed

– Once past a threshold speed, increase CWND faster 
– A proposed standard [Floyd’03]: once speed is past some threshold, 

change equation to p-.8 rather than p-.5 

– Let the additive constant in AIMD depend on CWND

• Other approaches?
– Multiple simultaneous connections (hacky but works 

today)

– Router-assisted approaches (will see shortly)
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Implications (3): Rate-based CC

• TCP throughput is “choppy” 
– repeated swings between W/2 to W

• Some apps would prefer sending at a steady rate 
– e.g., streaming apps

• A solution: “Equation-Based Congestion Control” 
– ditch TCP’s increase/decrease rules and just follow the equation
– measure drop percentage p, and set rate accordingly

• Following the TCP equation ensures we’re “TCP friendly”
– i.e., use no more than TCP does in similar setting

Throughput = 3
2

1
RTT p
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TCP CUBIC
# Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher 

throughput in this 

example

# Insight/intuition: 
• Wmax: sending rate at which congestion loss was detected
• congestion state of bottleneck link probably (?) hasn’t changed much
• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then 

approach Wmax more slowly



TCP CUBIC
# K: point in time when TCP window size will reach Wmax

• K itself is tuneable

• larger increases when further away from K
• smaller increases (cautious) when nearer K

TCP
sending 

rate

time

TCP Reno
TCP CUBIC

Wmax

t0 t1 t2 t3 t4 

# TCP CUBIC default 
in Linux, most 
popular TCP for 
popular Web 
servers

# increase W as a function of the cube of the distance between current 
time  and K

TCP and the congested “bottleneck link”
# TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 

at some router’s output: the bottleneck link

source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

bottleneck link (almost always busy)

packet queue almost 
never empty, sometimes 

overflows packet (loss)

TCP and the congested “bottleneck link”
# TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 

at some router’s output: the bottleneck link

source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

#understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will 

not increase end-end throughout 

with congested bottleneck

insight: increasing TCP 

sending rate will
increase measured 

RTT

RTT

Goal: “keep the end-end pipe just full, but not fuller”

Delay-based TCP congestion control
Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep 
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:
# RTTmin - minimum observed RTT (uncongested path)
# uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to  uncongested throughput
increase cwnd linearly                /* since path not congested */ 

else if measured throughput “far below” uncongested throughout
decrease cwnd linearly /* since path is congested */

RTTmeasured

measured 
throughput =

# bytes sent in 
last RTT interval



Delay-based TCP congestion control

# congestion control without inducing/forcing loss

# maximizing throughout (“keeping the just pipe full… ”) while keeping 
delay low (“…but not fuller”)

# a number of deployed TCPs take a delay-based approach
# BBR deployed on Google’s (internal) backbone network

Recap: TCP problems

• Misled by non-congestion losses

• Fills up queues leading to high delays

• Short flows complete before discovering available capacity

• AIMD impractical for high speed links 

• Sawtooth discovery too choppy for some apps

• Unfair under heterogeneous RTTs

• Tight coupling with reliability mechanisms

• Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endpoints 
if they’re congested

Routers tell
endpoints what 
rate to send at

Routers enforce
fair sharing

255

Router-Assisted Congestion Control

• Three tasks for CC:

– Isolation/fairness

– Adjustment*

– Detecting congestion

* This may be automatic eg loss-response of TCP
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How can routers ensure each flow gets its “fair 
share”?
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Fairness: General Approach

• Routers classify packets into “flows”
– (For now) flows are packets between same source/destination

• Each flow has its own FIFO queue in router

• Router services flows in a fair fashion
– When line becomes free, take packet from next flow in a fair order

• What does “fair” mean exactly?
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Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth 

C, max-min bandwidth allocations are:
ai = min(f, ri) 

where f is the unique value such that Sum(ai) = C

r1

r2

r3

?
?

?
C bits/s
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Example
• C = 10;    r1 = 8, r2 = 6, r3 = 2;    N = 3
• C/3 = 3.33 ®

– Can service all of r3

– Remove r3 from the accounting: C = C – r3 = 8; N = 2

• C/2 = 4 ®
– Can’t service all of r1 or r2

– So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:  
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10
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Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth 

C, max-min bandwidth allocations are:
ai = min(f, ri) 

• where f is the unique value such that Sum(ai) = C

• Property:
– If you don’t get full demand, no one gets more than you

• This is what round-robin service gives if all packets are 
the same size
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How do we deal with packets of 
different sizes?

• Mental model: Bit-by-bit round robin (“fluid 
flow”) 

• Can you do this in practice?

• No, packets cannot be preempted

• But we can approximate it 
– This is what “fair queuing” routers do
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Fair Queuing (FQ) 

• For each packet, compute the time at which 
the last bit of a packet would have left the 

router if flows are served bit-by-bit

• Then serve packets in the increasing order of 

their deadlines
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Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow 

system

FQ
Packet
system

time

time

time

time
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Fair Queuing (FQ)

• Think of it as an implementation of round-robin generalized 
to the case where not all packets are equal sized

• Weighted fair queuing (WFQ): assign different flows 
different shares

• Today, some form of WFQ implemented in almost all routers
– Not the case in the 1980-90s, when CC was being developed

– Mostly used to isolate traffic at larger granularities (e.g., per-prefix) 
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FQ vs. FIFO

• FQ advantages: 
– Isolation: cheating flows don’t benefit

– Bandwidth share does not depend on RTT

– Flows can pick any rate adjustment scheme they 

want

• Disadvantages:
–More complex than FIFO: per flow queue/state, 

additional per-packet book-keeping 

FQ in the big picture

• FQ does not eliminate congestion " it just 
manages the congestion

1Gbps

1
0
0
M

b
p
s

1
G

b
p
s

5
G

b
p
s

1
G

b
p
s

Blue and Green get
0.5Gbps; any excess 

will be dropped

Will drop an additional
400Mbps from 
the green flow 

If the green flow doesn’t drop its sending rate to 
100Mbps, we’re wasting 400Mbps that could be 

usefully given to the blue flow

FQ in the big picture

• FQ does not eliminate congestion " it just 
manages the congestion
– robust to cheating, variations in RTT, details of delay, 

reordering, retransmission, etc.

• But congestion (and packet drops) still occurs

• And we still want end-hosts to discover/adapt to 
their fair share!

• What would the end-to-end argument say w.r.t. 
congestion control?

Fairness is a controversial goal

• What if you have 8 flows, and I have 4?
– Why should you get twice the bandwidth

• What if your flow goes over 4 congested hops, and mine only 
goes over 1?
– Why shouldn’t you be penalized for using more scarce bandwidth?

• And what is a flow anyway?
– TCP connection
– Source-Destination pair?
– Source?



Explicit Congestion Notification (ECN)

• Single bit in packet header; set by congested routers
– If data packet has bit set, then ACK has ECN bit set

• Many options for when routers set the bit
– tradeoff between (link) utilization and (packet) delay

• Congestion semantics can be exactly like that of drop
– I.e., endhost reacts as though it saw a drop

• Advantages:
– Don’t confuse corruption with congestion; recovery w/ rate adjustment
– Can serve as an early indicator of congestion to avoid delays
– Easy (easier) to incrementally deploy 

• defined as extension to TCP/IP in RFC 3168 (uses diffserv bits in the IP header)
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source

application
TCP

network
link

physical

destination
application
TCP

network
link

physical

Explicit congestion notification (ECN)
TCP deployments often implement network-assisted congestion control:
# two bits in IP header (ToS field) marked by network router to indicate congestion

• policy to determine marking chosen by network operator
# congestion indication carried to destination
# destination sets ECE bit on ACK segment to notify sender of congestion
# involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Recap

A “big bag”:
Multiplexing, reliability, error-detection, error-recovery,

flow and congestion control, ….

• UDP:
– Minimalist - multiplexing and error detection

• TCP: 
– somewhat hacky
– but practical/deployable
– good enough to have raised the bar for the deployment of new approaches 
– though the needs of datacenters change the status quos

• Beyond TCP (discussed in Topic 6):
– QUIC / application-aware transport layers
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