Lecture 15

Presheaf categories

Let C be a small category. The functor category Set $^{\mathrm{C}^{\text {OP }}}$ is called the category of presheaves on \mathbf{C}.

- objects are contravariant functors from C to Set
- morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.

Given a category C with a terminal object 1
A global element of an object $X \in \mathrm{obj}_{\mathrm{C}}$ is by definition a morphism $1 \rightarrow X$ in C
E.g. in Set ...
E.g. in Mon ...

Given a category C with a terminal object 1
A global element of an object $X \in \mathrm{obj} \mathrm{C}$ is by definition a morphism $1 \rightarrow X$ in C

We say C is well-pointed if for all $f, g: X \rightarrow Y$ in C we have:

$$
(\forall 1 \xrightarrow{x} X, f \circ x=g \circ x) \Rightarrow f=g
$$

(Set is, Mon isn't.)

Idea:

replace global elements of $X, 1 \xrightarrow{x} X$
by arbitrary morphisms $Y \xrightarrow{x} X($ for any $Y \in$ obj C)

Idea:

replace global elements of $X, 1 \xrightarrow{x} X$
by arbitrary morphisms $Y \xrightarrow{x} X$ (for any $Y \in$ obj C)
Some people use the notation $x \in_{Y} X$ and say " x is a generalised element of X at stage Y "
Have to take into account "change of stage":

$$
x \in_{Y} X \wedge Z \xrightarrow{f} Y \Rightarrow x \circ f \in_{Z} X
$$

(cf. Kripke's "possible world" semantics of intuitionistic and modal logics)

Yoneda functor

$$
\begin{gathered}
\mathrm{y}: \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{C}^{\mathrm{op}}} \\
\text { (where } \mathrm{C} \text { is a small category) }
\end{gathered}
$$

is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }_{\mathrm{C}}} \text { Set }
$$

Yoneda functor

$$
\frac{\mathrm{y}: \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{C}^{\text {op }}}}{\text { (where } \mathrm{C} \text { is a small category) }}
$$

is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }} \mathrm{Set}
$$

- For each C -object X, the object $\mathrm{y} X \in \operatorname{Set}^{\mathrm{C}^{\text {op }}}$ is the functor $\mathrm{C}(-, X): \mathrm{C}^{\mathrm{op}} \rightarrow$ Set given by

Yoneda functor

$$
\frac{\mathrm{y}: \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{C}^{\mathrm{op}}}}{\text { (where } \mathrm{C} \text { is a small category) }}
$$

is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }} \mathrm{Set}
$$

- For each C -object X, the object $\mathrm{y} X \in \operatorname{Set}^{\mathrm{C}^{\mathrm{OP}}}$ is the functor $\mathrm{C}(-, X): \mathrm{C}^{\circ p} \rightarrow$ Set given by

Yoneda functor

$$
\mathrm{y}: \mathrm{C} \rightarrow \operatorname{Set}^{\mathrm{C}^{\circ p}}
$$

(where C is a small category)
is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }} \mathrm{Set}
$$

- For each C-morphism $Y \xrightarrow{f} X$, the morphism y $Y \xrightarrow{y f} \mathrm{y} X$ in $\mathrm{Set}^{\mathrm{Cop}}$ is the natural transformation whose component at any given $Z \in \mathrm{C}^{\circ \mathrm{P}}$ is the function

$$
\begin{array}{cc}
\mathrm{y} Y(Z) \xrightarrow{\|} \xrightarrow{(\mathrm{y} f)_{z}} \mathrm{y} X(Z) \\
\mathrm{C}(Z, Y) \\
\mathrm{C}(Z, X) \\
g \longmapsto & \\
& f \circ g
\end{array}
$$

Yoneda functor

$$
\mathrm{y}: \mathrm{C} \rightarrow \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}
$$

(where C is a small category)
is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }} \text { Set }
$$

- For each C-morphism $Y \xrightarrow{f} X$, the morphism y $Y \xrightarrow{y f} \mathrm{y} X$ in $\mathrm{Set}^{\mathrm{Cop}}$ is the natural transformation whose component at any given $Z \in \mathrm{C}^{\circ \mathrm{P}}$ is the function

The Yoneda Lemma

For each small category C , each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{CPP}}$, there is a bijection of sets

$$
\eta_{X, F}: \mathrm{Set}^{\mathrm{Cop}}(\mathrm{y} X, F) \cong F(X)
$$

which is natural in both X and F.

The Yoneda Lemma

For each small category C , each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{CP}}$, there is a bijection of sets

The Yoneda Lemma

For each small category C , each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{C}^{\mathrm{OP}}}$, there is a bijection of sets

$$
\eta_{X, F}: \mathrm{Set}^{\mathrm{Cop}}(\mathrm{y} X, F) \cong F(X)
$$

which is natural in both X and F.
Definition of the function $\eta_{X, F}: \mathrm{Set}^{\mathrm{Cop}}(\mathrm{y} X, F) \rightarrow F(X)$:
for each $\theta: \mathrm{y} X \rightarrow F$ in $\mathrm{Set}{ }^{\mathrm{Cop}}$ we have the function
$\mathrm{C}(X, X)=\mathrm{y} X(X) \xrightarrow{\theta_{X}} F(X)$ and define

$$
\eta_{X, F}(\theta) \triangleq \theta_{X}\left(\mathrm{id}_{X}\right)
$$

The Yoneda Lemma

For each small category C , each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{C}^{\mathrm{OP}}}$, there is a bijection of sets

$$
\eta_{X, F}: \mathrm{Set}^{\mathrm{Cop}}(\mathrm{y} X, F) \cong F(X)
$$

which is natural in both X and F.
Definition of the function $\eta_{X, F}^{-1}: F(X) \rightarrow \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\mathrm{y} X, F)$:
for each $x \in F(X), Y \in \mathrm{C}$ and $f \in \mathrm{y} X(Y)=\mathrm{C}(Y, X)$,
we get a $F(X) \xrightarrow{F(f)} F(Y)$ in Set and hence $F(f)(x) \in F(Y)$;

The Yoneda Lemma

For each small category C , each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{C}^{\mathrm{op}}}$, there is a bijection of sets

$$
\eta_{X, F}: \operatorname{Set}^{\mathrm{Cop}}(\mathrm{y} X, F) \cong F(X)
$$

which is natural in both X and F.
Definition of the function $\eta_{X, F}^{-1}: F(X) \rightarrow \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\mathrm{y} X, F)$:
for each $x \in F(X), Y \in \mathrm{C}$ and $f \in \mathrm{y} X(Y)=\mathrm{C}(Y, X)$,
we get a $F(X) \xrightarrow{F(f)} F(Y)$ in Set and hence $F(f)(x) \in F(Y)$;
Define $\left(\eta_{X, F}^{-1}(x)\right)_{Y}: \mathrm{y} X(Y) \rightarrow F(Y)$ by

$$
\left(\eta_{X, F}^{-1}(x)\right)_{Y}(f) \triangleq F(f)(x)
$$

check this gives a
natural transformation
$\eta_{X, F}^{-1}(x): \mathrm{y} X \rightarrow F$

Proof of $\eta_{X, F} \circ \eta_{X, F}^{-1}=\operatorname{id}_{F(X)}$

For any $x \in F(X)$ we have

$$
\begin{aligned}
\eta_{X, F}\left(\eta_{X, F}^{-1}(x)\right) & \triangleq\left(\eta_{X, F}^{-1}(x)\right)_{X}\left(\operatorname{id}_{X}\right) & & \text { by definition of } \eta_{X, F} \\
& \triangleq F\left(\operatorname{id}_{X}\right)(x) & & \text { by definition of } \eta_{X, F}^{-1} \\
& =\operatorname{id}_{F(X)}(x) & & \text { since } F \text { is a functor } \\
& =x & &
\end{aligned}
$$

Proof of $\eta_{X, F}^{-1} \circ \eta_{X, F}=\mathrm{id}_{\mathrm{Set}^{\mathrm{cop}}}^{(\mathrm{y} X, F)}{ }^{\text {ch }}$

For any $\mathrm{y} X \xrightarrow{\theta} F$ in $\mathrm{Set}^{\text {Cop }}$ and $Y \xrightarrow{f} X$ in C , we have

$$
\begin{aligned}
& \left.\left(\eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)\right)_{Y} f \triangleq\left(\eta_{X, F}^{-1}\left(\theta_{X}\left(\operatorname{id}_{X}\right)\right)\right)\right)_{Y} f \quad \text { by definition of } \eta_{X, F} \\
& \triangleq F(f)\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right) \\
& =\theta_{Y}\left(f^{*}\left(i d_{X}\right)\right) \\
& \triangleq \theta_{Y}\left(i d_{X} \circ f\right) \\
& =\theta_{Y}(f) \\
& \begin{array}{cc}
\text { naturality of } \theta \\
\mathrm{y} X(Y) \xrightarrow{\theta_{Y}} & F(Y) \\
\uparrow f^{*} & \uparrow \\
\text { f }^{*} & \\
\mathrm{y} X(X) \xrightarrow[\theta_{X}]{\longrightarrow} & F(X)
\end{array} \\
& \text { by definition of } \eta_{X, F} \\
& \text { by definition of } \eta_{X, F}^{-1} \\
& \text { by naturality of } \theta \\
& \text { by definition of } f^{*}
\end{aligned}
$$

Proof of $\eta_{X, F}^{-1} \circ \eta_{X, F}=\mathrm{id}_{\mathrm{Set}^{\mathrm{cop}}(y X, F)}$

For any $\mathrm{y} X \xrightarrow{\theta} F$ in $\mathrm{Set}^{\mathrm{Cop}}$ and $Y \xrightarrow{f} X$ in C , we have

$$
\begin{aligned}
\left(\eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)\right)_{Y} f & \left.\triangleq\left(\eta_{X, F}^{-1}\left(\theta_{X}\left(\operatorname{id}_{X}\right)\right)\right)\right)_{Y} f & & \text { by definition of } \eta_{X, F} \\
& \triangleq F(f)\left(\theta_{X}\left(\operatorname{id}_{X}\right)\right) & & \text { by definition of } \eta_{X, F}^{-1} \\
& =\theta_{Y}\left(f^{*}\left(i d_{X}\right)\right) & & \text { by naturality of } \theta \\
& \triangleq \theta_{Y}\left(i d_{X} \circ f\right) & & \text { by definition of } f^{*} \\
& =\theta_{Y}(f) & &
\end{aligned}
$$

so $\forall \theta, Y,\left(\eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)\right)_{Y}=\theta_{Y}$
so $\forall \theta, \eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)=\theta$
so $\eta_{X, F}^{-1} \circ \eta_{X, F}=i d$.

The Yoneda Lemma

For each small category \mathbf{C}, each object $X \in \mathbf{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{Cop}}$, there is a bijection of sets

$$
\eta_{X, F}: \operatorname{Set}^{\mathrm{Cop}}(\mathrm{y} X, F) \cong F(X)
$$

which is natural in both X and F.

Proof that $\eta_{X, F}$ is natural in F :

Given $F \xrightarrow{\varphi} G$ in Set ${ }^{\mathrm{C}^{\text {op }}}$, have to show that

commutes in Set. For all $\mathrm{y} X \xrightarrow{\theta} F$ we have

$$
\begin{aligned}
\varphi_{X}\left(\eta_{X, F}(\theta)\right) & \triangleq \varphi_{X}\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right) \\
& \triangleq(\varphi \circ \theta)_{X}\left(\mathrm{id} \mathrm{~d}_{X}\right) \\
& \triangleq \eta_{X, G}(\varphi \circ \theta) \\
& \triangleq \eta_{X, G}\left(\varphi_{*}(\theta)\right)
\end{aligned}
$$

Proof that $\eta_{X, F}$ is natural in X :

Given $Y \xrightarrow{f} X$ in C , have to show that

commutes in Set. For all $\mathrm{y} X \xrightarrow{\theta} F$ we have

$$
\left.\begin{array}{rl}
F(f)\left(\left(\eta_{X, F}(\theta)\right)\right. & \triangleq F(f)\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right) \\
& =\theta_{Y}\left(f^{*}\left(\mathrm{id}_{X}\right)\right) \quad \text { by naturality of } \theta \\
& =\theta_{Y}(f) \\
& =\theta_{Y}\left(f_{*}\left(\mathrm{id}_{Y}\right)\right) \\
& \triangleq(\theta \circ \mathrm{y} f)_{Y}(\mathrm{id} \\
Y
\end{array}\right) \quad .
$$

Corollary of the Yoneda Lemma:

the functor $\mathrm{y}: \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{CP}}$ is full and faithful.

In general, a functor $F: \mathrm{C} \rightarrow \mathrm{D}$ is

- faithful if for all $X, Y \in \mathrm{C}$ the function

$$
\begin{array}{ccc}
\mathrm{C}(X, Y) & \rightarrow & \mathrm{D}(F(X), F(Y)) \\
f & \mapsto & F(f)
\end{array}
$$

is injective:

$$
\forall f, f^{\prime} \in \mathbf{C}(X, Y), F(f)=F\left(f^{\prime}\right) \Rightarrow f=f^{\prime}
$$

- full if the above functions are all surjective:

$$
\forall g \in \mathbf{D}(F(X), F(Y)), \exists f \in \mathbf{C}(X, Y), F(f)=g
$$

Corollary of the Yoneda Lemma:

the functor $\mathrm{y}: \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{CP}}$ is full and faithful.

Proof. From the proof of the Yoneda Lemma, for each $F \in \operatorname{Set}^{\text {Cop }}$ we have a bijection

$$
F(X) \xrightarrow{\left(\eta_{X, F}\right)^{-1}} \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\mathrm{y} X, F)
$$

By definition of $\left(\eta_{X, F}\right)^{-1}$, when $F=y Y$ the above function is equal to

$$
\begin{aligned}
& \mathrm{y} Y(X)=\mathrm{C}(X, Y) \rightarrow \\
& f \mapsto \operatorname{Set}^{\mathrm{Cop}}(\mathrm{y} X, \mathrm{y} Y) \\
& f_{*}=\mathrm{y} f
\end{aligned}
$$

So, being a bijection, $f \mapsto \mathrm{y} f$ is both injective and surjective; so y is both faithful and full.

Recall (for a small category C):
Yoneda functor y : C $\rightarrow \mathrm{Set}^{\mathrm{Cop}}$
Yoneda Lemma: there is a bijection $\operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\mathrm{y} X, F) \cong F(X)$ which is natural both in $F \in \mathrm{Set}^{\mathrm{C}^{\text {op }}}$ and $X \in \mathrm{C}$.

An application of the Yoneda Lemma:
Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed.

Theorem. For each small category C, the category
Set ${ }^{\mathrm{CPP}}$ of presheaves is cartesian closed.

Theorem. For each small category C, the category Set ${ }^{\mathrm{CPP}}$ of presheaves is cartesian closed.

Proof sketch.

Terminal object in Set ${ }^{\mathrm{C}^{\mathrm{op}}}$ is the functor $1: \mathrm{C}^{\mathrm{op}} \rightarrow$ Set given by

$$
\left\{\begin{array}{l}
1(X) \triangleq\{0\} \quad \text { terminal object in Set } \\
1(f) \triangleq \operatorname{id}_{\{0\}}
\end{array}\right.
$$

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed.

Proof sketch.

Product of $F, G \in \mathrm{Set}^{\mathrm{Cop}}$ is the functor $F \times G: \mathrm{C}^{\mathrm{op}} \rightarrow$ Set given by

$$
\left\{\begin{array}{l}
(F \times G)(X) \triangleq F(X) \times G(X) \quad \text { cartesian product of sets } \\
(F \times G)(f) \triangleq F(f) \times G(f)
\end{array}\right.
$$

with projection morphisms $F \stackrel{\pi_{1}}{\longleftarrow} F \times G \xrightarrow{\pi_{2}} G$ given by the natural transformations whose components at $X \in \mathrm{C}$ are the projection functions $F(X) \stackrel{\pi_{1}}{\longleftarrow} F(X) \times G(X) \xrightarrow{\pi_{2}} G(X)$.

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential $G^{F} \in \operatorname{Set}^{\mathrm{C}^{\text {op }}}$ at $X \in \mathrm{C}$ has to be using the Yoneda Lemma:

Theorem. For each small category C, the category Set ${ }^{\mathrm{CPP}}$ of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential $G^{F} \in \operatorname{Set}^{\mathrm{C}^{\text {op }}}$ at $X \in \mathrm{C}$ has to be using the Yoneda Lemma:

$$
G^{F}(X) \cong \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}\left(\mathrm{y} X, G^{F}\right) \cong \operatorname{Set}^{\mathrm{Cop}}(\mathrm{y} X \times F, G)
$$

We take the set Set ${ }^{\text {cop }}(\mathrm{y} X \times F, G)$ to be the definition of the value of G^{F} at $X \ldots$

Exponential objects in Set ${ }^{C \text { op }}$:

$$
G^{F}(X) \triangleq \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\mathrm{y} X \times F, G)
$$

Given $Y \xrightarrow{f} X$ in C, we have $\mathrm{y} Y \xrightarrow{\mathrm{yf}} \mathrm{y} X$ in $\mathrm{Set}^{\mathrm{C}^{\text {op }}}$ and hence

$$
\begin{aligned}
G^{F}(Y) \triangleq \operatorname{Set}^{\mathrm{CP}}(\mathrm{y} Y \times F, G) & \rightarrow \operatorname{Set}^{\mathrm{Cop}}(\mathrm{y} X \times F, G) \triangleq G^{F}(X) \\
\theta & \mapsto \theta \circ\left(\mathrm{yf} \times \mathrm{id}_{F}\right)
\end{aligned}
$$

We define

$$
G^{F}(f) \triangleq\left(\mathrm{y} f \times \mathrm{id}_{F}\right)^{*}
$$

Have to check that these definitions make G^{F} ino a functor $\mathrm{C}^{\mathrm{op}} \rightarrow$ Set.

Application morphisms in $\mathrm{Set}^{\mathrm{Cop}}$:

Given $F, G \in$ Set $^{\text {Cop }}$, the application morphism

$$
\text { app : } G^{F} \times F \rightarrow G
$$

is the natural transformation whose component at $X \in \mathrm{C}$ is the function

$$
\left(G^{F} \times F\right)(X) \triangleq G^{F}(X) \times F(X) \triangleq \operatorname{Set}^{\mathrm{Cop}_{\mathrm{P}}}(\mathrm{y} X \times F, G) \times F(X) \xrightarrow{\text { app }} G(X)
$$

defined by

$$
\operatorname{app}_{X}(\theta, x) \triangleq \theta_{X}\left(\mathrm{id}_{X}, x\right)
$$

Have to check that this is natural in X.

Currying operation in Set ${ }^{\mathrm{Cop}}$:

$$
(H \times F \xrightarrow{\theta} G) \mapsto\left(H \xrightarrow{\operatorname{cur} \theta} G^{F}\right)
$$

Given $H \times F \xrightarrow{\theta} G$ in Set $^{\mathrm{C}^{\text {op }}}$, the component of $\operatorname{cur} \theta$ at $X \in \mathrm{C}$

$$
H(X) \xrightarrow{(\operatorname{cur} \theta)_{X}} G^{F}(X) \triangleq \operatorname{Set}^{\mathrm{Cop}^{\mathrm{op}}}(\mathrm{y} X \times F, G)
$$

is the function mapping each $z \in H(X)$ to the natural transformation $\mathrm{y} X \times F \rightarrow G$ whose component at $Y \in \mathrm{C}$ is the function

$$
(\mathrm{y} X \times F)(Y) \triangleq \mathrm{C}(Y, X) \times F(Y) \rightarrow G(Y)
$$

defined by

$$
\left((\operatorname{cur} \theta)_{X}(z)\right)_{Y}(f, y) \triangleq \theta_{Y}(H(f)(z), y)
$$

Currying operation in Set ${ }^{\mathrm{Cop}}:$

$$
(H \times F \stackrel{\theta}{\rightarrow} G) \mapsto\left(H \xrightarrow{\operatorname{cur} \theta} G^{F}\right)
$$

$$
\left((\operatorname{cur} \theta)_{X}(z)\right)_{Y}(f, y) \triangleq \theta_{Y}(H(f)(z), y)
$$

Have to check that this is natural in Y,
then that $(\operatorname{cur} \theta)_{X}$ is natural in X,
then that $\operatorname{cur} \theta$ is the unique morphism $H \xrightarrow{\varphi} G^{F}$ in Set ${ }^{\text {Cop }}$ satisfying $\operatorname{app} \circ\left(\varphi \times \mathrm{id}_{F}\right)=\theta$.

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CPp}}$ of presheaves is cartesian closed.

So we can interpret simply typed lambda calculus in any presheaf category.
More than that, presheaf categories (usefully) model dependently-typed languages.

