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Curry-Howard
correspondence

Type
Logic Theory

propositions ↔ types
proofs ↔ terms

E.g. IPL versus STLC.
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Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs
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Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we
first need to define the notions of functor and natural transformation in order to
define the notion of equivalence of categories.
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Functors
are the appropriate notion of morphism between categories

Given categories C and D, a functor ! : C→ D is
specified by:
! a function objC→ objD whose value at " is

wri!en ! "

! for all " ,# ∈ C, a function C(" ,# ) → D(! " , ! # )
whose value at $ : " → # is wri!en
! $ : ! " → ! #
and which is required to preserve composition and
identity morphisms:

! (% ◦ $ ) = ! % ◦ ! $
! (id" ) = id! "
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. & : Mon→ Set

{
& (', ·, () = '

& (('1, ·1, (1)
$
−→ ('2, ·2, (2)) = '1

$
−→ '2
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. & : Mon→ Set

{
& (', ·, () = '

& (('1, ·1, (1)
$
−→ ('2, ·2, (2)) = '1

$
−→ '2

Similarly & : Preord→ Set.
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Examples of functors

Free monoid functor ! : Set→ Mon

Given Σ ∈ Set,

! Σ = (ListΣ,@, nil), the free monoid on Σ
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Examples of functors

Free monoid functor ! : Set→ Mon

Given Σ ∈ Set,

! Σ = (ListΣ,@, nil), the free monoid on Σ

Given a function $ : Σ1 → Σ2, we get a function
! $ : ListΣ1 → ListΣ2 by mapping $ over finite lists:

! $ [)1, . . . , )*] = [$ )1, . . . , $ )*]

This gives a monoid morphism ! Σ1 → ! Σ2; and mapping over lists preserves
composition (! (% ◦ $ ) = ! % ◦ ! $ ) and identities (! idΣ = id! Σ). So we do get a
functor from Set to Mon.
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Examples of functors

If C is a category with binary products and " ∈ C, then
the function ( ) ×" : objC→ objC extends to a
functor ( ) ×" : C→ C mapping morphisms
$ : # → # ′ to

$ × id" : # ×" → # ′ × "
(
recall that $ × % is the unique morphism with

{
+1 ◦ ($ × %) = $ ◦ +1

+2 ◦ ($ × %) = % ◦ +2

)

since it is the case that{
id" × id# = id"×#

($ ′ ◦ $ ) × id" = ($ ′ × id" ) ◦ ($ × id" )

(see Exercise Sheet 2, question 1c).
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Examples of functors

If C is a cartesian closed category and " ∈ C, then the
function ( )" : objC→ objC extends to a functor

( )" : C→ C mapping morphisms $ : # → # ′ to

$ " " cur($ ◦ app) : #" → # ′"

since it is the case that

{
(id# )

" = id#"

(% ◦ $ )" = %" ◦ $ "

(see Exercise Sheet 3, question 4).
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Contravariance
Given categories C and D, a functor ! : Cop→ D is
called a contravariant functor from C to D.

Note that if "
#
−→ #

$
−→ , in C, then "

#
←− #

$
←− , in Cop

so ! "
! #
←−− ! #

! $
←−− ! , in D and hence

! (% ◦C $ ) = ! $ ◦D ! %

(contravariant functors reverse the order of composition)

A functor C→ D is sometimes called a covariant functor from C to D.
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Example of a contravariant functor

If C is a cartesian closed category and " ∈ C, then the
function " ( ) : objC→ objC extends to a functor

" ( ) : Cop → C mapping morphisms $ : # → # ′ to

" $
" cur(app ◦(id"% ′ × $ )) : "#

′

→ "#

since it is the case that

{
" id% = id"%

"%◦$ = " $ ◦ "%

(see Exercise Sheet 3, question 5).
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Note that since a functor ! : C→ D preserves domains,
codomains, composition and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.

"
$

ℎ#

%

,

!
↦→

! "
! $

! ℎ=! (%◦$ )=! %◦! $! #

! %

! ,
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Note that since a functor ! : C→ D preserves domains,
codomains, composition and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

"
$

id"

#
%

id%

"
$
#

!
↦→

! "
! $

id! "

! #

! %
id! %

! "
! $

! #

so ! ($ −1) = (! $ )−1
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Composing functors

Given functors ! : C→ D and. : D→ E, we get a
functor . ◦ ! : C→ E with

. ◦ !
$%
&
"

$

#

'(
)
=

. (! " )

. (! $ )

. (! # )

(this preserves composition and identity morphisms, because ! and . do)
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Identity functor

on a category C is idC : C→ C where

idC
$%
&
"

$

#

'(
)
=

"

$

#
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Functor composition and identity functors satisfy

associativity / ◦ (. ◦ ! ) = (/ ◦.) ◦ !

unity idD ◦ ! = ! = ! ◦ idC

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size. . .
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets "0,"1,"2, . . . with

· · · ∈ "*+1 ∈ "* ∈ · · · ∈ "2 ∈ "1 ∈ "0

So in particular there is no set " with " ∈ " .

So we cannot form the “set of all sets” or the “category of all categories”.
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets "0,"1,"2, . . . with

· · · ∈ "*+1 ∈ "* ∈ · · · ∈ "2 ∈ "1 ∈ "0

So in particular there is no set " with " ∈ " .

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

!0 ∈ !1 ∈ !2 ∈ · · ·

where “big” means each!& is a Grothendieck universe. . .
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Grothendieck universes
A Grothendieck universe ! is a set of sets satisfying

! " ∈ # ∈ !⇒ " ∈ !

! " ,# ∈ !⇒ {" ,# } ∈ !

! " ∈ !⇒"" " {# | # ⊆ " } ∈ !

! " ∈ & ∧ ! ∈ !" ⇒
{0 | ∃1 ∈ " , 0 ∈ ! 1} ∈ !

(hence also " ,# ∈ ! ⇒ " × # ∈ ! ∧ #" ∈ !)

The above properties are satisfied by! = ∅, but we will always assume

! N ∈ !
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Size
We assume

there is an infinite sequence !0 ∈ !1 ∈ !2 ∈ · · · of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Set* = category whose objects are all the sets in!* and
with Set* (" ,# ) = #

" = all functions from " to # .

Notation: Set " Set0 — its objects are called small sets
(and other sets we call large).
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Size
Set is the category of small sets.

Definition. A category C is locally small if for all
" ,# ∈ C, the set of C-morphisms " → # is small, that
is, C(" ,# ) ∈ Set.

C is a small category if it is both locally small and
objC ∈ Set.

E.g. Set, Preord andMon are all locally small (but not small).

Given 2 ∈ Preord, the category C' it determines is small; similarly, the category
C( determined by' ∈ Mon is small.
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The category of small categories, Cat

! objects are all small categories
! morphisms in Cat(C,D) are all functors C→ D

! composition and identity morphisms as for functors

Cat is a locally small category
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