
Lecture 10

L10 101

Curry-Howard
correspondence

Type
Logic Theory

propositions ↔ types
proofs ↔ terms

E.g. IPL versus STLC.

L9 98

Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs

L9 100

Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we
first need to define the notions of functor and natural transformation in order to
define the notion of equivalence of categories.

L9 100

Functors
are the appropriate notion of morphism between categories

Given categories C and D, a functor ! : C→ D is
specified by:
! a function objC→ objD whose value at " is

wri!en ! "

! for all " ,# ∈ C, a function C(" ,#) → D(! " , ! #)
whose value at $: " → # is wri!en
! $: ! " → ! #
and which is required to preserve composition and
identity morphisms:

! (% ◦ $) = ! % ◦ ! $
! (id") = id! "

L10 102

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. & : Mon→ Set

{
& (', ·, () = '

& (('1, ·1, (1)
$
−→ ('2, ·2, (2)) = '1

$
−→ '2

L10 103

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. & : Mon→ Set

{
& (', ·, () = '

& (('1, ·1, (1)
$
−→ ('2, ·2, (2)) = '1

$
−→ '2

Similarly & : Preord→ Set.

L10 103

Examples of functors

Free monoid functor ! : Set→ Mon

Given Σ ∈ Set,

! Σ = (ListΣ,@, nil), the free monoid on Σ

L10 104

Examples of functors

Free monoid functor ! : Set→ Mon

Given Σ ∈ Set,

! Σ = (ListΣ,@, nil), the free monoid on Σ

Given a function $: Σ1 → Σ2, we get a function
! $: ListΣ1 → ListΣ2 by mapping $ over finite lists:

! $ [)1, . . . ,)*] = [$)1, . . . , $)*]

This gives a monoid morphism ! Σ1 → ! Σ2; and mapping over lists preserves
composition (! (% ◦ $) = ! % ◦ ! $) and identities (! idΣ = id! Σ). So we do get a
functor from Set to Mon.

L10 104

Examples of functors

If C is a category with binary products and " ∈ C, then
the function () ×" : objC→ objC extends to a
functor () ×" : C→ C mapping morphisms
$: # → # ′ to

$ × id" : # ×" → # ′ × "
(
recall that $ × % is the unique morphism with

{
+1 ◦ ($ × %) = $ ◦ +1

+2 ◦ ($ × %) = % ◦ +2

)

since it is the case that{
id" × id# = id"×#

($ ′ ◦ $) × id" = ($ ′ × id") ◦ ($ × id")

(see Exercise Sheet 2, question 1c).
L10 105

Examples of functors

If C is a cartesian closed category and " ∈ C, then the
function ()" : objC→ objC extends to a functor

()" : C→ C mapping morphisms $: # → # ′ to

$ " " cur($ ◦ app) : #" → # ′"

since it is the case that

{
(id#)

" = id#"

(% ◦ $)" = %" ◦ $ "

(see Exercise Sheet 3, question 4).

L10 106

Contravariance
Given categories C and D, a functor ! : Cop→ D is
called a contravariant functor from C to D.

Note that if "
#
−→ #

$
−→ , in C, then "

#
←− #

$
←− , in Cop

so ! "
! #
←−− ! #

! $
←−− ! , in D and hence

! (% ◦C $) = ! $ ◦D ! %

(contravariant functors reverse the order of composition)

A functor C→ D is sometimes called a covariant functor from C to D.

L10 107

Example of a contravariant functor

If C is a cartesian closed category and " ∈ C, then the
function " () : objC→ objC extends to a functor

" () : Cop → C mapping morphisms $: # → # ′ to

" $
" cur(app ◦(id"% ′ × $)) : "#

′

→ "#

since it is the case that

{
" id% = id"%

"%◦$ = " $ ◦ "%

(see Exercise Sheet 3, question 5).

L10 108

Note that since a functor ! : C→ D preserves domains,
codomains, composition and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.

"
$

ℎ#

%

,

!
↦→

! "
! $

! ℎ=! (%◦$)=! %◦! $! #

! %

! ,

L10 109

Note that since a functor ! : C→ D preserves domains,
codomains, composition and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

"
$

id"

#
%

id%

"
$
#

!
↦→

! "
! $

id! "

! #

! %
id! %

! "
! $

! #

so ! ($ −1) = (! $)−1

L10 109

Composing functors

Given functors ! : C→ D and. : D→ E, we get a
functor . ◦ ! : C→ E with

. ◦ !
$%
&
"

$

#

'(
)
=

. (! ")

. (! $)

. (! #)

(this preserves composition and identity morphisms, because ! and . do)

L10 110

Identity functor

on a category C is idC : C→ C where

idC
$%
&
"

$

#

'(
)
=

"

$

#

L10 111

Functor composition and identity functors satisfy

associativity / ◦ (. ◦ !) = (/ ◦.) ◦ !

unity idD ◦ ! = ! = ! ◦ idC

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size. . .

L10 112

Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets "0,"1,"2, . . . with

· · · ∈ "*+1 ∈ "* ∈ · · · ∈ "2 ∈ "1 ∈ "0

So in particular there is no set " with " ∈ " .

So we cannot form the “set of all sets” or the “category of all categories”.

L10 113

Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets "0,"1,"2, . . . with

· · · ∈ "*+1 ∈ "* ∈ · · · ∈ "2 ∈ "1 ∈ "0

So in particular there is no set " with " ∈ " .

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

!0 ∈ !1 ∈ !2 ∈ · · ·

where “big” means each!& is a Grothendieck universe. . .

L10 113

Grothendieck universes
A Grothendieck universe ! is a set of sets satisfying

! " ∈ # ∈ !⇒ " ∈ !

! " ,# ∈ !⇒ {" ,# } ∈ !

! " ∈ !⇒"" " {# | # ⊆ " } ∈ !

! " ∈ & ∧ ! ∈ !" ⇒
{0 | ∃1 ∈ " , 0 ∈ ! 1} ∈ !

(hence also " ,# ∈ ! ⇒ " × # ∈ ! ∧ #" ∈ !)

The above properties are satisfied by! = ∅, but we will always assume

! N ∈ !

L10 114

Size
We assume

there is an infinite sequence !0 ∈ !1 ∈ !2 ∈ · · · of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Set* = category whose objects are all the sets in!* and
with Set* (" ,#) = #

" = all functions from " to # .

Notation: Set " Set0 — its objects are called small sets
(and other sets we call large).

L10 115

Size
Set is the category of small sets.

Definition. A category C is locally small if for all
" ,# ∈ C, the set of C-morphisms " → # is small, that
is, C(" ,#) ∈ Set.

C is a small category if it is both locally small and
objC ∈ Set.

E.g. Set, Preord andMon are all locally small (but not small).

Given 2 ∈ Preord, the category C' it determines is small; similarly, the category
C(determined by' ∈ Mon is small.

L10 116

The category of small categories, Cat

! objects are all small categories
! morphisms in Cat(C,D) are all functors C→ D

! composition and identity morphisms as for functors

Cat is a locally small category

L10 117

