Cateyong Theong
Lecture 3

Category-theoretic properties

Any two isomorphic objects in a category should have the same category-theoretic properties - statements that are provable in a formal logic for category theory, whatever that is.

Instead of trying to formalize such a logic, we will just look at examples of category-theoretic properties. Here is our first one...

Terminal object

An object T of a category C is terminal if for all $X \in \mathrm{C}$, there is a unique C -morphism from X to T, which we write as $\left\rangle_{X}: X \rightarrow T\right.$.
So we have $\left\{\begin{array}{l}\forall X \in \mathrm{C},\langle \rangle_{X} \in \mathrm{C}(X, T) \\ \forall X \in \mathrm{C}, \forall f \in \mathrm{C}(X, T), f=\langle \rangle_{X}\end{array}\right.$
(So in particular, $\mathrm{id}_{T}=\langle \rangle_{T}$)
Sometimes we just write $\left\rangle_{X}\right.$ as \rangle.
Some people write $!_{X}$ for $\left\rangle_{X}\right.$ - there is no commonly accepted notation; [Awodey] avoids using one.

Examples of terminal objects

- In Set: any one-element set.
- Any one-element set has a unique pre-order and this makes it terminal in Preord (and Poset)
- Any one-element set has a unique monoid structure and this makes it terminal in Mon.

Examples of terminal objects

- In Set: any one-element set.
- Any one-element set has a unique pre-order and this makes it terminal in Preord (and Poset)
- Any one-element set has a unique monoid structure and this makes it terminal in Mon.
- A pre-ordered set (P, \sqsubseteq), regarded as a category C_{P}, has a terminal object iff it has a greatest element T, that is: $\forall x \in P, x \sqsubseteq \top$
- When does a monoid (M, \cdot, e), regarded as a category C_{M}, have a terminal object?

Terminal object

Theorem. In a category C :
(a) If T is terminal and $T \cong T^{\prime}$, then T^{\prime} is terminal.
(b) If T and T^{\prime} are both terminal, then $T \cong T^{\prime}$ (and there is only one isomorphism between T and T^{\prime}).

In summary: terminal objects are unique up to unique isomorphism.

Proof...

Terminal object

Theorem. In a category C :
(a) If T is terminal and $T \cong T^{\prime}$, then T^{\prime} is terminal.
(b) If T and T^{\prime} are both terminal, then $T \cong T^{\prime}$ (and there is only one isomorphism between T and T^{\prime}).

In summary: terminal objects are unique up to unique isomorphism.

Proof...
Notation: from now on, if a category C has a terminal object we will write that object as 1

Opposite of a category

Given a category C , its opposite category C^{op} is defined by interchanging the operations of dom and cod in C :
$-\operatorname{obj}^{\mathrm{OP}} \triangleq \mathrm{objC}^{-}$

- $\mathrm{C}^{\circ \mathrm{p}}(X, Y) \triangleq \mathrm{C}(Y, X)$, for all objects X and Y
- identity morphism on $X \in$ obj $\mathrm{C}^{\circ \mathrm{P}}$ is $\mathrm{id}_{X} \in \mathrm{C}(X, X)=\mathrm{C}^{\circ \mathrm{p}}(X, X)$
- composition in C^{op} of $f \in \mathrm{C}^{\mathrm{op}}(X, Y)$ and $g \in \mathrm{C}^{\circ \mathrm{p}}(Y, Z)$ is given by the composition $f \circ g \in \mathrm{C}(Z, X)=\mathrm{C}^{\circ \mathrm{p}}(X, Z)$ in C (associativity and unity properties hold for this operation, because they do in C)

The Principle of Duality

Whenever one defines a concept / proves a theorem in terms of commutative diagrams in a category C , one obtains another concept / theorem, called its dual, by reversing the direction or morphisms throughout, that is, by replacing C by its opposite category $\mathrm{C}^{\circ p}$.

For example...

Initial object

is the dual notion to "terminal object":
An object 0 of a category C is initial if for all $X \in \mathrm{C}$, there is a unique C -morphism $0 \rightarrow X$, which we write as []$_{X}: 0 \rightarrow X$.
So we have $\left\{\begin{array}{l}\forall X \in \mathbf{C},[]_{X} \in \mathbf{C}(0, X) \\ \forall X \in \mathrm{C}, \forall f \in \mathrm{C}(0, X), f=[]_{X}\end{array}\right.$
(So in particular, $\mathrm{id}_{0}=[]_{0}$)

By duality, we have that initial objects are unique up to isomorphism and that any object isomorphic to an initial object is itself initial.
(N.B. "isomorphism" is a self-dual concept.)

Examples of initial objects

- The empty set is initial in Set.
- Any one-element set has a uniquely determined monoid structure and is initial in Mon. (why?)

So initial and terminal objects co-incide in Mon
An object that is both initial and terminal in a category is sometimes called a zero object.

- A pre-ordered set (P, \sqsubseteq), regarded as a category C_{P}, has an initial object iff it has a least element \perp, that is: $\forall x \in P, \perp \sqsubseteq x$

Example:

 free monoids as initial objects

 free monoids as initial objects}
(relevant to automata and formal languages)
The free monoid on a set Σ is (List Σ, @, nil) where

$$
\begin{aligned}
\text { List } \Sigma & =\text { set of finite lists of elements of } \Sigma \\
@ & =\text { list concatenation } \\
\text { nil } & =\text { empty list }
\end{aligned}
$$

Example:

free monoids as initial objects

(relevant to automata and formal languages)
The free monoid on a set Σ is (List Σ, @, nil) where

$$
\begin{aligned}
\text { List } \Sigma & =\text { set of finite lists of elements of } \Sigma \\
@ & =\text { list concatenation } \\
\text { nil } & =\text { empty list }
\end{aligned}
$$

The function

$$
\begin{aligned}
\eta_{\Sigma}: \Sigma & \rightarrow \operatorname{List} \Sigma \\
a & \mapsto[a]=a:: \text { nil (one-element list) }
\end{aligned}
$$

has the following "universal property"...

Example:

 free monoids as initial objects

 free monoids as initial objects}
(relevant to automata and formal languages)
Theorem. For any monoid (M, \cdot, e) and function $\underline{f}: \Sigma \rightarrow M$, there is a unique monoid morphism $\bar{f} \in \operatorname{Mon}(($ List Σ, @, nil), $(M, \cdot, e))$ making $\Sigma \xrightarrow{\eta_{\Sigma}}$ List Σ commute in Set.

Proof...

Example:
 free monoids as initial objects

(relevant to automata and formal languages)
Theorem. $\forall M \in \operatorname{Mon}, \forall f \in \operatorname{Set}(\Sigma, M), \exists!\bar{f} \in \operatorname{Mon}($ List $\Sigma, M), \bar{f} \circ \eta_{\Sigma}=f$
The theorem just says that $\eta_{\Sigma}: \Sigma \rightarrow$ List Σ is an initial object in the category $\Sigma /$ Mon:

- objects: $((M, \cdot, e), f)$ where $(M, \cdot, e) \in$ obj Mon and $f \in \operatorname{Set}(\Sigma, M)$
- morphisms in
$\Sigma / \operatorname{Mon}\left(\left(\left(M_{1},{ }_{1}, e_{1}\right), f_{1}\right),\left(\left(M_{2}, \cdot{ }_{2}, e_{2}\right), f_{2}\right)\right)$ are
$f \in \operatorname{Mon}\left(\left(M_{1},{ }^{1}, e_{1}\right),\left(M_{2},{ }_{2}, e_{2}\right)\right)$ such that $f \circ f_{1}=f_{2}$
- identities and composition as in Mon

Example:
 free monoids as initial objects

(relevant to automata and formal languages)
Theorem. $\forall M \in \operatorname{Mon}, \forall f \in \operatorname{Set}(\Sigma, M), \exists!\bar{f} \in \operatorname{Mon}($ List $\Sigma, M), \bar{f} \circ \eta_{\Sigma}=f$
The theorem just says that $\eta \delta: \Sigma \rightarrow$ List Σ is an initial object in the category Σ / Mon :

So this "universal property" determines the monoid List Σ uniquely up to isomorphism in Mon.
We will see later that $\Sigma \mapsto$ List Σ is part of a functor (= morphism of categories) which is left adjoint to the "forgetful functor" Mon \rightarrow Set.

