Category Theory

Andrew Pitts

University of Cambridge Computer Science Tripos
Part II Unit of Assessment Part III and MPhil. ACS Module L108

Michaelmas Term 2022

Course web page

Go to
https://www.cl.cam.ac.uk/teaching/2223/CAT/
https://www.cl.cam.ac.uk/teaching/2223/L108/
for

- these slides
- exercise sheets and details of examples classes
(trying the exercises is essential!)
- pointers to some additional material

Recommended text for the course is:
[Awodey] Steve Awodey, Category theory, Oxford University Press (2nd ed.), 2010.

Assessment

- A graded exercise sheet (25% of the final mark). issued in lecture 10 with a one week deadline
- A take-home test (75% of the final mark). issued after the end of the course

There will be two one-hour example class sessions to provide help with the exercises.

See course web page for dates and deadlines.

Please use the Discussion Forum on the course Moodle page if you have questions about the course material or the exercise sheets.

Lecture 1

What is category theory?

What we are probably seeking is a "purer" view of functions: a theory of functions in themselves, not a theory of functions derived from sets. What, then, is a pure theory of functions? Answer: category theory.

Dana Scott, Relating theories of the λ-calculus, p406
set theory gives an "element-oriented" account of mathematical structure, whereas
category theory takes a 'function-oriented" view understand structures not via their elements, but by how they transform, i.e. via morphisms.
(Both theories are part of Logic, broadly construed.)

SAMUEL EILENBERG AND SAUNDERS MacLANE
Contents
Introduction. 231
I. Categories and functors 237

1. Definition of categories 237
2. Examples of categories 239
3. Functors in two arguments 24
4. Examples of functors 242
5. Slicing of functors 245
6. Foundations 246
II. Natural equivalence of functors 248
7. Transformations of functors 248
8. Categories of functors 250
9. Composition of functors 250
10. Examples of transformations 251
11. Groups as categories 256
12. Construction of functors by transformations 257
13. Combination of the arguments of functors 258
III. Functors and groups. 260
14. Subfunctors 260
15. Quotient functors. 262
16. Examples of subfunctors 263
17. The isomorphism theorems 265
18. Direct products of functors 267
19. Characters 270
IV. Partially ordered sets and projective limits 272
20. Quasi-ordered sets. 272
21. Direct systems as functors 273
22. Inverse systems as functors 276
23. The categories $\mathfrak{D i r}$ and $\mathfrak{Y n b}$ 277
24. The lifting principle 280
25. Functors which commute with limits 281
V. Applications to topology 283
26. Complexes 283
27. Homology and cohomology groups 284
28. Duality 287
29. Universal coefficient theorems 288
30. Cech homology groups 290
31. Miscellaneous remarks
292
292
Appendix. Representations of categories 292

Introduction. The subject matter of this paper is best explained by an example, such as that of the relation between a vector space L and its "dual" Presented to the Society, September 8, 1942; received by the editors May 15, 1945.

Category Theory emerges

1945 Eilenberg † and MacLane ${ }^{\dagger}$
General Theory of Natural Equivalences, Trans AMS 58, 231-294
(algebraic topology, abstract algebra)
1950s Grothendieck ${ }^{\dagger}$ (algebraic geometry)
1960s Lawvere (logic and foundations)
1970s Joyal and Tierney ${ }^{\dagger}$ (elementary topos theory)
1980s Dana Scott, Plotkin
(semantics of programming languages)
L^{2} Lambek † (linguistics)

Category Theory and Computer Science

"Category theory has... become part of the standard "tool-box" in many areas of theoretical informatics, from programming languages to automata, from process calculi to Type Theory."

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads April 2014

See http://www.appliedcategorytheory.org/events for recent examples of category theory being applied (not just in computer science).

This course

basic concepts of category theory
adjunction « natural transformation
category \longrightarrow functor
applied to $\left\{\begin{array}{l}\text { typed lambda-calculus } \\ \text { functional programming }\end{array}\right.$

Definition

A category C is specified by

- a set obj C whose elements are called C-objects
- for each $X, Y \in$ obj C , a set $\mathrm{C}(X, Y)$ whose elements are called C-morphisms from X to Y
(so far, that is just what some people call a directed graph)

Definition

A category C is specified by

- a set obj C whose elements are called C-objects
- for each $X, Y \in$ obj C , a set $\mathrm{C}(X, Y)$ whose elements are called C -morphisms from X to Y
- a function assigning to each $X \in \mathrm{obj}_{\mathrm{C}}$ an element $\operatorname{id}_{X} \in \mathrm{C}(X, X)$ called the identity morphism for the C-object X
- a function assigning to each $f \in \mathrm{C}(X, Y)$ and $g \in \mathrm{C}(Y, Z)$ (where $X, Y, Z \in \operatorname{obj} \mathrm{C}$) an element $g \circ f \in \mathrm{C}(X, Z)$ called the composition of C-morphisms f and g and satisfying...

Definition, continued

satisfying...

- associativity: for all $X, Y, Z, W \in \operatorname{obj} C$, $f \in \mathrm{C}(X, Y), g \in \mathrm{C}(Y, Z)$ and $h \in \mathrm{C}(Z, W)$

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

- unity: for all $X, Y \in$ obj C and $f \in \mathrm{C}(X, Y)$

$$
\operatorname{id}_{Y} \circ f=f=f \circ \mathrm{id} X
$$

Example: category of sets, Set

- obj Set = some fixed universe of sets (more on universes later)
- $\operatorname{Set}(X, Y)=$ $\{f \subseteq X \times Y \mid f$ is single-valued and total $\}$

Cartesian product of sets X and Y is the set of all ordered pairs (x, y) with $x \in X$ and $y \in Y$.
Equality of ordered pairs:

$$
(x, y)=\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow x=x^{\prime} \wedge y=y^{\prime}
$$

Example: category of sets, Set

- obj Set = some fixed universe of sets (more on universes later)
- $\operatorname{Set}(X, Y)=$ $\{f \subseteq X \times Y \mid f$ is single-valued and total $\}$
$\forall x \in X, \forall y, y^{\prime} \in Y$, $(x, y) \in f \wedge\left(x, y^{\prime}\right) \in f \Rightarrow y=y^{\prime}$
$\forall x \in X, \exists y \in Y$, $(x, y) \in f$

Example: category of sets, Set

- obj Set = some fixed universe of sets (more on universes later)
- $\operatorname{Set}(X, Y)=$ $\{f \subseteq X \times Y \mid f$ is single-valued and total $\}$
- $\mathrm{id}_{X}=\{(x, x) \mid x \in X\}$
- composition of $f \in \operatorname{Set}(X, Y)$ and $g \in \operatorname{Set}(Y, Z)$ is

$$
\begin{aligned}
g \circ f= & \{(x, z) \mid \\
& \exists y \in Y,(x, y) \in f \wedge(y, z) \in g\}
\end{aligned}
$$

(check that associativity and unity properties hold)

Example: category of sets, Set

Notation. Given $f \in \operatorname{Set}(X, Y)$ and $x \in X$, it is usual to write $f x$ (or $f(x)$) for the unique $y \in Y$ with $(x, y) \in f$.
Thus

$$
\begin{aligned}
\operatorname{id}_{X} x & =x \\
(g \circ f) x & =g(f x)
\end{aligned}
$$

Domain and codomain

Given a category C,
write $f: X \rightarrow Y$ or $X \xrightarrow{f} Y$
to mean that $f \in \mathrm{C}(X, Y)$,
in which case one says
object X is the domain of the morphism f object Y is the codomain of the morphism f
and writes

$$
X=\operatorname{dom} f \quad Y=\operatorname{cod} f
$$

(Which category C we are referring to is left implicit with this notation.)

Commutative diagrams

in a category C :
a diagram is
a directed graph whose vertices are C -objects and whose edges are C-morphisms
and the diagram is commutative (or commutes) if any two finite paths in the graph between any two vertices determine equal morphisms in the category under composition

Commutative diagrams

Examples:

Alternative notations

I will often just write
C for obj C
id for $i d_{X}$
Some people write
$\operatorname{Hom}_{\mathrm{C}}(X, Y)$ for $\mathrm{C}(X, Y)$
1_{X} for id_{X}
$g f$ for $g \circ f$
I use "applicative order" for morphism composition; other people use "diagrammatic order" and write $f ; g($ or $f g)$ for $g \circ f$

Alternative definition of category

The definition given here is "dependent-type friendly".
See [Awodey, Definition 1.1] for an equivalent formulation:

One gives the whole set of morphisms mor C

plus functions

$$
\begin{aligned}
& \text { dom, cod }: \text { mor } C \rightarrow \text { obj C } \\
& \text { id }: \text { obj } C \rightarrow \operatorname{mor} C
\end{aligned}
$$

and a partial function for composition

$$
__{-}^{\circ} \text { : mor } C \times \operatorname{mor} C \rightharpoonup \operatorname{mor} C
$$

defined at (f, g) iff $\operatorname{cod} f=\operatorname{dom} g$
and satisfying the associativity and unity equations.

