University of Cambridge 2022/23 Part II / Part III / MPhil ACS *Category Theory* Exercise Sheet 6

- 1. Recall (from Lecture 2) that a pre-ordered set (P, \leq_P) determines a category \mathbb{C}_P whose objects are the elements of *P* and whose morphism sets $\mathbb{C}_P(x, x')$ contain at most one element and do so iff $x \leq_P x'$. Note that given two pre-ordered sets (P, \leq_P) and (Q, \leq_Q) , a functor $F : \mathbb{C}_P \to \mathbb{C}_Q$ is the same thing as a monotone function from (P, \leq_P) to (Q, \leq_Q) .
 - (a) Given two such functors $F, G : \mathbb{C}_P \to \mathbb{C}_Q$, how many natural transformations are there from *F* to *G*?
 - (b) Given monotone functions $F : \mathbb{C}_P \to \mathbb{C}_Q$ and $G : \mathbb{C}_Q \to \mathbb{C}_P$, give a property of *F* and *G* which ensures that, regarding them as functors, *G* is right adjoint to *F*.
- Recall that **Preord** denotes the category of pre-ordered sets and monotone functions. For each set X, let (Pow X, ⊆) ∈ obj **Preord** be the set of all subsets of X partially ordered by inclusion (given A, A' ∈ Pow X, A ⊆ A' means ∀x ∈ A, x ∈ A'). Given a function f : X → Y, let f⁻¹ : Pow Y → Pow X be the function that maps each subset B ⊆ Y to the subset f⁻¹B ⊆ X defined by f⁻¹B ≜ {x ∈ X | f(x) ∈ B}.
 - (a) Show that f^{-1} is a monotone function and hence gives a morphism (Pow Y, \subseteq) \rightarrow (Pow X, \subseteq) in **Preord**.
 - (b) Regarding f^{-1} as a functor as in question (1), show that it has both left and right adjoints, given on objects by the following 'generalized quantifiers'

$$\exists_f A \triangleq \{ y \in Y \mid \exists x \in X, \ f(x) = y \land x \in A \}$$

$$\forall_f A \triangleq \{ y \in Y \mid \forall x \in X, \ f(x) = y \implies x \in A \}$$

(for all $A \in Pow X$). [Hint: use your answer to question 1b.]

A category C has pullbacks if for every pair of C-morphisms with a common codomain, Y → X ← Z, there is an object Y_f×_gZ and morphisms p, q making the following diagram commute in C (that is, f ∘ p = g ∘ q)

$$\begin{array}{cccc}
Y_f \times_g Z & \xrightarrow{q} & Z \\
& p & & & & \\
& p & & & & \\
& Y & \xrightarrow{f} & X
\end{array}$$
(1)

and with the following universal property:

For all $Y \xleftarrow{h}{\leftarrow} W \xrightarrow{k} Z$ in C with $f \circ h = g \circ k$, there is a unique morphism $\ell \in C(W, Y_f \times_q Z)$

satisfying $p \circ \ell = h$ and $q \circ \ell = k$

- (a) For each X ∈ obj C, the *slice category* C/X is defined as follows: its objects are given by pairs (A, p) where A ∈ obj C and p ∈ C(A, X); given two such objects (A, p) and (B, q), a morphism f : (A, p) → (B, q) in C/X is by definition a C-morphism f ∈ C(A, B) such that q ∘ f = p; composition and identities in C/X are given by those in C. Show that C has pullbacks iff for all X ∈ obj C the slice category C/X has binary products.
- (b) Show that if C has a terminal object and pullbacks, then it has binary products.
- (c) Suppose C has pullbacks. Given $f \in C(Y, X)$, show that the mapping

$$\begin{array}{cccc} Z & Y f \times_g Z \\ f^* \colon & & & & & \\ g & \mapsto & & & \\ X & & Y \end{array}$$

is the object part of a functor $f^* : C/X \to C/Y$ between slice categories.

- (d) Show that the functor f^* in part (c) always has a left adjoint $f_! : \mathbb{C}/Y \to \mathbb{C}/X$, which on objects sends $(W, h) \in obj(\mathbb{C}/Y)$ to $f_!(W, h) \triangleq (W, f \circ h) \in obj(\mathbb{C}/X)$.
- 4. Suppose (T, η, μ) is a monad on a category C (see Lecture 16). Thus $T : C \to C$ is a functor and $\eta : id_C \to T$ and $\mu : T \circ T \to T$ are natural transformations satisfying $\mu \circ T \eta = id_T = \mu \circ \eta_T$ and $\mu \circ \mu_T = \mu \circ T\mu$ (see Exercise Sheet 5, question 5 for the notation being used in those equations). The *Kleisli category* C_T of the monad is defined as follows. It has the same objects as C; we will write FX for the object of C_T corresponding to an object $X \in obj C$. Given $X, Y \in obj C$, the set of morphisms in the Kleisli category from FX to FY is defined to be $C_T(FX, FY) \triangleq C(X, TY)$.
 - (a) Complete the definition of C_T by giving the definition of identity morphisms and composition satisfying the usual associativity and unity properties.
 - (b) Show that the mapping $X \in \text{obj } \mathbf{C} \mapsto FX \in \text{obj } \mathbf{C}_T$ extends to a functor $F : \mathbf{C} \to \mathbf{C}_T$.
 - (c) Show that the functor *F* has a right adjoint $G : \mathbb{C}_T \to \mathbb{C}$.
 - (d) Show that the monad associated with the adjunction $F \dashv G$ (see Lecture 16) is (T, η, μ) .