University of Cambridge 2022/23 Part II / Part III / MPhil ACS

Category Theory Exercise Sheet 1

- 1. (a) Show that the sets $2 = \{0, 1\}$ and $3 = \{0, 1, 2\}$ are not isomorphic in the category **Set** of sets and functions.
 - (b) Let P be the pre-ordered set with underlying set $\{0,1\}$ and pre-order: $0 \le 0, 1 \le 1$. Let Q be the pre-ordered set with the same underlying set and pre-order: $0 \le 0, 0 \le 1, 1 \le 1$. Show that P and Q are not isomorphic in the category **Preord** of pre-ordered sets and monotone functions.
 - (c) Why are the sets $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ (integers) and \mathbb{Q} (rational numbers) isomorphic in **Set**? Regarding them as pre-ordered sets via the usual ordering on numbers, show that they are not isomorphic in **Preord**. [Hint: recall that \mathbb{Q} has the property that for any two distinct elements there is a third distinct element lying between them in the ordering.]
- 2. Let C be a category and let $f \in C(X, Y)$ and $g \in C(Y, Z)$ be morphisms in C.
 - (a) Prove that if f and g are both isomorphisms, with inverses f^{-1} and g^{-1} respectively, then $g \circ f$ is an isomorphism and its inverse is $f^{-1} \circ g^{-1}$.
 - (b) Prove that if f and $g \circ f$ are both isomorphisms, then so is g.
 - (c) If $g \circ f$ is an isomorphism, does that necessarily imply that either of f or g are isomorphisms?
- 3. Let **Mat** be a category whose objects are all the non-zero natural numbers $1, 2, 3, \ldots$ and whose morphisms $M \in \text{Mat}(m, n)$ are $m \times n$ matrices with real number entries. If composition is given by matrix multiplication, what are the identity morphisms? Give an example of an isomorphism in **Mat** that is not an identity. Can two object m and n be isomorphic in **Mat** if $m \neq n$?
- 4. Let C be a category. A morphism $f: X \to Y$ in C is called a *monomorphism*, if for every object $Z \in C$ and every pair of morphisms $q, h: Z \to X$ we have

$$f \circ g = f \circ h \implies g = h$$

It is called a *split monomorphism* if there is some morphism $g: Y \to X$ with $g \circ f = \mathrm{id}_X$, in which case we say that g is a *left inverse* for f.

- (a) Prove that every isomorphism is a split monomorphism and that every split monomorphism is a monomorphism.
- (b) Prove that if $f:X\to Y$ and $g:Y\to Z$ are monomorphisms, then $g\circ f:X\to Z$ is a monomorphism.
- (c) Prove that if $f: X \to Y$ and $g: Y \to Z$ are morphisms in C, and $g \circ f$ is a monomorphism, then f is a monomorphism.
- (d) Characterize the monomorphisms in the category **Set** of sets and functions. Is every monomorphism in **Set** a split monomorphism?

- (e) By considering the category **Set**, show that a split monomorphism can have more than one left inverse.
- (f) Regarding a pre-ordered set (P, \leq) as a category, which of its morphisms are monomorphisms and which are split monomorphisms?
- 5. The dual of *monomorphism* is called *epimorphism*: a morphism $f: X \to Y$ in C is an epimorphism iff $f \in C^{op}(Y, X)$ is a monomorphism in C^{op} .
 - (a) Show that $f \in \mathbf{Set}(X, Y)$ is an epimorphism iff f is a surjective function.
 - (b) Regarding a pre-ordered set (P, \leq) as a category, which of its morphisms are epimorphisms?
 - (c) Give an example of a category containing a morphism that is both an epimorphism and a monomorphism, but not an isomorphism. [Hint: consider your answers to (4f) and (5b).]
- 6. Let C be the category the following category:
 - C-objects are triples (X, x_0, x_s) where $X \in \mathbf{Set}, x_0 \in X$ and $x_s \in \mathbf{Set}(X, X)$;
 - C-morphisms $f \in C((X, x_0, x_s), (Y, y_0, y_s))$ are functions $f \in Set(X, Y)$ satisfying $f(x_0) = y_0$ and $f \circ x_s = y_s \circ f$;
 - composition and identities are as for the category Set.
 - (a) Show that C has a terminal object.
 - (b) Show that C has an initial object whose underlying set is the set $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ of natural numbers.
- 7. In a category C with a terminal object 1, a morphism $p:1\to X$ is called a *point* (or *global element*) of the object X. C is said to be *well-pointed* if for all objects $X,Y\in C$, two morphisms $f,g:X\to Y$ are equal if their compositions with all points of X are equal:

$$(\forall p \in C(1, X), \ f \circ p = g \circ p) \implies f = g \tag{1}$$

- (a) Show that **Set** is well-pointed.
- (b) Is the opposite category Set^{op} well-pointed? [Hint: observe that the left-hand side of the implication in (1) is vacuously true in the case that C(1, X) is empty.]