SECTION 7.6
The Fibonacci Heap

- = push() — O(1) amortized

Lazy, just adds singleton nodes to the rootlist

» decreasekey() — O(1) amortized
Does some work to keep the trees in shape
Adds singleton nodes to the rootlist

* popmin() — O(log N) amortized
Cleans up the rootlist
(at most one tree of any given degree)
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def dijkstra(g, s):

children
in heap

toexplore = PriorityQueue()
toexplore.push(s, key=0)

while not toexplore.is_empty():
v = toexplore.popmin()
for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost

toexplore.decreasekey(w, key=dist_w)

QUESTION. How can decreasekey be
O(logN)?

Doesn’t it take O(N) in the first place,

to find the heap node that we want to
decrease?
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while not toexplore.is_empty():
v = toexplore.popmin()
for (w,edgecost) in v.neighbours:
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Algorithms tick: fib-heap
Fibonacci Heap

v = O X

Q@ v % 00D B »xO@ :

In this tick you will implement the Fibonacci Heap. This is an intricate data structure - for
some of you, perhaps the most intricate programming you have yet programmed. If you
haven’t already completed the dis-set tick, that’s a good warmup.

Step 1: heap operations

____________

The first step is to implement a FibNode class to represent a node in the Fibonacci heap,
and a FibHeap class to represent the entire heap. Each FibNode should store its priority
key k, and the FibHeap should store a list of root nodes as well as the minroot.
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SECTION 7.8
Amortized analysis of the Fibonacci Heap

decreasekey()

popmin()

1 cleanup
/ . /SQ 8\/ ? involves M
|:> 4 merges
pushes L |

loser nodes

into the

rootlist

end up with

given degree

~ at most one
i ) (5 ) 2 )
7 C‘P @ tree of any

decreasekey has true cost O(L) popmin merges trees in its cleanup phase, true cost 0(M)
so we want A® = —L to pay for it so we want A® = —M to pay for it

® = num.roots + 2 X num.losers poys n advande /o( et ~uncontvdfed ot M4



SECTION 7.8
Amortized analysis of the Fibonacci Heap

popmin()
SHAPE THEOREM
In a Fibonacci heap with N items, ()
every node has degree < log, N | L endupwith
where ¢ is the golden ratio. ~ childrenget ~(3) @ E—3) at mosfst one
promoted : tree of any

6 given degree

thos #€rees ¢ dpex*|

popmin also has to do O(d,.x ) work
where d,.x is the maximum possible degree in a heap with N items




SHAPE THEOREM Page74
In a Fibonacci heap with N items, every node has degree < logy N

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F4,, where F;, F,, ... are the Fibonacci numbers

B
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In a Fibonacci heap with N items, every node has degree < logy N

Proof of theorem.
Pick a node with maximum degree, call it d,
and consider the subtree rooted at this node.

N = num.nodes in subtree

> F -
a¥2 | py SHAPE LEMMA

> d . bora :
D7 linear Wb}o“ N Consider a subtree in a Fibonacci heap. If the subtree’s root
Henced <logyN. ¥, = -9 has d children, then the number of nodes in the subtree is
J5 > Fy4, Where Fy, F,, ... are the Fibonacci numbers




74
SHAPE LEMMA _Page 74

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F;., where F;, F,, ... are the Fibonacci numbers

GRANDCHILD RULE
A node x is said to satisfy the grandchild rule if its children can be ordered, call them
Y1, -, Y4, such thatforall i € {1, ...,d}

num. grandchildren of x viay; =1 — 2

ALGORITHMIC CLAIM
In a Fibonacci heap, at every instant in time, every node x satisfies the grandchild
rule, when we order its children y4, ..., y4 by when they became children of x

U1

when x acquired when x acquired each y; might Y1 how has = 0 children
y,, X had a child V3, X had two have lost a single Yy, how has > 0 children
already, so y, did children already, child y3 now has > 1 child
too so y53 did too :

Y4 now has = d — 2 children
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Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F ., where F;, F,, ... are the Fibonacci numbers

GRANDCHILD RULE
A node x is said to satisfy the grandchild rule if its children can be ordered, call them
Y1, - Y, such thatforall i € {1, ...,d}

num. grandchildren of x viay; =1 — 2

MATHEMATICAL CLAIM
Consider a tree where all nodes satisfy the grandchild rule. Let N; be the smallest
number of nodes in a tree whose root has d children. Then N; = F;.,,.

num.nodesintree > Ny_, + Ny_3 + -+ N; + Ny + Ny + 1

/ NA, - Nd-l * Ncl-'s""' 4+ N+ No + )
— . . Ny, = Nyor- 4 Ny+ N + )
o y‘(_ ¢ v °
L o ®Y2 i
/’“\ /I\ ‘ % > NOL = NJ—)_* Nd-l

2 Ny is fihenacct nombers

child y; has degree > i — 2,
so its subtree has > N;_, nodes



SECTION 7.9
Disjoint sets



def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:
partition.add_singleton(v)
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.get_set_with(u)
g = partition.get_set_with(v)
if p !=q:
tree_edges.append((u,v))
partition.merge(p, q)
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IMPLEMENTATION O

mysets = {a:"h1", b:"h1", c:"h2", d:"h2", e:"h2", f:"h2", g:"h3"}

0 def merge(x,y):

for every item in the entire collection:
if the item’s set is y then update it to be x

O h

AbstractDataType DisjointSet:
# Holds a dynamic collection of disjoint sets

# Add a new set consisting of a single item (assuming It's not been added already)
add_singleton(Item x)

# Return a handle to the set containing an 1tem.
# The handle must be stable, as long as the DisjointSet is not modified.

Handle get_set_with(Item x)

# Merge two sets into one
merge(Handle x, Handle y)



IMPLEMENTATION O

Each item points to a representative item for its set

mysets = {a:a, b:a, c:e, d:e, e:e, f:e, g:g}




IMPLEMENTATION 1 “FLAT FOREST”

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

def merge(x,y):
for every item in set y:
update it to belong to set x

def get_set_with(x):
return x's parent

(.I; C.'\ (o
l
‘ .' i .'--P .1 .—J_
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IMPLEMENTATION 1 “FLAT FOREST”

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

def merge(x,y):
for every item in set y:
update it to belong to set x

def get_set_with(x):
return x's parent

O
merge > / T \




IMPLEMENTATION 2 “DEEP FOREST”

Sets are stored as trees
Use the root item to represent the set

def merge(x,y):
update one of the roots to point to the other

def get_set_with(x):
walk up the tree from x to the root

return this root

O ? O .\ O
merge E;>
{ O { O QUESTION. What's a

T sensible heuristic for merge,
® to speed up get_set_with?

A/




IMPLEMENTATION 3 “LAZY FOREST”

def merge(x,y):
as before, using the Union by Rank heuristic

def get_set_with(x):
walk up the tree from x to the root
walk up again, and make all items point to root
return this root

max (Y, f.,) ‘.f ‘-l:t "2

romM = = f
rank ¥y rownﬁ-fz o it 07l

® o
T merge > { get set_ With(x)>

®
T
o




Can we ‘manifest” our workings so that subsequent operations benefit?

0 def selectSort(a):

| A B C D

2

3 a= val=2 | val=5 | val=3 | val=1
1

’ 1. Find the lowest value, and put it at the front

Is B.val < A.val? No.
Is C.val < A.val? No.
Is D.val < A.val? Yes.
13 iMin = k = SwapAandD

14 for j from iMin + 1 included to len(a) excluded:
15 if a[j] < a[iMin]:
16 iMin = j

D B C A
S a=

2. Find the second-lowest in [B,C,A]

0 for k from 0 included to len(a) excluded:

._
|

we had tWo UsAvl pecs B
{'w-f-o(w\«xl‘m, buot wWe oy keop a2



Flat Forest

Deep Forest

Lazy Forest

Aggregate complexity analysis

Any m operations on up to N items takes

O(m+ NlogN)
[Ex. sheet 6 q. 13]

k:\\‘ Y b
0 (m a ( N)) :(X'LME}”(’)RS

a(N) =0 forN =0,1,2
= for N =3
= forN =4..7
= for N =8..2047
= for N = 2048 .. 108°



Aggregate complexity analysis

Any m operations on up to N items takes

Flat Forest O(m+ NlogN)
Deep Forest O(mlogN)
Lazy Forest O(ma(N))

a(N) =0 forN =0,1,2
= for N =3
= forN =4..7
=3 forN =8..2047
=4 for N = 2048 ..10%



take a handsome stoat

define a graph
vertices on a grid, and edges
between adjacent grid cells

assign edgeweights
weight=low means vertices
have similar colours

run Kruskal
and find clusters of similar
colour
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