
SECTION 7.6

The Fibonacci Heap

L

L

L

▪ push() — 𝑂(1) amortized
Lazy, just adds singleton nodes to the rootlist

▪ decreasekey() — 𝑂(1) amortized
Does some work to keep the trees in shape
Adds singleton nodes to the rootlist

▪ popmin() — 𝑂(log𝑁) amortized
Cleans up the rootlist
(at most one tree of any given degree)

def dijkstra(g, 𝑠):
...
toexplore = PriorityQueue()
toexplore.push(𝑠, key=0)

while not toexplore.is_empty():
𝑣 = toexplore.popmin()
for (𝑤,edgecost) in 𝑣.neighbours:

dist_w = 𝑣.distance + edgecost
...

toexplore.decreasekey(𝑤, key=dist_w)

𝑣

𝑤

heap node
containing 𝑤

parent node
in heap

children
in heap

page 69

QUESTION. How can decreasekey be
𝑂 log𝑁 ?

Doesn’t it take 𝑂(𝑁) in the first place,
to find the heap node that we want to
decrease?

graph vertex

𝑣

𝑤

heap node
containing 𝑤

parent node
in heap

children
in heap

page 69

QUESTION. How can decreasekey be
𝑂 log𝑁 ?

Doesn’t it take 𝑂(𝑁) in the first place,
to find the heap node that we want to
decrease?

def dijkstra(g, 𝑠):
...
toexplore = PriorityQueue()
toexplore.push(𝑠, key=0)

while not toexplore.is_empty():
𝑣 = toexplore.popmin()
for (𝑤,edgecost) in 𝑣.neighbours:

dist_w = 𝑣.distance + edgecost
...

toexplore.decreasekey(𝑤, key=dist_w)

graph vertex

SECTION 7.8

Amortized analysis of the Fibonacci Heap
popmin()

7

3

4

6

5

2

4

6

5 27 3

7

6

5 2

34

1

decreasekey()

4

1

5

8

4

61 58

9

pushes 𝐿
loser nodes
into the
rootlist

cleanup
involves 𝑀
merges

decreasekey has true cost 𝑂 𝐿
so we want ΔΦ = −𝐿 to pay for it

popmin merges trees in its cleanup phase, true cost 𝑂 𝑀
so we want ΔΦ = −𝑀 to pay for it

Φ = num.roots + 2 × num.losers

end up with
at most one
tree of any
given degree

SECTION 7.8

Amortized analysis of the Fibonacci Heap
popmin()

7

3

4

6

5

2

4

6

5 27 3

7

6

5 2

34

1

up to 𝑑max

children get
promoted

end up with
at most one
tree of any
given degree

popmin also has to do 𝑂(𝑑max) work
where 𝑑max is the maximum possible degree in a heap with 𝑁 items

SHAPE THEOREM
In a Fibonacci heap with 𝑁 items,
every node has degree ≤ log𝜙𝑁

where 𝜙 is the golden ratio.

SHAPE THEOREM

In a Fibonacci heap with 𝑁 items, every node has degree ≤ log𝜙𝑁

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

page 74

SHAPE THEOREM

In a Fibonacci heap with 𝑁 items, every node has degree ≤ log𝜙𝑁

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

Proof of theorem.
Pick a node with maximum degree, call it 𝑑,
and consider the subtree rooted at this node.

𝑁 ≥ num.nodes in subtree

≥ 𝐹𝑑+2

≥ 𝜙𝑑

Hence 𝑑 ≤ log𝜙𝑁.

page 74

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

GRANDCHILD RULE
A node 𝑥 is said to satisfy the grandchild rule if its children can be ordered, call them
𝑦1, … , 𝑦𝑑, such that for all 𝑖 ∈ {1, … , 𝑑}

num. grandchildren of 𝑥 via 𝑦𝑖 ≥ 𝑖 − 2

𝑥

𝑦1

𝑥

𝑦1𝑦3

𝑥

𝑦2

𝑥

𝑦1𝑦2 𝑦1𝑦3

𝑥

𝑦2

ALGORITHMIC CLAIM
In a Fibonacci heap, at every instant in time, every node 𝑥 satisfies the grandchild
rule, when we order its children 𝑦1, … , 𝑦𝑑 by when they became children of 𝑥

when 𝑥 acquired
𝑦2, 𝑥 had a child
already, so 𝑦2 did
too

when 𝑥 acquired
𝑦3, 𝑥 had two
children already,
so 𝑦3 did too

each 𝑦𝑖 might
have lost a single
child

𝑦1 now has ≥ 0 children
𝑦2 now has ≥ 0 children
𝑦3 now has ≥ 1 child
⋮
𝑦𝑑 now has ≥ 𝑑 − 2 children

page 74

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

GRANDCHILD RULE
A node 𝑥 is said to satisfy the grandchild rule if its children can be ordered, call them
𝑦1, … , 𝑦𝑑, such that for all 𝑖 ∈ {1, … , 𝑑}

num. grandchildren of 𝑥 via 𝑦𝑖 ≥ 𝑖 − 2

MATHEMATICAL CLAIM
Consider a tree where all nodes satisfy the grandchild rule. Let 𝑁𝑑 be the smallest
number of nodes in a tree whose root has 𝑑 children. Then 𝑁𝑑 = 𝐹𝑑+2.

child 𝑦𝑖 has degree ≥ 𝑖 − 2,
so its subtree has ≥ 𝑁𝑖−2 nodes

num.nodes in tree ≥ 𝑁𝑑−2 +𝑁𝑑−3 +⋯+ 𝑁1 + 𝑁0 + 𝑁0 + 1

page 74

SECTION 7.9

Disjoint sets

43

1

2
9

6

5

7

8

d

b

f

e

c

a

d

b

f

e

c

a

1
2
3
4
5
6
7
8
9

10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.add_singleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.get_set_with(u)
q = partition.get_set_with(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

e

f

a

b
c

d

a

b

d

AbstractDataType DisjointSet:
Holds a dynamic collection of disjoint sets

Add a new set consisting of a single item (assuming it's not been added already)
add_singleton(Item x)

Return a handle to the set containing an item.
The handle must be stable, as long as the DisjointSet is not modified.
Handle get_set_with(Item x)

Merge two sets into one
merge(Handle x, Handle y)

e

f

a

b
c

d

"h1""h2"

g "h3"

IMPLEMENTATION 0

mysets = {a:"h1", b:"h1", c:"h2", d:"h2", e:"h2", f:"h2", g:"h3"}

def merge(x,y):
for every item in the entire collection:

if the item’s set is y then update it to be x

Each item points to a representative item for its set

mysets = {a:a, b:a, c:e, d:e, e:e, f:e, g:g}

IMPLEMENTATION 0'

b

g

e

f

a

c

d

e

f

a

b
c

d

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

g

IMPLEMENTATION 1 “FLAT FOREST”

merge

def merge(x,y):
for every item in set y:

update it to belong to set x

def get_set_with(x):
return x's parent

e

f

a

b
c

d

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

g

IMPLEMENTATION 1 “FLAT FOREST”

merge

def merge(x,y):
for every item in set y:

update it to belong to set x

def get_set_with(x):
return x's parent

e

f

a

b
c

d

Sets are stored as trees
Use the root item to represent the set

def merge(x,y):
update one of the roots to point to the other

g

IMPLEMENTATION 2 “DEEP FOREST”

merge

def get_set_with(x):
walk up the tree from x to the root
return this root

QUESTION. What’s a
sensible heuristic for merge,
to speed up get_set_with?

def merge(x,y):
as before, using the Union by Rank heuristic

def get_set_with(x):
walk up the tree from x to the root
walk up again, and make all items point to root
return this root

IMPLEMENTATION 3 “LAZY FOREST”

merge get_set_with(𝑥)

𝑥 𝑥

val=2 val=5 val=3 val=1

A B C D

𝑎 =

1. Find the lowest value, and put it at the front

▪ Is B.val < A.val? No.
▪ Is C.val < A.val? No.
▪ Is D.val < A.val? Yes.
▪ Swap A and D

2. Find the second-lowest in [B,C,A]

val=2val=5 val=3val=1

AB CD

𝑎 =

Can we ‘manifest’ our workings so that subsequent operations benefit?

Aggregate complexity analysis

Flat Forest
(with weighted-union)

Deep Forest
(with union-by-rank)

Lazy Forest
(with union-by-rank + path compression)

Any 𝑚 operations on up to 𝑁 items takes
𝑂(𝑚 + 𝑁 log𝑁)

𝑂(𝑚 log𝑁)

𝑂(𝑚 𝛼(𝑁))

𝛼(𝑁) = 0

= 1

= 2

= 3

for 𝑁 = 0,1,2

for 𝑁 = 3

for 𝑁 = 4 .. 7

for 𝑁 = 8 .. 2047

= 4 for 𝑁 = 2048 .. 1080

[Ex. sheet 6 q. 13]

Aggregate complexity analysis

Flat Forest
(with weighted-union)

Deep Forest
(with union-by-rank)

Lazy Forest
(with union-by-rank + path compression)

Any 𝑚 operations on up to 𝑁 items takes
𝑂(𝑚 + 𝑁 log𝑁)

𝑂(𝑚 log𝑁)

𝑂(𝑚 𝛼(𝑁))

𝛼(𝑁) = 0

= 1

= 2

= 3

for 𝑁 = 0,1,2

for 𝑁 = 3

for 𝑁 = 4 .. 7

for 𝑁 = 8 .. 2047

= 4 for 𝑁 = 2048 .. 1080

1. take a handsome stoat

2. define a graph
vertices on a grid, and edges
between adjacent grid cells

3. assign edgeweights
weight=low means vertices
have similar colours

4. run Kruskal
and find clusters of similar
colour

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 21
	Slide 22: Can we ‘manifest’ our workings so that subsequent operations benefit?
	Slide 23
	Slide 25
	Slide 26
	Slide 27

