SECTION 7.6
The Fibonacci Heap

- = push() — O(1) amortized

Lazy, just adds singleton nodes to the rootlist

» decreasekey() — O(1) amortized
Does some work to keep the trees in shape
Adds singleton nodes to the rootlist

* popmin() — O(log N) amortized
Cleans up the rootlist
(at most one tree of any given degree)

graph vertex parent node
in heap
8ry 04 I
q%@ heap node

containing w

/TN

def dijkstra(g, s):

children
in heap

toexplore = PriorityQueue()
toexplore.push(s, key=0)

while not toexplore.is_empty():
v = toexplore.popmin()
for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost

toexplore.decreasekey(w, key=dist_w)

QUESTION. How can decreasekey be
O(logN)?

Doesn’t it take O(N) in the first place,

to find the heap node that we want to
decrease?

page 69

graph vertex parent node

in heap

&r.
%o heap node
containing w

children
‘inheap

def dijkstra(g, s):

toexplore = PriorityQueue()
toexplore.push(s, key=0)

while not toexplore.is_empty():
v = toexplore.popmin()
for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost

toexplore.decreasekey(w, key=dist_w

‘ page 69

% Algorithms tick: fib-heap b +

< C & cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/fib-heap.html

Algorithms tick: fib-heap
Fibonacci Heap

v = O X

Q@ v % 00D B »xO@ :

In this tick you will implement the Fibonacci Heap. This is an intricate data structure - for
some of you, perhaps the most intricate programming you have yet programmed. If you
haven’t already completed the dis-set tick, that’s a good warmup.

Step 1: heap operations

The first step is to implement a FibNode class to represent a node in the Fibonacci heap,
and a FibHeap class to represent the entire heap. Each FibNode should store its priority
key k, and the FibHeap should store a list of root nodes as well as the minroot.

-

SECTION 7.8
Amortized analysis of the Fibonacci Heap

decreasekey()

popmin()

1 cleanup
/ . /SQ 8\/ ? involves M
|:> 4 merges
pushes L |

loser nodes

into the

rootlist

end up with

given degree

~ at most one
i) (5) 2)
7 C‘P @ tree of any

decreasekey has true cost O(L) popmin merges trees in its cleanup phase, true cost 0(M)
so we want A® = —L to pay for it so we want A® = —M to pay for it

® = num.roots + 2 X num.losers poys n advande /o(et ~uncontvdfed ot M4

SECTION 7.8
Amortized analysis of the Fibonacci Heap

popmin()
SHAPE THEOREM
In a Fibonacci heap with N items, ()
every node has degree < log, N | L endupwith
where ¢ is the golden ratio. ~ childrenget ~(3) @ E—3) at mosfst one
promoted : tree of any

6 given degree

thos #€rees ¢ dpex*|

popmin also has to do O(d,.x) work
where d,.x is the maximum possible degree in a heap with N items

SHAPE THEOREM Page74
In a Fibonacci heap with N items, every node has degree < logy N

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F4,, where F;, F,, ... are the Fibonacci numbers

B

74
SHAPE THEOREM _page 74

In a Fibonacci heap with N items, every node has degree < logy N

Proof of theorem.
Pick a node with maximum degree, call it d,
and consider the subtree rooted at this node.

N = num.nodes in subtree

> F -
a¥2 | py SHAPE LEMMA

> d . bora :
D7 linear Wb}o“ N Consider a subtree in a Fibonacci heap. If the subtree’s root
Henced <logyN. ¥, = -9 has d children, then the number of nodes in the subtree is
J5 > Fy4, Where Fy, F,, ... are the Fibonacci numbers

74
SHAPE LEMMA _Page 74

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F;., where F;, F,, ... are the Fibonacci numbers

GRANDCHILD RULE
A node x is said to satisfy the grandchild rule if its children can be ordered, call them
Y1, -, Y4, such thatforall i € {1, ...,d}

num. grandchildren of x viay; =1 — 2

ALGORITHMIC CLAIM
In a Fibonacci heap, at every instant in time, every node x satisfies the grandchild
rule, when we order its children y4, ..., y4 by when they became children of x

U1

when x acquired when x acquired each y; might Y1 how has = 0 children
y,, X had a child V3, X had two have lost a single Yy, how has > 0 children
already, so y, did children already, child y3 now has > 1 child
too so y53 did too :

Y4 now has = d — 2 children

74
SHAPE LEMMA Page 74

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F ., where F;, F,, ... are the Fibonacci numbers

GRANDCHILD RULE
A node x is said to satisfy the grandchild rule if its children can be ordered, call them
Y1, - Y, such thatforall i € {1, ...,d}

num. grandchildren of x viay; =1 — 2

MATHEMATICAL CLAIM
Consider a tree where all nodes satisfy the grandchild rule. Let N; be the smallest
number of nodes in a tree whose root has d children. Then N; = F;.,,.

num.nodesintree > Ny_, + Ny_3 + -+ N; + Ny + Ny + 1

/ NA, - Nd-l * Ncl-'s""' 4+ N+ No +)
— . . Ny, = Nyor- 4 Ny+ N +)
o y‘(_ ¢ v °
L o ®Y2 i
/’“\ /I\ ‘ % > NOL = NJ—)_* Nd-l

2 Ny is fihenacct nombers

child y; has degree > i — 2,
so its subtree has > N;_, nodes

SECTION 7.9
Disjoint sets

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:
partition.add_singleton(v)
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.get_set_with(u)
g = partition.get_set_with(v)
if p !=q:
tree_edges.append((u,v))
partition.merge(p, q)

n h2l|

Ilh1 n

IMPLEMENTATION O

mysets = {a:"h1", b:"h1", c:"h2", d:"h2", e:"h2", f:"h2", g:"h3"}

0 def merge(x,y):

for every item in the entire collection:
if the item’s set is y then update it to be x

O h

AbstractDataType DisjointSet:
Holds a dynamic collection of disjoint sets

Add a new set consisting of a single item (assuming It's not been added already)
add_singleton(Item x)

Return a handle to the set containing an 1tem.
The handle must be stable, as long as the DisjointSet is not modified.

Handle get_set_with(Item x)

Merge two sets into one
merge(Handle x, Handle y)

IMPLEMENTATION O

Each item points to a representative item for its set

mysets = {a:a, b:a, c:e, d:e, e:e, f:e, g:g}

IMPLEMENTATION 1 “FLAT FOREST”

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

def merge(x,y):
for every item in set y:
update it to belong to set x

def get_set_with(x):
return x's parent

(.I; C.'\ (o
l
‘ .' i .'--P .1 .—J_

v-__

IMPLEMENTATION 1 “FLAT FOREST”

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

def merge(x,y):
for every item in set y:
update it to belong to set x

def get_set_with(x):
return x's parent

O
merge > / T \

IMPLEMENTATION 2 “DEEP FOREST”

Sets are stored as trees
Use the root item to represent the set

def merge(x,y):
update one of the roots to point to the other

def get_set_with(x):
walk up the tree from x to the root

return this root

O ? O .\ O
merge E;>
{ O { O QUESTION. What's a

T sensible heuristic for merge,
® to speed up get_set_with?

A/

IMPLEMENTATION 3 “LAZY FOREST”

def merge(x,y):
as before, using the Union by Rank heuristic

def get_set_with(x):
walk up the tree from x to the root
walk up again, and make all items point to root
return this root

max (Y, f.,) ‘.f ‘-l:t "2

romM = = f
rank ¥y rownﬁ-fz o it 07l

® o
T merge > { get set_ With(x)>

®
T
o

Can we ‘manifest” our workings so that subsequent operations benefit?

0 def selectSort(a):

| A B C D

2

3 a= val=2 | val=5 | val=3 | val=1
1

’ 1. Find the lowest value, and put it at the front

Is B.val < A.val? No.
Is C.val < A.val? No.
Is D.val < A.val? Yes.
13 iMin = k = SwapAandD

14 for j from iMin + 1 included to len(a) excluded:
15 if a[j] < a[iMin]:
16 iMin = j

D B C A
S a=

2. Find the second-lowest in [B,C,A]

0 for k from 0 included to len(a) excluded:

._
|

we had tWo UsAvl pecs B
{'w-f-o(w\«xl‘m, buot wWe oy keop a2

Flat Forest

Deep Forest

Lazy Forest

Aggregate complexity analysis

Any m operations on up to N items takes

O(m+ NlogN)
[Ex. sheet 6 q. 13]

k:\\‘ Y b
0 (m a (N)) :(X'LME}”(’)RS

a(N) =0 forN =0,1,2
= for N =3
= forN =4..7
= for N =8..2047
= for N = 2048 .. 108°

Aggregate complexity analysis

Any m operations on up to N items takes

Flat Forest O(m+ NlogN)
Deep Forest O(mlogN)
Lazy Forest O(ma(N))

a(N) =0 forN =0,1,2
= for N =3
= forN =4..7
=3 forN =8..2047
=4 for N = 2048 ..10%

take a handsome stoat

define a graph
vertices on a grid, and edges
between adjacent grid cells

assign edgeweights
weight=low means vertices
have similar colours

run Kruskal
and find clusters of similar
colour

flat

- - DML MEANE WS e 8 D-an ST AEE D 0 WEl SER SE @ 4 B3 O ®Ee I8E & TEIMED (0 ®ED (CIEH S SCPWB - . B EMIT " & © 580 POUs @ @™ o™ s see o *e>—— @ o o o ®» o ec
=, 10 EWies W MRS ® GRS RSO0 SED SNSRI L EENDees & o TeEmvcER (8 W CHEE e mes L L > _—— . W SO0 BN BImelL mew o - e e R————E e L

deep

» . B LA M EE) WMEIC) WEE T T %6 -8We MEE E® WK EHI s B WHONe S Y & MR - PO & ——— . o " e we @&
R - - - o EDTH s D R LS 3 e ;- z o« swea) MO GESIEEED (HEID @ WHONE TE NP (G G 0 PO S @ DI WCOEHIBI® @ BDe e De o > o9 W LR B R 2 R te

Bl - oo L - o - e =& > -e » o - ™ = e 3 a ° ° e L] o aaeas o L] @

oo oo - o - . B Ll L =
- Laaend . o == LY - oo o -
- . - e -———e - L o

lazy

» - - CO® 43 @O 2+ PE () FEE S L G L8 4) CEB WWBWEIL (OB S MHON B EBS W S @S S SHLIVEIB MO (IWINEBO & WSS 2 wme s - v ®> 0 ® " Sov BSOS &

- - B e 3 MPEE DK€ (BB CBEC S Bee H e € Emlex DR BEOC (s @& Mo PR B e CEL B A @B EeEs MERCOEMMEERE wee "o » e - CREEDG @ Wone ° oD O .
L @0 s @m0 o cEmSETmE == - - Bl @ 00 COM D TEEENNEES - e » - - o -e “e o L e L] L L N] * o
L J

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 21
	Slide 22: Can we ‘manifest’ our workings so that subsequent operations benefit?
	Slide 23
	Slide 25
	Slide 26
	Slide 27

