

Advanced Graphics and Image Processing

Computer Science Tripos Part 2

MPhil in Advanced Computer Science

Michaelmas Term 2022/2023

Department of

Computer Science

and Technology

The Computer Laboratory

William Gates Building

 15 JJ Thomson Avenue

 Cambridge

 CB3 0FD

www.cst.cam.ac.uk

This handout includes copies of the slides that will be used in lectures and

more detailed notes on the selected topics. These notes do not constitute a

complete transcript of all the lectures and they are not a substitute for text

books. They are intended to give a reasonable synopsis of the subjects

discussed, but they give neither complete descriptions nor all the

background material.

Material is copyright © Rafał Mantiuk, 2015‐2022, except where otherwise

noted.

All other copyright material is made available under the University’s licence.
All rights reserved.

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Introduction to Image Processing
Part 1/2 – Images, pixels and sampling

1

2

What are Computer Graphics &
Image Processing?

Scene
description

Digital
image

Computer
graphics

Image analysis &
computer vision

Image processing

Image
capture

Image
display

3

Where are graphics and image
processing heading?

Scene
description

Light field

Computer
graphics

Image analysis &
computer vision

Advanced
image processing

Computational
photography

Computational
displays

Visual
Perception

What is a (computer) image?
 A digital photograph? (“JPEG”)
 A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in
memory

•To create image processing
software

•To express image processing
as a mathematical problem

•To develop (and understand)
algorithms

4

Image
 2D array of pixels

 In most cases, each pixel takes 3 bytes: one for each red, green and blue
 But how to store a 2D array in memory?

5

Stride
 Calculating the pixel component index in memory

 For row-major order (grayscale)

 For column-major order (grayscale)

 For interleaved row-major (colour)

 General case

where , and are the strides for the x, y and colour
dimensions

6

Padded images and stride
 Sometimes it is desirable to “pad” image with extra pixels

 for example when using operators that need to access pixels outside the
image border

 Or to define a region of interest (ROI)

 How to address pixels for such an image and the ROI?

Allocated memory space
Image

Region of Interest
(ROI)

7

Padded images and stride

 For row-major, interleaved

Allocated memory space
Image

Region of Interest
(ROI)

8

Pixel (PIcture ELement)
 Each pixel (usually) consist of three values describing the

color
(red, green, blue)

 For example
 (255, 255, 255) for white
 (0, 0, 0) for black
 (255, 0, 0) for red

 Why are the values in the 0-255 range?
 Why red, green and blue? (and not cyan, magenta, yellow)
 How many bytes are needed to store 5MPixel image?

(uncompressed)

9

Pixel formats, bits per pixel, bit-depth
 Grayscale – single color channel, 8 bits (1 byte)
 Highcolor – 216=65,536 colors (2 bytes)

 Truecolor – 224 = 16,8 million colors (3 bytes)
 Deepcolor – even more colors (>= 4 bytes)

 But why?
10

Color banding
 If there are not

enough bits to
represent color

 Looks worse
because of the
Mach band illusion

 Dithering (added
noise) can reduce
banding
 Printers
 Many LCD displays

do it too

M
ac

h
ba

nd
s

Intensity profile
11

What is a (computer) image?
 A digital photograph? (“JPEG”)
 A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in
memory

•To create image processing
software

•To express image processing
as a mathematical problem

•To develop (and understand)
algorithms

12

Image – 2D function
 Image can be seen as a function I(x,y), that gives intensity

value for any given coordinate (x,y)

13

Sampling an image
 The image can be sampled on a rectangular sampling grid

to yield a set of samples. These samples are pixels.

14

What is a pixel?
 A pixel is not

 a box
 a disk
 a teeny light

 A pixel is a point
 it has no dimension
 it occupies no area
 it cannot be seen
 it has coordinates

 A pixel is a sample
From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf

15

Sampling and quantization
 The physical world is described in terms of continuous quantities
 But computers work only with discrete numbers
 Sampling – process of mapping continuous function to a discrete

one
 Quantization – process of mapping continuous variable to a

discrete one

16

Resampling
 Some image processing operations require to know the

colors that are in-between the original pixels

 What are those operations?
 How to find these resampled pixel values?

Pixel

17

Example of resampling: magnification

Input image

Output image

18

Example of resampling:
scaling and rotation

19

How to resample?
 In 1D: how to find the most likely resampled pixel value

knowing its two neighbors?

pixel position x

pi
xe

l v
al

ue
 v

?

20

(Bi)Linear interpolation (resampling)
 Linear – 1D
 Bilinear – 2D

pixel position

pi
xe

l v
al

ue
 v

x1 x2

y1

y2

y

x

Sampling
kernel

21

(Bi)cubic interpolation (resampling)

pixel position x

pi
xe

l v
al

ue
 v Sampling

kernel
(convolution
kernel)

22

Bi-linear interpolation

A B

C D

I(x, y) = ?

I(x1, y1)= A
I(x2, y1)= B
I(x1, y2)=C
I(x2, y2)= D

Given the pixel values:

Calculate the value of a pixel using bi-linear interpolation.

Hint: Interpolate first between A and B, and between C and D, then interpolate
between these two computed values.

23

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Introduction to Image Processing
Part 2/2 – Point ops, filters and pyramids

24

Po
in

t
op

er
at

or
s

an
d

fil
te

rs

Original

Blurred

Sharpenned

Edge-preserving filter

25

Point operators
 Modify each pixel independent from one another
 The simplest case: multiplication and addition

Resulting pixel
value

Input pixel
value

Gain Bias

Pixel position
x=(x,y)

26

Pixel precision for image processing
 Given an RGB image, 8-bit per color channel (uchar)

 What happens if the value of 10 is subtracted from the pixel
value of 5 ?

 250 + 10 = ?
 How to multiply pixel values by 1.5 ?

 a) Using floating point numbers
 b) While avoiding floating point numbers

27

Image blending
 Cross-dissolve between two images

 where α is between 0 and 1

Resulting pixel
value

Pixel from
image 1

Pixel from
image 2

Blending
parameter

28

Image matting and compositing

 Matting – the process of extracting an object from the
original image

 Compositing – the process of inserting the object into a
different image

 It is convenient to represent the extracted object as an
RGBA image

29

Transparency, alpha channel
 RGBA – red, green, blue, alpha

 alpha = 0 – transparent pixel
 alpha = 1 – opaque pixel

 Compositing
 Final pixel value:

 Multiple layers:

30

Image histogram

 histogram / total pixels = probability mass function
 what probability does it represent?

Pixel value

N
um

be
r o

f p
ix

el
s

31

Histogram equalization
 Pixels are non-uniformly distributed across the range of

values

 Would the image look better if we uniformly distribute
pixel values (make the histogram more uniform)?

 How can this be done?

32

Histogram equalization
 Step 1: Compute image histogram

 Step 2: Compute a normalized
cumulative histogram

 Step 3: Use the cumulative
histogram to map pixels to
the new values (as a look-up table)

Yout = c(Yin)

Yin

Y o
ut

33

0

255

 Output pixel value is a weighted sum of neighboring
pixels

Linear filtering

Resulting pixel
value

Input pixel
value

Kernel (filter)

Sum over neighboring
pixels, e.g. k=-1,0,1, j=-1,0,1

for 3x3 neighborhood

compact notation:

Convolution
operation

34

Linear filter: example

Why is the matrix g smaller than f ?

35

Paddin
g an

 im
age

Padded imagePadded and
blurred image36

Im
age edge

What is the computational cost of the
convolution?

 How many multiplications do we need to do to convolve
100x100 image with 9x9 kernel ?
 The image is padded, but we do not compute the values for

the padded pixels

37

Separable kernels
 Convolution operation can be made much faster if split

into two separate steps:
 1) convolve all rows in the image with a 1D filter
 2) convolve columns in the result of 1) with another 1D filter

 But to do this, the kernel must be separable

38

Examples of separable filters
 Box filter:

 Gaussian filter:

 What are the corresponding 1D components of this separable
filter (u(x) and v(y))?

=

3
1

3
1

3
1

3
1
3
1
3
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

G(x,y) = u(x) v(y)

39

Unsharp masking
 How to use blurring to sharpen an image ?

original image high-pass image blurry imageresults

40

Why “linear” filters ?
 Linear functions have two properties:

 Additivity:
 Homogenity: (where “ ” is a linear function)

 Why is it important?
 Linear operations can be performed in an arbitrary order

 Linearity of the Gaussian filter could be used to improve the
performance of your image processing operation

 This is also how separable filters work:

The components
of a separable

kernel An image

Matrix multiplication Convolution

41

Operations on binary images
 Essential for many computer vision tasks

 Binary image can be constructed by thresholding a
grayscale image

42

Morphological filters: dilation

 Set the pixel to the maximum value of the neighboring
pixels within the structuring element

 What could it be useful for ?
43

Morphological filters: erosion

 Set the value to the minimum value of all the neighboring
pixels within the structuring element

 What could it be useful for ?
44

Morphological filters: opening

 Erosion followed by dilation
 What could it be useful for?

45

Morphological filters: closing

 Dilation followed by erosion
 What could it be useful for ?

46

Binary morphological filters: formal
definition Binary image

Structuring
element

Number of 1s inside
the region restricted

by the structuring
element

S – size of structuring element (number of 1s in the SI)

Correlation
(similar to

convolution)

q(c,1)

47

Multi-scale image processing (pyramids)
 Multi-scale processing operates on

an image represented at several
sizes (scales)
 Fine level for operating on small

details
 Coarse level for operating on large

features

 Example:
 Motion estimation

 Use fine scales for objects moving slowly
 Use coarse scale for objects moving fast

 Blending (to avoid sharp boundaries)

48

Two types of pyramids
Gaussian
pyramid

Laplacian
pyramid

(a.k.a DoG
Diffence of
Gaussians)

Level 1

Level 2

Level 3
Level 4

Level 1

Level 2

Level 3
Level 4 (base band)

49

BURT, P. AND ADELSON, E. 1983. The
Laplacian Pyramid as a Compact
Image Code. IEEE Transactions
on Communications 31, 4, 532–
540.

Gaussian Pyramid

reduce

reduce

reduce

Blur the image and downsample
(take every 2nd pixel)

Why is blurring needed?

50

Laplacian Pyramid - decomposition

expand

expand

expand

51

Laplacian Pyramid - synthesis

expand

+

expand

+

expand

+

52

Reduce and expand

53

Filter rows

Subsample columns

Filter columns

Subsample rows

Reduce

Upsample rows

Filter rows

Upsample columns

Filter columns

Expand

Padding

Frequency response of
Laplacian pyramid bands

Example: stitching and blending

54

Combine two images:

Image-space
blending

Laplacian pyramid
blending

+

References
 SZELISKI, R. 2010. Computer Vision: Algorithms and Applications.

Springer-Verlag New York Inc.
 Chapter 3
 http://szeliski.org/Book

55

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Advanced image processing

Part 1/2 – edge stopping filters

Edge stopping filters

2

Original Edge-aware smoothing Detail enhancement

Stylization Recoloring Pencil drawing Depth-of-field

Examples from [Gastal & Oliveira 2011]

Nonlinear filters: Bilateral filter
 Goal: Smooth out an image without blurring edges

Gaussian
filter

Bilateral
filter

3

Unsharp masking

Bilateral filter

= *

=

.
“Kernel” changes
from one pixel to

another
Kernel for this pixel

4

Bilateral filter

pixel position

pi
xe

l v
al

ue

distance in
the spatial position (x,y)

distance (difference) in
pixel values

5

𝒒∈𝒒∈
Input image

Pixel
coordinates

Neighborhood of the
pixel p

s

s

r

r

How to make the bilateral filter fast?
 A number of approximations have been proposed

 Combination of linear filters [Durand & Dorsey 2002, Yang et
al. 2009]

 Bilateral grid [Chen et al. 2007]
 Permutohedral lattice [Adams et al. 2010]
 Domain transform [Gastal & Oliveira 2011]

6

Joint-bilateral filter (a.k.a guided/cross b.f.)

 The “range” term does not need to operate in the same
domain as the filter output
 Example:

7

Stereo image pair

Estimated left-to-right disparity

Joint bilateral
filter

A simplified
algorithm from
[Mueller et al. 2010]

Filtered disparity

The “range”
term operates
on the colour
image

The “spatial”
term operates
on disparities

Joint bilateral filter: Flash / no-flash

 Preserve colour and illumination from
the no-flash image

 Use flash image to remove noise and
add details

 [Petshnigg et al. 2004]

8

Flash No-flash

D
etail transfer w

ith denoising

Example of edge preserving filtering
 Domain Transform for Edge-Aware Image and Video

Processing
 Video:

 https://youtu.be/Ul1xh1IQrTY?t=4m10s
 From: http://inf.ufrgs.br/~eslgastal/DomainTransform/

9

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Advanced image processing
Part 1/2 – processing by optimization

Optimization-based methods

11

Poisson image editing [Perez et al. 2003]

Gradient Domain compositing
 Compositing [Wang et al. 2004]

images from [Drori at al. 2004]12

 Operate on pixel gradients instead of pixel values

Gradient domain methods

Convert to
Gradients Process Convert to

Color

Gradients

Pixels

13

Forward Transformation
 Forward Transformation

 Compute gradients as differences between a pixel and its two
neighboors

 Result: 2D gradient map (2 x more values than the number of
pixels)

14

 Typically, gradient magnitudes are modified while gradient
direction (angle) remains the same

 Examples of gradient editing functions:

Processing gradient field

15

Gradient editing
function

Inverse transform: the difficult part
 There is no strightforward transformation from gradients to

luminance

Convert to
Gradients Process Convert to

Color

 Instead, a minimization problem is solved:

Image Pixels Desired gradients

16

Inverse transformation
 Convert modified gradients to

pixel values
 Not trivial!
 Most gradient fields are

inconsistent - do not produce
valid images

 If no accurate solution is
available, take the best possible
solution

 Analogy: system of springs

2

1 -1

-1

10 12

11 ?

17

Gradient field reconstruction: derivation
 The minimization problem is given by:

 After equating derivatives over pixel values to 0 we get:
 Derivation done in the lecture

 In matrix notation:

Laplace operator
(NxN matrix)

Divergence of a vector
field (Nx1 vector)

Image as
a column

vector

18

Laplace operator for 3x3 image

19

Solving sparse linear systems
 Just use “\” operator in Matlab / Octave:

 x = A \ b;

 Great “cookbook”:
 TEUKOLSKY, S.A., FLANNERY, B.P., PRESS, W.H., ANDVETTERLING, W.T. 1992.

Numerical recipes in C. Cambridge University Press, Cambridge.

 Some general methods
 Cosine-transform – fast but cannot work with weights (next slides) and

may suffer from floating point precision errors
 Multi-grid – fast, difficult to implement, not very flexible
 Conjugate gradient / bi-conjugate gradient – general, memory efficient,

iterative but fast converging
 Cholesky decomposition – effective when working on sparse matrices

20

Pinching artefacts
 A common problem of

gradient-based methods
is that they may result in
“pinching” artefacts (left
image)

 Such artefacts can be
avoided by introducing
weights to the
optimization problem

21

Weighted gradients
 The new objective function is:

 so that higher weights are assigned to low gradient
magnitudes (in the original image).

 The linear system can be derived again
 but this is a lot of work and is error-prone

22

Weighted gradients - matrix notation (1)
 The objective function:

 In the matrix notation (without weights for now):

 Gradient operators (for 3x3 pixel image):

23

Weighted gradients - matrix notation (2)
 The objective function again:

 Such over-determined least-square problem can be solved
using pseudo-inverse:

 Or simply:

 With weights:

24

WLS filter: Edge stopping filter by
optimization
 Weighted-least-squares optimization

 [Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for
multi-scale tone and detail manipulation. ACM SIGGRAPH 2008, 1–10.]

Make reconstructed image u
possibly close to input g

Smooth out the image by making
partial derivatives close to 0

Spatially varying smoothing – less
smoothing near the edges

25

,

Poisson image editing

 Reconstruct unknown values f given a source guidance
gradient field v and the boundary conditions

 [Pérez, P., Michel Gangnet, & Blake, A. (2003). Poisson Image Editing. ACM Transactions
on Graphics, 3(22), 313–318. https://doi.org/10.1145/882262.882269]

26

subject to:

Colour 2 Gray
 Transform colour images

to gray scale
 Preserve colour saliency

 When gradient in
luminance close to 0

 Replace it with gradient in
chrominance

 Reconstruct an image
from gradients

 Gooch, A. A., Olsen, S. C., Tumblin, J., &
Gooch, B. (2005). Color2Gray. ACM
Transactions on Graphics, 24(3), 634.
https://doi.org/10.1145/1073204.1073241

27

Gradient Domain: applications
 More applications:

 Lightness perception (Retinex) [Horn 1974]
 Matting [Sun et al. 2004]
 Color to gray mapping [Gooch et al. 2005]
 Video Editing [Perez at al. 2003, Agarwala et al. 2004]
 Photoshop’s Healing Brush [Georgiev 2005]

28

References
 F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range

images,” ACM Trans. Graph., vol. 21, no. 3, pp. 257–266, Jul. 2002.

 E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware image and
video processing,” ACM Trans. Graph., vol. 30, no. 4, p. 1, Jul. 2011.

 Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM
Trans. Graph. 22, 3 (July 2003), 313-318. DOI:
http://dx.doi.org/10.1145/882262.882269

 Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. 2008. Edge-
preserving decompositions for multi-scale tone and detail manipulation. ACM Trans.
Graph. 27, 3, Article 67 (August 2008), 10 pages. DOI:
https://doi.org/10.1145/1360612.1360666

29

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Parallel programming in OpenCL

Part 1/3 – OpenCL framework

Single Program Multiple Data (SPMD)

 Consider the following vector addition example

for(i = 0:3) {
C[i] = A[i] + B[i]

}

for(i = 4:7) {
C[i] = A[i] + B[i]

}

for(i = 8:11) {
C[i] = A[i] + B[i]

}
A
B

C
||
+

A
B

C
||
+

for(i = 0:11) {
C[i] = A[i] + B[i]

}Serial program:
one program completes
the entire task

SPMD program:
multiple copies of the
same program run on
different chunks of the
data

Multiple copies of the same program execute on different data in parallel

2 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel Software – SPMD
 In the vector addition example, each chunk of data could

be executed as an independent thread
 On modern CPUs, the overhead of creating threads is so

high that the chunks need to be large
 In practice, usually a few threads (about as many as the number

of CPU cores) and each is given a large amount of work to do

 For GPU programming, there is low overhead for thread
creation, so we can create one thread per loop iteration

3 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel Software – SPMD

Single-threaded (CPU)
// there are N elements
for(i = 0; i < N; i++)
C[i] = A[i] + B[i]

Multi-threaded (CPU)
// tid is the thread id
// P is the number of cores
for(i = 0; i < tid*N/P; i++)
C[i] = A[i] + B[i]

Massively Multi-threaded (GPU)
// tid is the thread id
C[tid] = A[tid] + B[tid]

0 1 2 3 4 5 6 7 8 9 1510

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0
1
2
3

15

= loop iteration

Time
T0

T0
T1
T2
T3

T0
T1
T2
T3

T15

4 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel programming frameworks
 These are some of more relevant frameworks for

creating parallelized code

CUDA
OpenCL

OpenACC
OpenMP

CPU GPU

Metal

OpenCL
 OpenCL is a framework for writing parallelized code for

CPUs, GPUs, DSPs, FPGAs and other processors
 Initially developed by Apple, now supported by AMD, IBM,

Qualcomm, Intel and Nvidia
 Versions

 Latest: OpenCL 3.0
 OpenCL C++ kernel language
 SPIR-V as intermediate representation for kernels

 Vulcan uses the same Standard Portable Intermediate Representation

 AMD, Intel, Nvidia

 Mostly supported: OpenCL 1.2
 OSX, older GPUs

OpenCL platforms and drivers
 To run OpenCL code you need:

 Generic ICD loader
 Included in the OS

 Installable Client Driver
 From Nvidia, Intel, etc.

 This applies to Windows and Linux, only one platform on Mac

 To develop OpenCL code you need:
 OpenCL headers/libraries

 Included in the SDKs
 Nvidia – CUDA Toolkit
 Intel OpenCL SDK

 But lightweight options are also available

Programming OpenCL
 OpenCL natively offers C99 API
 But there is also a standard OpenCL C++ API wrapper

 Strongly recommended – reduces the amount of code

 Programming OpenCL is similar to programming shaders
in OpenGL
 Host code runs on CPU and invokes kernels
 Kernels are written in C-like programming language

 In many respects similar to GLSL

 Kernels are passed to API as strings and compiled at runtime
 Kernels are usually stored in text files
 Kernels can be precompiled into SPIR from OpenCL 2.1

Example: Step 1 - Select device
Get all

Platforms
Select

Platform
Get all
Devices

Select
Device

Example: Step 2 - Build program
Create
context

Load sources
(usually from files)

Create
Program

Build
Program

Example: Step 3 - Create Buffers and
copy memory

Create
Buffers

Create
Queue

Enqueue
Memory Copy

Example: Step 4 - Execute Kernel and
retrieve the results

Create
Kernel

Set Kernel
Arguments

Enqueue
Kernel

Enqueue
memory copy

Our Kernel was

OpenCL API Class Diagram
 Platform – Nvidia CUDA

 Device – GeForce 1080
 Program – collection of

kernels
 Buffer or Image – device

memory
 Sampler – how to

interpolate values for
Image

 Command Queue – put a
sequence of operations
there

 Event – to notify that
something has been done

From: OpenCL API 1.2 Reference Card

Platform model
 The host is whatever the OpenCL library runs on

 Usually x86 CPUs for both NVIDIA and AMD

 Devices are processors that the library can talk to
 CPUs, GPUs, DSP,s and generic accelerators

 For AMD
 All CPUs are combined into a single device (each core is a compute unit

and processing element)
 Each GPU is a separate device

14

Execution model
 Each kernel executes on 1D, 2D or 3D array (NDRange)
 The array is split into work-groups
 Work items (threads) in each work-group share some local

memory
 Kernel can querry

 get_global_id(dim)
 get_group_id(dim)
 get_local_id(dim)

 Work items are not
bound to any memory
entity
(unlike GLSL shaders)

Memory model
 Host memory

 Usually CPU memory, device does
not have access to that memory

 Global memory [__global]
 Device memory, for storing large

data

 Constant memory [__constant]
 Local memory [__local]

 Fast, accessible to all work-items
(threads) within a workgroup

 Private memory [__private]
 Accessible to a single work-item

(thread)

Memory objects

 Buffer
 ArrayBuffer in OpenGL
 Accessed directly via C pointers

 Image
 Texture in OpenGL
 Access via texture look-up function
 Can interpolate values, clamp, etc.

cl::Memory

cl::Buffer

cl::BufferGL cl::BufferRenderGL

cl::Image

cl::Image1D cl::Image2D cl::Image2D

cl::Image1DBuffer

This diagram is incomplete – there are more memory objects

Programming model
 Data parallel programming

 Each NDRange element is assigned to a work-item (thread)
 Each kernel can use vector-types of the device (float4, etc.)

 Task-parallel programming
 Multiple different kernels can be executed in parallel

 Command queue

 Provides means to both synchronize kernels and execute them in parallel

clCreateCommandQueue(
cl_context context,
cl_device_id device,
cl_command_queue_properties properties,
cl_int* errcode_ret)

CL_ QUEUE_ OUT_ OF_ ORDER_ EXEC_ MODE_ ENABLE
Execute out-of-order if specified, in order otherwise

Big Picture

19

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Parallel programming in OpenCL

Part 2/3 – Thread mapping

Thread Mapping
 By using different mappings, the same thread can be

assigned to access different data elements
 The examples below show three different possible mappings of

threads to data (assuming the thread id is used to access an
element)

21

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Thread IDs

Mapping
int tid =
get_global_id(1) *
get_global_size(0) +
get_global_id(0);

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

int tid =
get_global_id(0) *
get_global_size(1) +
get_global_id(1);

0 1 4 5
2 3 6 7

8 9 12 13
10 11 14 15

int group_size =
get_local_size(0) *
get_local_size(1);
int tid =
get_group_id(1) *
get_num_groups(0) *
group_size +
get_group_id(0) *
group_size +
get_local_id(1) *
get_local_size(0) +
get_local_id(0)

*assuming 2x2 groupsFrom: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping
 Consider a serial matrix multiplication algorithm

 This algorithm is suited for output data decomposition
 We will create N x M threads

 Effectively removing the outer two loops

 Each thread will perform P calculations
 The inner loop will remain as part of the kernel

 Should the index space be MxN or NxM?

22 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping
 Thread mapping 1: with an MxN index space, the kernel would be:

 Thread mapping 2: with an NxM index space, the kernel would be:

 Both mappings produce functionally equivalent versions of the program

23

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Mapping for C

Mapping for C

From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping
 This figure shows the execution of the two thread mappings

on NVIDIA GeForce 285 and 8800 GPUs

 Notice that mapping 2 is far superior in performance for both
GPUs

24 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping
 The discrepancy in execution times between the

mappings is due to data accesses on the global memory
bus
 Assuming row-major data, data in a row (i.e., elements in

adjacent columns) are stored sequentially in memory
 To ensure coalesced accesses, consecutive threads in the same

wavefront should be mapped to columns (the second
dimension) of the matrices
 This will give coalesced accesses in Matrices B and C
 For Matrix A, the iterator i3 determines the access pattern for row-

major data, so thread mapping does not affect it

25 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Parallel programming in OpenCL

Part 3/3 – Reduction

Reduction
 GPU offers very good

performance for tasks
in which the results are
stored independently
 Process N data items

and store in N memory
location

float reduce_sum(float* input, int length)
{

float accumulator = input[0];
for(int i = 1; i < length; i++)

accumulator += input[i];
return accumulator;

}

 But many common operations require reducing N values into 1 or few values
 sum, min, max, prod, min, histogram, …

 Those operations require an efficient implementation of reduction

 The following slides are based on AMD’s OpenCL™ Optimization Case Study: Simple Reductions
 http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/

Reduction tree for the min operation
 barrier ensures that all threads

(work units) in the local group
reach that point before execution
continue

 Each iteration of the for loop
computes next level of the
reduction pyramid

__kernel
void reduce_min(__global float* buffer,

__local float* scratch,
__const int length,
__global float* result) {

int global_index = get_global_id(0);
int local_index = get_local_id(0);
// Load data into local memory
if (global_index < length) {

scratch[local_index] = buffer[global_index];
} else {

scratch[local_index] = INFINITY;
}
barrier(CLK_LOCAL_MEM_FENCE);
for(int offset = get_local_size(0) / 2;

offset > 0; offset >>= 1) {
if (local_index < offset) {
float other = scratch[local_index + offset];
float mine = scratch[local_index];
scratch[local_index] = (mine < other) ? mine :

other;
}
barrier(CLK_LOCAL_MEM_FENCE);

}
if (local_index == 0) {

result[get_group_id(0)] = scratch[0];
}

}

Multistage reduction
 The local memory is usually

limited (e.g. 50kB), which
restricts the maximum size of
the array that can be processed

 Therefore, for large arrays need
to be processed in multiple
stages
 The result of a local memory

reduction is stored in the array
and then this array is reduced

Two-stage reduction

 First stage: serial reduction by
N concurrent threads
 Number of threads < data items

 Second stage: parallel reduction
in local memory

__kernel
void reduce(__global float* buffer,

__local float* scratch,
__const int length,
__global float* result) {

int global_index = get_global_id(0);
float accumulator = INFINITY;
// Loop sequentially over chunks of input

vector
while (global_index < length) {

float element = buffer[global_index];
accumulator = (accumulator < element) ?

accumulator : element;
global_index += get_global_size(0);

}

// Perform parallel reduction
[The same code as in the previous example]

}

Reduction execution times on CPU/GPU

 Different reduction algorithm may be optimal for CPU and GPU

 This can also vary from one GPU to another

 The results from: http://developer.amd.com/resources/articles-whitepapers/opencl-
optimization-case-study-simple-reductions/

Better way?
 Halide - a language for image processing and

computational photography
 http://halide-lang.org/
 Code written in a high-level language, then translated to

x86/SSE, ARM, CUDA, OpenCL
 The optimization strategy defined separately as a schedule
 Auto-tune software can test thousands of schedules and

choose the one that is the best for a particular platform
 (Semi-)automatically find the best

trade-offs for a particular platform
 Designed for image processing but

similar languages created for other
purposes

OpenCL resources
 https://www.khronos.org/registry/OpenCL/

 Reference cards
 Google: “OpenCL API Reference Card”

 AMD OpenCL Programming Guide
 http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OC

L_Programming_Guide-2013-06-21.pdf

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Image-based rendering and
Light fields

Part 1/4 – context, definition and technology

Advanced Graphics & Image Processing

Motivation: 3DoF vs 6DoF in VR
3DoF 6DoF
 Tracking with inexpensive

Inertial Measurements Units
 Content:

 Geometry-based graphics
 Omnidirectional stereo video

 May induce cyber-sickness due
due to the lack of
motion depth cues

 Requires internal (inside-
out) or external tracking

 Content:
 Geometry-based graphics
 Point-cloud rendering
 Image-based rendering

 View interpolation
 Light fields
 …

2 Source for the images: https://www.qualcomm.com/media/documents/files/on-device-motion-tracking-for-immersive-vr.pdf

3D computer graphics
 We need:

 Geometry + materials +
textures

 Lights

 Full control of illumination,
realistic material appearance

 Graphics assets are
expensive to create

 Rendering is expensive
 Shading tends to takes most of

the computation

3

Cyberpunk 2077 (C) 2020 by CD Projekt RED

Baked / precomputed illumination
 We need:

 Geometry + textures +
(light maps)

 No need to scan and
model materials

 Much faster rendering
– simplified shading

4

Google Earth

Precomputed light maps (from Wikipedia)

Billboards / Sprites
 We need:

 Simplified geometry + textures
(with alpha)

 Lights

 Much faster to render than
objects with 1000s of
triangles

 Used for distant objects
 or a small rendering budget

 Can be pre-computed from
complex geometry

5

A tree rendered from a set of billboards
From:
https://docs.unity3d.com/ScriptReference/Bil
lboardAsset.html

Light fields + depth
 We need:

 Depth map
 Images of the object/scene
 Camera

 We can use camera-captured
images

 View-dependent shading
 Depth-map can be computed

using multi-view stereo
techniques
 CV methods can be unreliable

 No relighting

6

A depth map is approximated by triangle
mesh and rasterized. From: Overbeck et al.
TOG 2018,
https://doi.org/10.1145/3272127.3275031.

Demo:
https://augmentedperception.github.io/welco
me-to-lightfields/

Light fields
 We need:

 Images of the scene
 Or a microlens image

 Camera

 As light fields +depth but
 No geometry, no need for

any 3D reconstruction
 Photographs are rep-

projected on the plane
 Requires massive number of

images for good quality

7

Multi-plane images (MPI)
 We need:

 Images of the scene
+ camera poses

 Each plane: RGB + alpha
 Decomposition formulated

as an optimization problem
 Differential rendering

 Only front view

8

[1] Mildenhall, et al. “Local Light Field Fusion.” ACM
Transactions on Graphics 38, no. 4 (July 12, 2019): 1–
14. https://doi.org/10.1145/3306346.3322980
[2] Wizadwongsa et al. “NeX: Real-Time View Synthesis
with Neural Basis Expansion.” In CVPR, 8530–39. IEEE,
2021. https://doi.org/10.1109/CVPR46437.2021.00843
https://nex-mpi.github.io/

From [1]

From [2]

Neural Radiance Fields (NeRF)
 We need

 Images of the scene
+ camera poses

 Similar to MPI but
stored in a
volumetric data
structure
 Implicit: multi-layer

perceptron
 Explicit: Voxel grid

 Volumetric
differential rendering

9

[1] Mildenhall, et al. “NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis,” 405–21, 2020.
https://doi.org/10.1007/978-3-030-58452-8_24.
[2] Yu et al. “Plenoxels: Radiance Fields without Neural
Networks.” In CVPR, 5501–10, 2022.
http://arxiv.org/abs/2112.05131.

From [1]

From [2]

From a plenoptic function to a light field
 Plenoptic function – describes all possible rays in a 3D

space
 Function of position (, ,)

and ray direction ,
 But also wavelength and time
 Between 5 and 7 dimensions

 But the number of dimensions can be reduced if
 The camera stays outside the convex hull of the object
 The light travels in uniform medium
 Then, radiance remains the same along the ray (until the ray

hits an object)
 This way we obtain a 4D light field

10

Planar 4D light field

11

Refocusing and view point adjustment

Screen capture from http://www.lytro.com/12

Depth estimation from light field
 Passive sensing of depth
 Light field captures multiple

depth cues
 Correspondance (disparity)

between the views
 Defocus
 Occlusions

13

Central view
Reconstructed
depth

From: Ting-Chun Wang, Alexei A. Efros, Ravi
Ramamoorthi; The IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 3487-3495

Two methods to capture light fields

Micro-lens array Camera array

 Small baseline
 Good for digital refocusing
 Limited resolution

 Large baseline
 High resolution
 Rendering often requires

approximate depth

14

Light field image – with microlens array

15

Digital Refocusing using
Light Field Camera

125μ square-sided microlenses [Ng et al 2005]
16

Lenslet
array

Lytro-cameras
 First commercial light-field cameras
 Lytro illum camera

 40 Mega-rays
 2D resolution: 2450 x 1634 (4 MPixels)

17

Raytrix camera
 Similar technology to Lytro
 But profiled for

computer vision applications

18

Stanford camera array

96 cameras

Application: Reconstruction of
occluded surfaces

19

PiCam camera array module
 Array of 4 x 4 cameras on a

single chip
 Each camera has its own lens

and senses only one spectral
colour band
 Optics can be optimized for

that band

 The algorithm needs to
reconstruct depth

20

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Light fields
Part 2/4 – imaging and lens

Advanced Graphics & Image Processing

Imaging – without lens

Every point in the scene illuminates every point
(pixel) on a sensor. Everything overlaps - no useful
image.

22

Imaging – pinhole camera

Pinhole masks all but only tiny beams of light. The light
from different points is separated and the image is
formed.

But very little light reaches the sensor.

23

A

B

A’

B’

Imaging – lens

Lens can focus a beam of light on a sensor (focal plane).

Much more light-efficient than the pinhole.

24

Imaging – lens

But it the light beams coming from different distances are
not focused on the same plane.
These points will appear blurry in the resulting image.

Camera needs to move lens to focus an image on the
sensor.

25

Depth of field

 Depth of field – range of depths that provides sufficient
focus

26

Defocus blur is often desirable

27

Defocus blur is a strong depth cueTo separate the object of
interest from background

Imaging – aperture

Aperture (introduced behind the lens) reduces the
amount of light reaching sensor, but it also reduces
blurriness from defocus (increases depth-of-field).

28

Imaging – lens

Focal length – length between the sensor and the lens that is
needed to focus light coming from an infinite distance.

Larger focal length of a lens – more or less magnification?

29

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Light fields
Part 3/4 – parametrization and an example

Advanced Graphics & Image Processing

Light fields: two parametrisations
(shown in 2D)

s - slope

x - position

Ray

31

s - position

u - position

Position and slope
(slope - tangent of the angle) Two planes

Lightfield - example

32

Lightfield - example

33

Lightfield - example

34

Lightfield - example

Image on the retina

35

Rafał Mantiuk
Computer Laboratory, University of Cambridge

Light fields
Part 4/4 – light field rendering

Advanced Graphics & Image Processing

Light field rendering (1/3)

37

We want to render a scene (Blender monkey) as seen
by camera K. We have a light field captured by a
camera array. Each camera in the array has its aperture
on plane C.

Light field rendering (2/3)

38

Each camera in the
array provides
accurate light
measurements only for
the rays originating
from its pinhole
aperture.

The missing rays can
be either interpolated
(reconstructed) or
ignored.

From the view point of
camera K

Light field rendering (3/3)

39

The rays from the camera need to be projected on the focal
plane F. The objects on the focal plane will be sharp, and
the objects in front or behind that plane will be blurry
(ghosted), as in a traditional camera.

If we have a proxy geometry, we can
project on that geometry instead – the
rendered image will be less
ghosted/blurry

Intuition behind light field rendering
 For large virtual aperture (use all cameras in the array)

 Each camera in the array captures the scene
 Then, each camera projects its image on the focal plane F
 The virual camera K captures the projection

 For small virtual aperture (pinhole)
 For each ray from the virtual camera

 interpolate rays from 4 nearest camera images

 Or use the nearest-neighbour ray

40

LF rendering – focal plane
 For a point on the focal

plane, all cameras capture
the same point on the 3D
object

 They also capture
approximately the same
colour (for diffuse objects)

 Averaged colour will be
the colour of the point on
the surface

41

LF rendering – focal plane
 If the 3D object does not

lie on the focal plane, all
camaras capture different
points on the object

 Averaging colour values
will produce a „ghosted”
image

 If we had unlimited
number of cameras, this
would produce a depth-
of-field effect

42

Finding homographic transformation 1/3

 For the pixel coordinates of
the virtual camera K, we want to
find the corresponding
coordinates in the camera array
image

 Given the world 3D coordinates
of a point :

43

View
matrix

Projection
matrix

Intrinsic
camera matrix

Finding homographic transformation 2/3

 A homography between two views is usually found as:==
hence =
 But, is not a square matrix and cannot be

inverted
 To find the correspondence, we need to constrain 3D

coordinates to lie on the plane:

44

or

Finding homographic transformation 3/3

 Then, we add the plane equation to the projection matrix

 Where is the distance to the plane (set to 0)
 Hence

45

The plane in
the camera coordinates
(not world coordinates)

References
 Light fields

 Micro-lens array
 Ng, Ren and Levoy, Marc and Bredif, M. and D., & Gene and Horowitz,

Mark and Hanrahan, P. (2005). Light field photography with a hand-held
plenoptic camera.

 Camera array
 OVERBECK, R.S., ERICKSON, D., EVANGELAKOS, D., PHARR, M., AND

DEBEVEC, P. 2018. A system for acquiring, processing, and rendering
panoramic light field stills for virtual reality. ACM Transactions on
Graphics 37, 6, 1–15.

 ISAKSEN, A., MCMILLAN, L., AND GORTLER, S.J. 2000. Dynamically
reparameterized light fields. Proc of SIGGRAPH ’00, ACM Press, 297–
306.

46

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Colour perception and colour spaces

Part 1/5 – physics of light

2

Electromagnetic
spectrum
 Visible light

 Electromagnetic waves of wavelength
in the range 380nm to 730nm

 Earth’s atmosphere lets through a lot
of light in this wavelength band

 Higher in energy than thermal
infrared, so heat does not interfere
with vision

3

Colour
 There is no physical definition of colour – colour is the result

of our perception

 For reflective displays / objects

colour = perception(illumination × reflectance)

 For emissive objects or displays

colour = perception(emission)

4

Black body radiation
 Electromagnetic radiation emitted by a perfect absorber at a

given temperature
 Graphite is a good approximation of a black body

5

Correlated colour temperature
 The temperature of a black body radiator that produces light

most closely matching the particular source
 Examples:

 Typical north-sky light: 7500 K
 Typical average daylight: 6500 K
 Domestic tungsten lamp (100 to 200 W): 2800 K
 Domestic tungsten lamp (40 to 60 W): 2700 K
 Sunlight at sunset: 2000 K

 Useful to describe colour of the illumination (source of
light)

6

Standard illuminant D65
 Mid-day sun in Western Europe / Northern Europe
 Colour temperature approx. 6500 K

7

Reflectance
 Most of the light we see is reflected from objects
 These objects absorb a certain part of the light spectrum

Spectral reflectance of ceramic tiles

Why not
red?

8

Reflected light

 Reflected light = illumination × reflectance

The same object may appear to have
different color under different
illumination.

9

)()()(RIL

Fluorescence

From: http://en.wikipedia.org/wiki/Fluorescence

10

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Colour perception and colour spaces

Part 2/5 – perception, cone fundamentals

Colour perception
 Di-chromaticity (dogs, cats)

 Yellow & blue-violet
 Green, orange, red indistinguishable

 Tri-chromaticity (humans, monkeys)
 Red-ish, green-isn, blue-ish
 Colour-deficiency

 Most often men, green-red colour-deficiency

www.lam.mus.ca.us/cats/color/

www.colorcube.com/illusions/clrblnd.html

12

Colour vision
 Cones are the photreceptors

responsible for colour vision
 Only daylight, we see no colours

when there is not enough light

 Three types of cones
 S – sensitive to short

wavelengths
 M – sensitive to medium

wavelengths
 L – sensitive to long

wavelengths

Sensitivity curves – probability that a
photon of that wavelengths will be
absorbed by a photoreceptor. S,M
and L curves are normalized in this
plot.

13

Perceived light
 cone response = sum(sensitivity × reflected light)

Although there is an infinite number of
wavelengths, we have only three
photoreceptor types to sense
differences between light spectra

730

380

)()(dLSR SS

Formally

14 Index S for S-cones

Metamers
 Even if two light spectra are different, they may appear to have

the same colour
 The light spectra that appear to have the same colour are

called metamers
 Example:

*

*

= [L1, M1, S1]

= [L2, M2, S2]

=

15

Practical application of metamerism
 Displays do not emit the same light spectra as real-world

objects
 Yet, the colours on a display look almost identical

On the display

In real world

*

*

=

= [L1, M1, S1]

= [L2, M2, S2]

16

 Observation
 Any colour can be matched

using three linear independent
reference colours

 May require “negative”
contribution to test colour

 Matching curves describe the
value for matching mono-
chromatic spectral colours of
equal intensity
 With respect to a certain

set of primary colours

17

Tristimulus Colour Representation

Standard Colour Space CIE-XYZ
 CIE Experiments [Guild and Wright, 1931]

 Colour matching experiments
 Group ~12 people with „normal“ colour vision
 2 degree visual field (fovea only)

 CIE 2006 XYZ
 Derived from LMS colour matching functions by Stockman & Sharpe
 S-cone response differs the most from CIE 1931

 CIE-XYZ Colour Space
 Goals

 Abstract from concrete primaries used in an experiment
 All matching functions are positive
 Primary „Y” is roughly proportionally to achromatic response (luminance)

18

Standard Colour Space CIE-XYZ
 Standardized imaginary primaries CIE

XYZ (1931)
 Could match all physically realizable colour

stimuli
 Cone sensitivity curves can be obtained by

a linear transformation of CIE XYZ

19

CIE chromaticity diagram
 chromaticity values are defined in terms of x, y, z

 ignores luminance
 can be plotted as a 2D function

 pure colours (single wavelength)
lie along the outer curve

 all other colours are a mix of
pure colours and hence lie
inside the curve

 points outside the curve do not
exist as colours

20

x X
X Y Z

y Y
X Y Z

z Z
X Y Z

x y z

 , , 1

FvDFH Fig 13.24
Colour plate 2

580nm

600nm

700nm

560nm

540nm

520nm

500nm

490nm

510nm

480nm

460nm
410n
m

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Colour perception and colour spaces

Part 3/5 – colour opponent processing

Achromatic/chromatic vision
mechanisms

22

Light spectra

Achromatic/chromatic vision
mechanisms

23

Light spectra

Sensitivity of
the achromatic
mechanism

Luminance does
NOT explain the
brightness of light!
[Koenderink et al.
Vision Research
2016]

Achromatic/chromatic vision
mechanisms

24

Light spectra

Achromatic/chromatic vision
mechanisms

25

Light spectra

Achromatic/chromatic vision
mechanisms

26

Light spectra

Rods

Cao et al. (2008). Vision
Research, 48(26), 2586–92.

Luminous efficiency function
(weighting)

Light spectrum (radiance)

Luminance
 Luminance – measure of light weighted by the response of the

achromatic mechanism. Units: cd/m2

Luminance

27

= = 683.002

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Colour perception and colour spaces
Part 4/5 – gamuts, linear and

gamma-encoded colour

 All physically possible and visible
colours form a solid in the XYZ space

 Each display device can reproduce a
subspace of that space

 A chromacity diagram is a projection
of a slice taken from a 3D solid in
XYZ space

 Colour Gamut – the solid in a colour
space
 Usually defined in XYZ to be device-

independent

29

Visible vs. displayable colours

 HDR cameras/formats/displays attempt
capture/represent/reproduce (almost)
all visible colours
 They represent scene colours and

therefore we often call this representation
scene-referred

 SDR cameras/formats/devices attempt
to capture/represent/reproduce only
colours of a standard sRGB colour
gamut, mimicking the capabilities of
CRTs monitors
 They represent display colours and

therefore we often call this representation
display-referred

 30

Standard vs. High Dynamic Range

From rendering to display

31

From rendering to display

32

From rendering to display

33

Display encoding for SDR: gamma
 Gamma correction is often used to encode luminance or tri-

stimulus color values (RGB) in imaging systems (displays,
printers, cameras, etc.)

Luma
Digital signal (0-1)

(relative) Luminance
Physical signal

Gamma
(usually =2.2)

Gain

Inverse:

Colour: the same equation
applied to red, green and blue
colour channels.

34

V = a
V = 1

Why is gamma needed?

 Gamma-corrected pixel values give a scale of brightness levels
that is more perceptually uniform

 At least 12 bits (instead of 8) would be needed to encode
each color channel without gamma correction

 And accidentally it was also the response of the CRT gun

<- Pixel value (luma)
<- Luminance

35

Luma – gray-scale pixel value
 Luma - pixel “brightness” in gamma corrected units= 0.2126 + 0.7152 + 0.0722

 , and are gamma-corrected colour values
 Prime symbol denotes gamma corrected
 Used in image/video coding

 Note that relative luminance if often approximated with= 0.2126 + 0.7152 + 0.0722= 0.2126() +0.7152() +0.0722()
 , , and are linear colour values

 Luma and luminace are different quantities despite similar formulas

36

Standards for display encoding
Display type Colour space EOTF Bit depth

Standard Dynamic Range ITU-R 709 2.2 gamma / sRGB 8 to 10

High Dynamic Range ITU-R 2020 ITU-R 2100 (PQ/HLG) 10 to 12

37

Colour space
What is the XYZ of “pure” red,

green and blue

Electro-Optical Transfer Function
How to efficiently encode each primary

colour

How to transform between linear
RGB colour spaces?

 From ITU-R 709 RGB to XYZ:

= 0.4124 0.3576 0.18050.2126 0.7152 0.07220.0193 0.1192 0.9505
38

RGB
ITU-R 709

RGB
ITU-R 2020XYZ

SDR HDRDevice-independent

Relative XYZ
of the red
primary

Relative XYZ
of the green

primary

Relative XYZ
of the blue

primary

Relative RGB
(0-1) in the
R709 space

How to transform between
RGB colour spaces?
 From ITU-R 709 RGB to ITU-R 2020 RGB:=
 From ITU-R 2020 RGB to ITU-R 709 RGB:=
 Where:= 0.4124 0.3576 0.18050.2126 0.7152 0.07220.0193 0.1192 0.9505 and =

= 0.6370 0.1446 0.16890.2627 0.6780 0.05930.0000 0.0281 1.0610 and =
39

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Colour perception and colour spaces
Part 5/5 – colour spaces

Representing colour
 We need a way to represent colour in the computer by some

set of numbers
 A) preferably a small set of numbers which can be quantised to a fairly

small number of bits each
 Gamma corrected RGB, sRGB and CMYK for printers

 B) a set of numbers that are easy to interpret
 Munsell’s artists’ scheme
 HSV, HLS

 C) a set of numbers in a 3D space so that the (Euclidean) distance in
that space corresponds to approximately perceptually uniform colour
differences
 CIE Lab, CIE Luv

41

RGB spaces
 Most display devices that output light mix red, green and blue

lights to make colour
 televisions, CRT monitors, LCD screens

 RGB colour space
 Can be linear (RGB) or display-encoded (R’G’B’)
 Can be scene-referred (HDR) or display-referred (SDR)

 There are multiple RGB colour spaces
 ITU-R 709 (sRGB), ITU-R 2020, Adobe RGB, DCI-P3

 Each using different primary colours

 And different OETFs (gamma, PQ, etc.)

 Nominally, RGB space is a cube

42

RGB in CIE XYZ space
 Linear RGB colour values can be

transformed into CIE XYZ
 by matrix multiplication
 because it is a rigid transformation

the colour gamut in CIE XYZ is
a rotate and skewed cube

 Transformation into Yxy
 is non-linear (non-rigid)
 colour gamut is more complicated

43

R
G

B
ga

m
ut

 in

XY
Z

co
lo

ur
 s

pa
ce

R
G

B
ga

m
ut

 in
 Y

xy
co

lo
ur

 s
pa

ce

CMY space
 printers make colour by mixing coloured inks
 the important difference between inks (CMY) and lights (RGB)

is that, while lights emit light, inks absorb light
 cyan absorbs red, reflects blue and green
 magenta absorbs green, reflects red and blue
 yellow absorbs blue, reflects green and red

 CMY is, at its simplest, the inverse of RGB
 CMY space is nominally a cube

44

45

CMYK space

 in real printing we use black (key)
as well as CMY

 why use black?
 inks are not perfect absorbers
 mixing C + M + Y gives a muddy grey,

not black
 lots of text is printed in black: trying to

align C, M and Y perfectly for black text
would be a nightmare

46

Munsell’s colour classification system
 three axes

 hue the dominant colour
 value bright colours/dark colours
 chroma vivid colours/dull colours

 can represent this as a 3D graph

47

Munsell’s colour classification system
 any two adjacent colours are a standard “perceptual” distance

apart
 worked out by testing it on people
 a highly irregular space

 e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours

48

Colour spaces for user-interfaces
 RGB and CMY are based on the physical devices which

produce the coloured output
 RGB and CMY are difficult for humans to use for selecting

colours
 Munsell’s colour system is much more intuitive:

 hue — what is the principal colour?
 value — how light or dark is it?
 chroma — how vivid or dull is it?

 computer interface designers have developed basic
transformations of RGB which resemble Munsell’s human-
friendly system

49

HSV: hue saturation value
 three axes, as with Munsell

 hue and value have same meaning
 the term “saturation” replaces the

term “chroma”
 simple conversion from gamma-

corrected RGB to HSV

 designed by Alvy Ray Smith in 1978
 algorithm to convert HSV to RGB and

back can be found in Foley et al.,
Figs 13.33 and 13.34

50

HLS: hue lightness saturation
a simple variation of HSV

 hue and saturation have same
meaning

 the term “lightness” replaces the
term “value”

designed to address the
complaint that HSV has all pure
colours having the same
lightness/value as white
 designed by Metrick in 1979
 algorithm to convert HLS to RGB

and back can be found in Foley et
al., Figs 13.36 and 13.37

Perceptual uniformity
 MacAdam ellipses & visually indistinguishable colours

51

In CIE xy chromatic coordinates In CIE u’v’ chromatic coordinates

CIE L*u*v* and u’v’

52

sRGB in CIE L*u*v*

 Approximately perceptually uniform
 u’v’ chromacity

 CIE LUV

 Hue and chroma

Lightness

Chromacity
coordinates

Colours less
distinguishable

when dark

CIE L*a*b* colour space
 Another approximately perceptually

uniform colour space

 Chroma and hue

53

Trichromatic
values of the

white point, e.g.

54

Lab space

 this visualization shows those
colours in Lab space which a
human can perceive

 again we see that human
perception of colour is not
uniform
 perception of colour diminishes at

the white and black ends of the L
axis

 the maximum perceivable chroma
differs for different hues

Colour - references
 Chapters „Light” and „Colour” in

 Shirley, P. & Marschner, S., Fundamentals of Computer Graphics

 Textbook on colour appearance
 Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley &

Sons.

 Comprehensive review of colour research
 Wyszecki, G., & Stiles, W. S. (2000). Color science: concepts and methods,

quantitative data, and formulae (Second ed.). John Wiley & Sons.

55

Rafal Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Models of early visual perception
Part 1/6 – perceived brightness of light

1

Many graphics/display solutions are
motivated by visual perception

*

…
Halftonning

Image & video
compression

Display spectral emission - metamerism

Display’s subpixels

Camera’s
Bayer pattern

Color wheel in DLPs
2

Luminous efficiency function
(weighting)

Light spectrum (radiance)

Luminance (again)
 Luminance – measure of light weighted by the response

of the achromatic mechanism. Units: cd/m2

Luminance

3

= = 683.002

Steven’s power law for brightness
 Stevens (1906-1973) measured the perceived magnitude

of physical stimuli
 Loudness of sound, tastes, smell, warmth, electric shock and

brightness
 Using the magnitude estimation methods

 Ask to rate loudness on a scale with a known reference

 All measured stimuli followed the power law:

 For brightness (5 deg target in dark), a = 0.3

(I) kI aPerceived
magnitude

Physical
stimulus

Exponent

Constant

4

Steven’s law for brightness

5

S
teven

’s law
 vs. G

am
m

a correction

6 Gamma function
Gamma = 2.2

Stevens’ law
a=0.3

Rafal Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Models of early visual perception
Part 2/6 – contrast detection

7

Detection thresholds

 The smallest detectable difference between
 the luminance of the object and
 the luminance of the background

8

Threshold versus intensity (t.v.i.)
function
 The smallest detectable difference in luminance for a

given background luminance

L

ΔL

L

L+ΔL

9

t.v.i. measurements – Blackwell 1946

10

Psychophysics
Threshold experiments

L

L+ΔL

Luminance difference ΔL

P=0.75

Detection
threshold

11

t.v.i function / c.v.i. function / Sensitivity
 The same data, different representation

t.v.i. c.v.i.
S

Contrast vs. intensityThreshold vs. intensity Sensitivity

backgrounddisk LLL

12

Sensitivity to luminance
 Weber-law – the just-noticeable difference

is proportional to the magnitude of a
stimulus

The smallest
detectable
luminance
difference

Background
(adapting)
luminance

Constant

L
ΔLTypical stimuli:

Ernst Heinrich Weber
[From wikipedia]

13

Δ =

Consequence of the Weber-law
 Smallest detectable difference in luminance

 Adding or subtracting luminance will have different visual
impact depending on the background luminance

 Unlike LDR luma values, luminance values are not
perceptually uniform!

L ΔL

100 cd/m2 1 cd/m2

1 cd/m2 0.01 cd/m2

14

For k=1%Δ =

How to make luminance (more)
perceptually uniform?

 Using “Fechnerian” integration

luminance - L

re
sp

on
se

 -
R

1

ΔL

dR
dl

(L) 1
L(L)

Derivative of
response

Detection
threshold

15

Luminance
transducer: = 1Δ ()

Assuming the Weber law

 and given the luminance transducer

 the response of the visual system to light is:

16

Δ =
= 1Δ ()

Fechner law

 Response of the visual system to luminance
is approximately logarithmic

Gustav Fechner
[From Wikipedia]

R(L) a ln(L)

17

But…the Fechner law does not hold for
the full luminance range

 Because the Weber law does not hold either
 Threshold vs. intensity function:

L

ΔL

The Weber law
region

18

Weber-law revisited
 If we allow detection threshold to vary with luminance

according to the t.v.i. function:

 we can get a more accurate estimate of the “response”:

R(L) 1
tvi(l)

dl
0

L

L

ΔL tvi(L)

19

Fechnerian integration and Stevens’ law

20

R(L) - function
derived from the

t.v.i. function

R(L) 1
tvi(l)

dl
0

L

Applications of JND encoding – R(L)
 DICOM grayscale function

 Function used to encode signal for medial
monitors

 10-bit JND-scaled (just noticeable
difference)

 Equal visibility of gray levels

 HDMI 2.0a (HDR10)
 PQ (Perceptual Quantizer) encoding
 Dolby Vision
 To encode pixels for high dynamic range

images and video

21

22

Rafal Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Models of early visual perception
Part 3/6 – spatial contrast sensitivity

and contrast constancy

23

Resolution and sampling rate
 Pixels per inch [ppi]

 Does not account for vision

 The visual resolution depends on
 screen size
 screen resolution
 viewing distance

 The right measure
 Pixels per visual degree [ppd]
 In frequency space

 Cycles per visual degree [cpd]

24

Fourier analysis
 Every N-dimensional function (including images) can be

represented as a sum of sinusoidal waves of different
frequency and phase

 Think of “equalizer” in audio software, which manipulates
each frequency

25

Spatial frequency in images
 Image space units: cycles per sample (or cycles per pixel)

 What are the screen-space frequencies of the red and green
sinusoid?

 The visual system units: cycles per degree
 If the angular resolution of the viewed image is 55 pixels per

degree, what is the frequency of the sinusoids in cycles per
degree?

26

Nyquist frequency
 Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow

infinitely high frequency

27

Nyquist frequency
 Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow

infinitely high frequency

28

Nyquist frequency
 Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow

infinitely high frequency

29

Nyquist frequency
 Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow

infinitely high frequency

30

Nyquist frequency / aliasing
 Nuquist frequency is the highest frequency that can be

represented by a discrete set of uniform samples (pixels)
 Nuquist frequency = 0.5 sampling rate

 For audio
 If the sampling rate is 44100 samples per second (audio CD), then the

Nyquist frequency is 22050 Hz

 For images (visual degrees)
 If the sampling rate is 60 pixels per degree, then the Nyquist

frequency is 30 cycles per degree

 When resampling an image to lower resolution, the
frequency content above the Nyquist frequency needs to
be removed (reduced in practice)
 Otherwise aliasing is visible

31

Modeling contrast detection

32

LGN
Visual

Cortex

PhotoreceptorsLens

Retinal ganglion cells
Cornea

Adaptation
Spectral sensitivity Spatial- / orientation- / temporal-

Selective channels

Luminance masking
Defocus &
Aberrations Glare

Colour opponency
P & M visual pathways Contrast masking

Integration

Detection

Contrast Sensitivity Function

Spatial frequency [cycles per degree]
C

on
tra

st

Campbell & Robson contrast sensitivity chart
33

34

Contrast sensitivity function

CSF S(,,, l,i2,d,e)

Spatial frequency

Orientation

Temporal frequency

Adapting luminance

Stimulus size

Viewing distance

Eccentricity

35

CSF as a function of spatial frequency

36

CSF as a function of background
luminance

37

CSF as a function of spatial frequency
and background luminance

38

Contrast constancy
Match?Experiment: Adjust the

amplitude of one sinusoidal
grating until it matches the
perceived magnitude of
another sinusoidal grating.

From: Georgeson and Sullivan. 1975. J. Phsysio.39

ReferenceTest

Contrast constancy
No CSF above the detection threshold

40

CSF and the resolution
 CSF plotted as the

detection contrastΔ =
 The contrast below each

line is invisible
 Maximum perceivable

resolution depends on
luminance

41

iPhone 4
Retina display

HTC Vive Pro

CSF models:
Barten, P. G. J. (2004).
https://doi.org/10.1117/12.537476

Expected
contrast in

natural images

Spatio-chromatic CSF

42

Spatio-chromatic contrast sensitivity

 CSF as a function of luminance and frequency

Rafał Mantiuk, University of Cambridge43

Black-White Red-Green Violet-Yellow

http://dx.doi.org/10.2352/issn.
2169-2629.2020.28.1

CSF and colour
ellipses

Rafał Mantiuk, University of Cambridge44

 Colour discrimination as a function of
– Background colour and luminance

[LMS]
– Spatial frequency [cpd]
– Size [deg]

Visibility of blur

 The same amount of blur was introduced into light-dark,
red-green and blue-yellow colour opponent channels

 The blur is only visible in light-dark channel
 This property is used in image and video compression

 Sub-sampling of colour channels (4:2:1)

45

Rafal Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Models of early visual perception
Part 4/6 – lateral inhibition
and multi-resolution models

46

Mach Bands – evidence for band-pass
visual processing

• “Overshooting“ along edges
– Extra-bright rims on bright sides
– Extra-dark rims on dark sides

• Due to “Lateral Inhibition“

47

Centre-surround (Lateral Inhibition)
 “Pre-processing” step within the retina

 Surrounding brightness level weighted negatively
 A: high stimulus, maximal bright inhibition
 B: high stimulus, reduced inhibition & stronger response
 D: low stimulus, maximal inhibition
 C: low stimulus, increased inhibition &

weaker response

Center-surround
receptive fields

(groups of
photoreceptors)

48

Centre-surround: Hermann Grid
• Dark dots at crossings
• Explanation

– Crossings (A)
• More surround stimulation

(more bright area)
 Less inhibition
 Weaker response

– Streets (B)
• Less surround stimulation
 More inhibition
 Greater response

• Simulation
– Darker at crossings, brighter in streets
– Appears more steady
– What if reversed ?

A B

Sim
ulation

49

Psychedelic

some further weirdness
50

Spatial-frequency selective channels
 The visual information is

decomposed in the visual cortex
into multiple channels
 The channels are selective to spatial

frequency, temporal frequency and
orientation

 Each channel is affected by different
„noise” level

 The CSF is the net result of
information being passed in noise-
affected visual channels

From: Wandell, 1995

51

Multi-scale decomposition

Steerable pyramid
decomposition

52

Multi-resolution visual model
 Convolution kernels

are band-pass,
orientation selective
filters

 The filters have the
shape of an oriented
Gabor function

From: Wandell, 1995
53

Predicting visible differences with CSF
 We can use CSF to find the probability of spotting a

difference beween a pair of images and :

54

[] = [] | , ,
Wavelet

decomposition
Δ

/
Compute
contrast

Background
luminance

-1

Wavelet
reconstruction

Psychometric
function

X

Δ Δ

(simplified) Visual Difference Predictor Daly, S. (1993).

[] The percept
of image X

Applications of multi-scale models
 JPEG2000

 Wavelet decomposition

 JPEG / MPEG
 Frequency transforms

 Image pyramids
 Blending & stitching
 Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery

55

Rafal Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Models of early visual perception
Part 5/6 – light and dark adaptation

56

Light and dark adaptation

 Light adaptation: from dark to bright
 Dark adaptation: from bright to dark (much slower)

57

Time-course of
adaptation

Bright -> Dark Dark -> Bright

58

Temporal adaptation mechanisms
 Bleaching & recovery of photopigment

 Slow assymetric (light -> dark, dark -> light)
 Reaction times (1-1000 sec)
 Separate time-course for rods and cones

 Neural adaptation
 Fast
 Approx. symmetric reaction times (10-3000 ms)

 Pupil
 Diameter varies between 3 and 8 mm
 About 1:7 variation in retinal illumunation

59

Night and daylight vision

Luminous efficiency

60

Rafal Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Models of early visual perception
Part 6/6 – high(er) level vision

61

Simultaneous contrast

62

High-Level Contrast Processing

63

High-Level Contrast Processing

64

Shape Perception

http://www.panoptikum.net/optischetaeuschungen/index.html

• Depends on surrounding primitives
– Directional emphasis
– Size emphasis

65

Shape Processing: Geometrical Clues

http://www.panoptikum.net/optischetaeuschungen/index.html

• Automatic geometrical interpretation
– 3D perspective
– Implicit scene depth

66

Impossible Scenes

http://www.panoptikum.net/optischetaeuschungen/index.html

• Escher et.al.
– Confuse HVS by presenting

contradicting visual clues
– Local vs. global processing

67

Virtual Movement

caused by saccades, motion from dark to bright areas
68

Law of closure

69

References
 Wandell, B. A. (1995). Foundations of vision. Sinauer

Associates.
 Available online: https://foundationsofvision.stanford.edu/

 Mantiuk, R. K., Myszkowski, K., & Seidel, H. (2015). High
Dynamic Range Imaging. In Wiley Encyclopedia of Electrical
and Electronics Engineering. Wiley.
 Section 2.4
 Available online:

http://www.cl.cam.ac.uk/~rkm38/hdri_book.html

70

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

High dynamic range and tone mapping
Part 1/2 – context, the need for tone-mapping

Cornell Box: need for tone-mapping in
graphics

Rendering Photograph

2

Real-world scenes are more challenging
 The match could not be

achieved if the light source in
the top of the box was visible

 The display could not
reproduce the right level of
brightness

3

Dynamic range

max L
min L

(for SNR>3)

Luminance

Dynamic range (contrast)
 As ratio:

 Usually written as C:1, for example 1000:1.

 As “orders of magnitude”
or log10 units:

 As stops:

C
Lmax

Lmin

C10 log10
Lmax

Lmin

C2 log2
Lmax

Lmin

One stop is doubling
of halving the amount of light

5

High dynamic range (HDR)

Luminance [cd/m2]

10-6 10-4 10-2 100 102 104 106 108 Dynamic
Range

1000:1

1500:1

30:1

6

Tone-mapping problem

luminance range [cd/m2]

conventional display

simultaneouslyhuman vision
adapted

Tone mapping

7

Why do we need tone mapping?
 To reduce dynamic range
 To customize the look

 colour grading

 To simulate human vision
 for example night vision

 To adapt displayed images to a display and viewing
conditions

 To make rendered images look more realistic
 To map from scene- to display-referred colours

 Different tone mapping operators achieve different goals
8

From scene- to display-referred colours
 The primary purpose of tone mapping is to transform an

image from scene-referred to display-referred colours

9

Tone-mapping in rendering
 Any physically-based

rendering requires tone-
mapping

 “HDR rendering” in games is
pseudo-physically-based
rendering

 Goal: to simulate a camera or
the eye

 Greatly enhances realism

10

LDR illumination
No tone-mapping

HDR illumination
Tone-mapping

Half-Life 2: Lost coast

Rendering
engine

Simulate or

Linear
RGB Display

encoding
Tone

mapping

Linear
RGB

SDR: Gamma-encoded
HDR: PQ-encoded

Basic tone-mapping and display coding
 The simplest form of tone-mapping is the

exposure/brightness adjustment:=
 R for red, the same for green and blue
 No contrast compression, only for a moderate dynamic range

 The simplest form of display coding is the “gamma”= ()
 For SDR displays only

Prime (‘) denotes a
gamma-corrected value Typically =2.2

11

Display-referred red value

Scene-referred

Scene-referred
luminance of white

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

High dynamic range and tone mapping
Part 2/2 – tone mapping techniques

Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Colour transfer
 Base-detail separation
 Glare

13

Arithmetic of HDR images
 How do the basic arithmetic operations

 Addition
 Multiplication
 Power function

affect the appearance of an HDR image?
 We work in the luminance space (NOT luma)
 The same operations can be applied to linear RGB

 Or only to luminance and the colour can be transferred

14

Multiplication – brightness change

 Multiplication makes the
image brighter or darker

 It does not change the
dynamic range!

Resulting
luminance

Input
luminance

Brightness change
parameter

15

Power function – contrast change
 Power function stretches or

shrinks the dynamic range
of an image

 It is usually performed
relative to a reference white
colour (and luminance)

 Side effect: brightness of the
dark image part will change

 Slope on a log-log plot
explains contrast change

Contrast change
(gamma)

Luminance of
white

16

Addition – black level
 Addition elevates black

level, adds „fog” to an
image

 It affects mostly darker
tones

 It reduces image dynamic
range

 Subtraction can
compensate for ambient
light (shown next)

17

Black level
(flare, fog)

Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Colour transfer
 Base-detail separation
 Glare

18

Display-adaptive tone mapping
 Tone-mapping can account for the physical model of a

display
 How a display transforms pixel values into emitted light
 Useful for ambient light compensation

19
Has a similar role as display encoding, but

can account for viewing conditions

(Forward) Display model
 GOG: Gain-Gamma-Offset

Luminance Gamma

Gain OffsetPixel value
0-1

Peak
luminance

Display
black level

Screen
reflections

Ambient illumination
(in lux)

Reflectance
factor (0.01)

20

Inverse display model
Symbols are the same as for the forward display model

Note: This display model does not address any colour
issues. The same equation is applied to red, green and blue
color channels. The assumption is that the display
primaries are the same as for the sRGB color space.

21

Display adaptive TMONon-adaptive TMO

10 300 10 000
lux

Ambient illumination compensation

22

Display adaptive TMONon-adaptive TMO

10 300 10 000
lux

Ambient illumination compensation

23

Example: Ambient light compensation
 We are looking at the screen in bright light

 We assume that the dynamic of the input is 2.6 (≈400:1)

 First, we need to compress contrast to fit the available
dynamic range, then compensate for ambient light

24

= 100 [] = 0.005 Modern screens have
reflectivity of around 0.5%= 0.1 []= 2000 [] = 0.005 2000 = 3.183 []

= 2.6 = log + = 1.77

= − The resulting value is in luminance,
must be mapped to display luma /

gamma corrected values
(display encoded)

Simplest, but not the
best tone mapping

Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Colour transfer
 Base-detail separation
 Glare

25

Tone-curve

Image histogram

Best tone-
mapping is the

one which does
not do anything,
i.e. slope of the
tone-mapping
curves is equal

to 1.

26

Tone-curve

But in practice
contrast (slope)
must be limited
due to display

limitations.

27

Tone-curve

Global tone-
mapping is a
compromise

between clipping
and contrast
compression.

28

Sigmoidal tone-curves
 Very common in

digital cameras
 Mimic the response

of analog film
 Analog film has been

engineered over many
years to produce
good tone-reproduction

 Fast to compute

29

Sigmoidal tone mapping
 Simple formula for a sigmoidal tone-curve:′(,) = (,)+ (,)
where is the geometric mean (or mean of logarithms):= 1 ln (,)(,)
and , is the luminance of the pixel , .

30

Sigmoidal tone mapping example

a=0.25

a=1

a=4

b=0.5 b=1 b=2
31

Histogram equalization
 1. Compute normalized cummulative image histogram

 For HDR, operate in the log domain

 2. Use the cummulative histogram as a tone-mapping function

 For HDR, map the log-10 values
to the [-drout ; 0] range
 where drout is the target dynamic

range (of a display)

)(inout YcY

32

Histogram equalization
 Steepest slope for strongly

represented bins
 If many pixels have the same

value - enhance contrast
 Reduce contrast, if few pixels

 Histogram Equalization
distributes contrast
distortions relative to the
“importance” of a
brightness level

33

 [Pizer et al. Adaptive histogram equalization and its variations. ComputVision, Graph Image Process 1987],
[Larson et al. 1997, IEEE TVCG]

Linear mapping Histogram equalization

34

CLAHE: Contrast-Limited Adaptive
Histogram Equalization

CLAHE

 Truncate the bins that exceed the ceiling;
 Distribute the removed counts to all bins;
 Repeat until converges

Ceiling, based on
the maxiumum
permissibble

contrast

35

CLAHE: Contrast-Limited Adaptive
Histogram Equalization

 Truncate the bins that exceed the ceiling;
 Distribute the removed counts to all bins;
 Repeat until converges

Ceiling, based on
the maxiumum
permissibble

contrast

36

CLAHE: Contrast-Limited Adaptive
Histogram Equalization

 Truncate the bins that exceed the ceiling;
 Distribute the removed counts to all bins;
 Repeat until converges

Ceiling, based on
the maxiumum
permissibble

contrast

37

CLAHE: Contrast-Limited Adaptive
Histogram Equalization

Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Colour transfer
 Base-detail separation
 Glare

38

Colour transfer in tone-mapping
 Many tone-mapping operators work on luminance, mean or

maximum colour channel value
 For speed
 To avoid colour artefacts

 Colours must be transferred later form the original image
 Colour transfer in the linear RGB colour space:

 The same formula applies to green (G) and blue (B) linear
colour values

39

out

s

in

in
out L

L
RR

Output color
channel (red)

Saturation
parameter

Resulting
luminance

Colour transfer: out-of-gamut problem

40

Original image Contrast reduced (s=1)

Saturation reduced (s=0.6)Red channel

Lu
m

in
an

ce

Sa
m

pl
e

of
 p

ix
el

s

Colours before/after processing

 Colours often
fall outside the
colour gamut
when contrast
is compressed

 Reduction in
saturation is
needed to
bring the
colors into
gamut

Gamut boundary

Colour transfer: alternative method
 Colour transfer in linear RGB will alter resulting

luminance
 Colours can be also transferred, and saturation adjusted

using CIE u’v’ chromatic coordinates

 To correct saturation:

41

HDR
Linear RGB RGB -> Yu’v’ Yu’v’-> RGB Tone-mapped

Linear RGBTone mapping
Y

u’v’
Desaturate

Luminance

Colour

= − += − + = 0.1978= 0.4683
Chroma of the white

Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Colour transfer
 Base-detail separation
 Glare

42

Illumination &
reflectance separation

Input

Illumination

Reflectance
43

Y I R
Image

Illumination Reflectance

Illumination and reflectance

Reflectance Illumination

 White ≈ 90%
 Black ≈ 3%

 Dynamic range < 100:1

 Reflectance critical for
object & shape detection

 Sun ≈ 109 cd/m2

 Lowest perceivable
luminance ≈ 10-6 cd/m2

 Dynamic range 10,000:1 or
more

 Visual system partially
discounts illumination

44

Reflectance & Illumination TMO
 Hypothesis: Distortions in reflectance are more apparent

than the distortions in illumination
 Tone mapping could preserve reflectance but compress

illumination

 for example:

Tone-mapped image

Reflectance

Illumination

Tone-mapping

white
c

whited LLIRL)/(
45

= ()

How to separate the two?
 (Incoming) illumination – slowly changing

 except very abrupt transitions on shadow boundaries

 Reflectance – low contrast and high frequency variations

46

Gaussian filter
 First order approximation

 Blurs sharp boundaries
 Causes halos

Tone mapping
result

47

Bilateral filter
 Better preserves sharp edges

 Still some blurring on the
edges

 Reflectance is not perfectly
separated from illumination
near edges

Tone mapping result

[Durand & Dorsey, SIGGRAPH 2002]48

Weighted-least-squares (WLS) filter
 Stronger smoothing and still distinct edges

 Can produce stronger effects
with fewer artifacts

 See „Advanced image processing”
lecture

Tone mapping result

49

[Farbman et al., SIGGRAPH 2008]

Retinex
 Retinex algorithm was initially intended to separate

reflectance from illumination [Land 1964]
 There are many variations of Retinex, but the general principle

is to eliminate from an image small gradients, which are
attributed to the illumination

1 step: compute
gradients in log domain

2nd step: set to 0
gradients less than the
threshold

t

G in

G out

3rd step: reconstruct an
image from the vector
field

For example by solving the
Poisson equation

50

Retinex examples

51

From: http://dragon.larc.nasa.gov/retinex/757/

Original After Retinex

From:http://www.ipol.im/pub/algo/lmps_retinex_poisson_equation/#ref_1

Gradient domain HDR compression

 Similarly to Retinex, it operates on log-gradients
 But the function amplifies small contrast instead of removing it

52

[Fattal et al.,
SIGGRAPH 2002]

R
et

in
ex

G
ra

di
en

t d
om

ai
n Contrast

compression
achieved by global
contrast reduction
 Enhance

reflectance, then
compress
everything

Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Colour transfer
 Base-detail separation
 Glare

53

Glare

“Alan Wake” © Remedy Entertainment

54

Glare Illusion

55

PaintingPhotography

Computer Graphics
HDR rendering in games

Scattering of the light in the eye

From: Sekuler, R., and Blake, R. Perception, second ed. McGraw- Hill, New York, 1990

56

Ciliary corona and lenticular halo

*

=

=+ From: Spencer, G. et al.
1995. Proc. of
SIGGRAPH. (1995)

57

Examples of simulated glare

[From Ritschel et al, Eurographics 2009]
58

Temporal glare

59 [From Ritschel et al, Eurographics 2009]

Point Spread Function of the eye
 What portion of

the light is
scattered
towards a certain
visual angle

 To simulate:
 construct a

digital filter
 convolve the

image with that
filter

Green – daytime (photopic)
Red – night time (scotopic)

From: Spencer, G. et al. 1995.
Proc. of SIGGRAPH. (1995) 60

Selective application of glare
 A) Glare applied to the

entire image= ∗
 Reduces image

contrast and sharpness

B) Glare applied only to
the clipped pixels= + ∗ −
where = > 10 ℎ
Better image quality

Glare kernel
(PSF)

61

Selective application of glare

Original image

A) Glare applied to
the entire image

B) Glare applied to
clipped pixels only

62

Glare (or bloom) in games
 Convolution with large, non-separable filters is too slow
 The effect is approximated by a combination of Gaussian

filters
 Each filter with different “sigma”

 The effect is meant to look good, not be be accurate
model of light scattering

 Some games simulate
camera rather than the eye

63

Does the exact shape of the PSF
matter?
 The illusion of increased

brightness works even if
the PSF is very different
from the PSF of the eye

red - Gaussian green - accurate

[Yoshida et al., APGV 2008]

64

HDR rendering – motion blur

65
From LDR pixels From HDR pixels

References
 Comprehensive book on HDR Imaging

 E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High
Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, 2nd editio. Morgan
Kaufmann, 2010.

 Overview of HDR imaging & tone-mapping
 http://www.cl.cam.ac.uk/~rkm38/hdri_book.html

 Review of recent video tone-mapping
 A comparative review of tone-mapping algorithms for high dynamic range video

Gabriel Eilertsen, Rafal K. Mantiuk, Jonas Unger, Eurographics State-of-The-Art Report 2017.

 Selected papers on tone-mapping:
 G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range

scenes,” IEEE Trans. Vis. Comput. Graph., vol. 3, no. 4, pp. 291–306, 1997.

 R. Wanat and R. K. Mantiuk, “Simulating and compensating changes in appearance between day and night vision,” ACM
Trans. Graph. (Proc. SIGGRAPH), vol. 33, no. 4, p. 147, 2014.

 Spencer, G. et al. 1995. Physically-Based Glare Effects for Digital Images. Proceedings of SIGGRAPH. (1995), 325–334

 Ritschel, T. et al. 2009. Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. Computer
Graphics Forum. 28, 2 (Apr. 2009), 183–192

 ...

66

Rafał Mantiuk
Dept. of Computer Science and Technology, University of Cambridge

Virtual and Augmented Reality
Part 1/2 – virtual reality

The slides used in this lecture are the courtesy of Gordon Wetzstein.
From Virtual Reality course: http://stanford.edu/class/ee267/

Advanced Graphics & Image Processing

vpl research

remote control of vehicles, e.g. drones

architecture walkthroughs

virtual traveleducation a trip down the rabbit hole

3

Vision treatment in VR

 Treatment of amblyopia
 Training the brain to use the

“lazy” eye

Images courtesy of

• sensors & imaging

• computer vision

• scene understanding

• photonics / waveguides

• human perception

• displays: visual, auditory, vestibular,
haptic, …• VR cameras

• cloud computing

• shared experiences

• HCI

• applications

• compression,
streaming

• CPU, GPU

• IPU, DPU?

im
ag

es
 b

y
m

ic
ro

so
ft,

 fa
ce

bo
ok

Exciting Engineering Aspects of VR/AR

5

image by ray ban

Where We Want It To Be

6

Personal Computer
e.g. Commodore PET 1983

Laptop
e.g. Apple MacBook

Smartphone
e.g. Google Pixel

AR/VR
e.g. Microsoft Hololens

???

7

1838 1968 2012-2018

Stereoscopes
Wheatstone, Brewster, …

VR & AR
Ivan Sutherland

VR explosion
Oculus, Sony, HTC, MS, …

Nintendo
Virtual Boy

1995

???

A Brief History of Virtual Reality

8

• optical see-through AR, including:

• displays (2x 1” CRTs)

• rendering

• head tracking

• interaction

• model generation

• computer graphics

• human-computer interaction

I. Sutherland “A head-mounted three-dimensional display”, Fall Joint Computer Conference 1968

Ivan Sutherland’s HMD

9

• computer graphics & GPUs were not ready yet!

Game: Red Alarm

Nintendo Virtual Boy

10

IFIXIT teardown

Where we are now

11

Virtual Image

1
d

1
d '

1
f

d

d’
f

Problems:

• fixed focal plane

• no focus cues

• cannot drive
accommodation
with rendering!

• limited resolution

12

A dual-resolution display

 High resolution image in the
centre, low resolution fills
wide field-of-view

 Two displays combined using a
beam-splitter

 Image from: https://varjo.com/bionic-display/

13

Rafał Mantiuk
Dept. of Computer Science and Technology, University of Cambridge

Virtual and Augmented Reality
Part 1/2 – augmented reality

The slides used in this lecture are the courtesy of Gordon Wetzstein.
From Virtual Reality course: http://stanford.edu/class/ee267/

Advanced Graphics & Image Processing

Pepper’s Ghost 1862

15

Optical see-through AR / head-up displays

16

Magic Leap 2 Microsoft Hololens 2 Lumus Maximums

Meta 2
(not the current Meta/Facebook)

Intel Vaunt Google Glass

(Some) challenges of
optical see-through AR
 Transparency, lack of opacity

 Display light is mixed with environment light

 Resolution and field-of-view
 Eye-box

 The volume in which the pupil needs to see the image

 Brightness and contrast
 Blocked vision – forward and periphery (safety)
 Power efficiency
 Size, weight and weight distribution

 50 grams are comfortable for long periods

 Social issues, price, vision correction, individual variability…

17

More resources: https://kguttag.com/

Video pass-through AR: ARCore, ARKit,
ARToolKit, …

18

Video pass-through AR
Pros:

 Better virtual image quality

 Occlusions are easy

 Simpler, less expensive optics

 Virtual image not affected by
ambient light

 AR/VR in one device

Cons:

 Vergence-accommodation conflict
(see next lecture)

 Lower brightness, dynamic range
and resolution than real-world

 Motion to photon delay

 Real-world images must be
warped for the eye position
(artifacts)

 Peripheral vision is occluded
 Or display if affected by ambient light

19

Meta Project Cambria (Quest Pro)

VR/AR challenges
 Latency (next lecture)
 Tracking
 3D Image quality and resolution
 Reproduction of depth cues (last lecture)
 Rendering & bandwidth
 Simulation/cyber sickness
 Content creation

 Game engines
 Image-Based-Rendering

20

Simulation sickness
 Conflict between vestibular

and visual systems
 When camera motion

inconsistent with head motion
 Frame of reference (e.g.

cockpit) helps
 Worse with larger FOV
 Worse with high luminance

and flicker

21

References
 LaValle "Virtual Reality", Cambridge University Press,

2016
 http://vr.cs.uiuc.edu/

 Virtual Reality course from the Stanford Computational
Imaging group
 http://stanford.edu/class/ee267/

 KGOnTech blog
 https://kguttag.com/

22

Rafał Mantiuk

Advanced Graphics and Image Processing

Computer Laboratory, University of Cambridge

Display Technologies

Overview
 Temporal aspects

 Latency in VR
 Eye-movement
 Hold-type blur

 2D displays
 2D spatial light modulators
 High dynamic range displays

2

Latency in VR
 Sources of latency in VR

 IMU ~1 ms
 Inertial Measurement Unit

 sensor fusion, data transfer
 rendering: depends on complexity of

scene & GPU – a few ms
 data transfer again
 Display

 60 Hz = 16.6 ms;
 70 Hz = 11.1 ms;
 120 Hz = 8.3 ms.

 Target latency
 Maximum acceptable: 20ms
 Much smaller (5ms) desired

for interactive applications

 Example
 16 ms (display) + 16 ms

(rendering) + 4 ms
(orientation tracking) = 36
ms latency total

 At 60 deg/s head motion,
1Kx1K, 100deg fov display:
 19 pixels error
 Too much

3

Post-rendering image warp (time warp)
 To minimize end-to-end latency
 The method:

 get current camera pose
 render into a larger raster than the

screen buffer
 get new camera pose
 warp rendered image using the latest

pose, send to the display
 2D image translation
 2D image warp
 3D image warp

 Original paper from Mark et al.
1997, also Darsa et al. 1997
 Meta: Asynchronous Time Warp

4

Eye movement - basics

5

Fixation

Drift: 0.15-0.8 deg/s

Eye movement - basics

6

Saccade

160-300 deg/s

Eye movement - basics

7

Smooth Pursuit Eye Motion (SPEM)

Up to 80 deg/s
The tracking is imperfect
- especially at higher velocities
- and for unpredictable motion

Retinal velocity
 The eye tracks moving

objects
 Smooth Pursuit Eye Motion

(SPEM) stabilizes images on the
retina

 But SPEM is imperfect

 Loss of sensitivity mostly
caused by imperfect SPEM
 SPEM worse at high velocities

8

Spatio-velocity contrast sensitivity

Kelly’s model [1979]

R
et

in
al

 v
el

oc
ity

du
e

to
 im

pe
rfe

ct
 S

PE
M

Motion sharpening
 The visual system “sharpens” objects moving at speeds of 6

deg/s or more

 Potentially a reason why VR appears sharper than it actually is

9

Hold-type blur
 The eye smoothly follows a moving object
 But the image on the display is “frozen” for 1/60th of a second

10

R
ea

l-w
or

ld
Pe

rfe
ct

 m
ot

io
n

Physical image + eye motion + temporal integration

Hold-type blur
 The eye smoothly follows a moving object
 But the image on the display is “frozen” for 1/60th of a second

11

60
 H

z
di

sp
la

y

Physical image + eye motion + temporal integration

Original scene With hold-type blur

Hold-type blur
 The eye smoothly follows a moving object
 But the image on the display is “frozen” for 1/60th of a second

13

Bl
ac

k
fra

m
e

in
se

rti
on

Physical image + eye motion + temporal integration

Low persistence displays
 Most VR displays flash an

image for a fraction of
frame duration

 This reduces hold-type
blur

 And also reduces the
perceived lag of the
rendering

14

H
TC

 V
iv

e

M
at

e
9

Pr
o

+
D

ay
D

re
am

Black frame insertion
 Which invader appears sharper?

 A similar idea to low-persistence displays in VR
 Reduces hold-type blur

15

Flicker
 Critical Flicker Frequency

 The lowest frequency at which
flickering stimulus appears as a
steady field

 Measured for full-on / off
presentation

 Strongly depends on luminance
– big issue for HDR VR headsets

 Increases with eccentricity
 and stimulus size
 It is possible to detect flicker

even at 2kHz
 For saccadic eye motion

16

[Hartmann et al. 1979]

Overview
 Temporal aspects

 Latency in VR
 Eye-movement
 Hold-type blur

 2D displays
 2D spatial light modulators
 High dynamic range displays

17

Cathode Ray Tube

[from wikipedia]
18

Spectral Composition
 three different phosphors

 saturated and natural colors
 inexpensive
 high contrast and brightness

[from wikipedia]

19

Liquid Chrystal Displays (LCD)

From: http://computer.howstuffworks.com/monitor5.htm20

Twisted neumatic LC cell

Figure from: High Dynamic Range Imaging by E. Reinhard et al.

Polarization
filter

Liquid
crystal
(LC)

21

In-plane switching cell (IPS)

Figure from: High Dynamic Range Imaging by E. Reinhard et al.

22

LCD

 color may change with the viewing angle
 contrast up to 3000:1
 higher resolution results in smaller fill-factor
 color LCD transmits only up to 8% (more often close to 4-

5%) light when set to full white

TN LCD

23

LCD temporal response
 Experiment on an IPS LCD screen

 We rapidly switched between two
intensity levels at 120Hz

 Measured luminance integrated
over 1s

 The top plot shows the difference
between expected () and
measured luminance

 The bottom plot: intensity
measurement for the full
brightness and half-brightness
display settings

24

Digital Micromirror Devices
(DMDs/DLP)

 2-D array of mirrors

 Truly digital pixels

 Grey levels via Pulse-Width Modulation
25

Liquid Crystal on Silicon (LCoS)
 basically a reflective LCD

 standard component in
projectors and head mounted
displays

 used e.g. in Google Glass

26

Scanning Laser Projector
 maximum contrast
 scanning rays

 very high power
lasers needed for
high brightness

http://elm-chan.org/works/vlp/report_e.html

27

3-chip vs. Color Wheel Display

 color wheel
 cheap
 time sequenced colors
 color fringes with motion/video

 3-chip
 complicated setup
 no color fringes

28

OLED
 based on

electrophosphorescence
 large viewing angle
 the power consumption varies

with the brightness of the
image

 fast (< 1 microsec)
 arbitrary sizes

 life-span can be short
 Worst for blue OLEDs

29

Active matrix OLED
 Commonly used in mobile

phones (AMOLED)
 Very good contrast

 But the screen more
affected by glare than LCD

 But limited brightness
 The brighter is OLED, the

shorter is its live-span

30

Temporal characteristic

From: http://en.wikipedia.org/wiki/Comparison_of_display_technology31

Google Glass

Bird-bath optics for near-eye displays

32

More reading: https://kguttag.com/2017/03/03/near-eye-bird-bath-
optics-pros-and-cons-and-immys-different-approach/

Pros:
• Simple, efficient design
Cons:
• Cannot be scaled up

easily

Diffractive waveguides

33

Microsoft Hololens

US 2016/0116739

Magic Leap

Electronic Paper

34

Prototype HDR display (2004)

35

From [Seetzen et al. SIGGRAPH 2004]

Cambridge experimental HDR display
 35,000 cd/m2 peak luminance

 0.01 cd/m2 black level

 LCD resolution: 2048x1536

 Backlight (DLP) resolution:
1024x768

 Geometric-calibration with a
DSLR camera

 Display uniformity compensation

 Bit-depth of DLP and LCD
extended to 10 bits using spatio-
temporal dithering

36

High resolution
Colour Image

High Dynamic
Range Display

Modern HDR displays

• Modulated LED array
• Conventional LCD
• Image compensation Low resolution

LED Array x =

37

HDR Display
 Two spatial modulators

 1st modulator contrast 1000:1
 2nd modulator contrast 1000:1
 Combined contrast 1000,000:1

 Idea: Replace constant backlight of LCD panels with an array of
LEDs
 Very few (about 1000) LEDs sufficient
 Every LED intensity can be set individually
 Very flat form factor (fits in standard LCD housing)

 Issue:
 LEDs larger than LCD pixels
 This limits maximum local contrast

38

Receive Image

Drive LED

Divide Image by
LED light field to
obtain LCD values

Output Luminance
is the product of
LED light field and
LCD transmission
(modest error)

Veiling Luminance

39

Receive Image

Drive LED

Divide Image by
LED light field to
obtain LCD values

Output Luminance
is the product of
LED light field and
LCD transmission
(Problematic error)

Oops

Veiling Luminance

40

Veiling Luminance
 Maximum perceivable contrast

 Globally very high (5-6 orders of magnitude)
 That is why we create these displays!

 Locally can be low: 150:1

 Point-spread function of
human eye
 Refer to „HDR and

tone mapping” lecture
 Consequence: high

contrast edges
cannot be perceived
at full contrast

41

Veiling Glare (Camera)

42

Veiling Luminance
masks imperfection

Veiling Luminance

43

HDR rendering algorithm - high level

Desired
image

LCD imageDLP image

DLP blur
(PSF)

Subject to:

44

argmin, , − ∗ , ,

Simplified HDR rendering algorithm

45

Rendering Algorithm

46

References
 HAINICH, R.R. AND BIMBER, O. 2011. Displays: Fundamentals and

Applications. CRC Press.
 SEETZEN, H., HEIDRICH, W., STUERZLINGER, W., ET AL. 2004. High

dynamic range display systems. ACM Transactions on Graphics 23,
3, 760.

 Visual motion test for high-frame-rate monitors:
 https://www.testufo.com/

47

Rafał Mantiuk
Dept. of Computer Science and Technology, University of Cambridge

Stereo Rendering

Part 1/3 – depth perception

Advanced Graphics & Image Processing

Depth perception

Stereoscopic depth cues:
binocular disparity

We see depth due to depth cues.

The slides in this section are the courtesy of
Piotr Didyk (http://people.mpi-inf.mpg.de/~pdidyk/)

Depth perception

Ocular depth cues:
accommodation, vergence

We see depth due to depth cues.

Vergence

Stereoscopic depth cues:
binocular disparity

Depth perception

Pictorial depth cues:
occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity

Cues sensitivity

0.001

0.01

0.1

1.0

1.0 10 100 1000 10000

D
ep

th
 c

on
tr

as
t

Depth [meters]

Personal
space

Action
space Vista space

Occlusion

Relative size

Relative density

“Perceiving layout and knowing distances: The integration, relative potency,
and contextual use of different information about depth”

by Cutting and Vishton [1995]

Depth perception

Challenge:
Consistency is

required!
Pictorial depth cues:

occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity

Simple conflict example

• Size
• Shadows
• Perspective

• Occlusion

Present cues:

Disparity & occlusion conflict

Objects in front

Disparity & occlusion conflict

Disparity & occlusion
conflict

Depth perception

Pictorial depth cues:
occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity

Reproducible on a flat displays

Require 3D space
We cheat our Visual System!

Cheating our HVS

Comfort zone

Screen

Object in left eye

Object in right eye

Object perceived in 3D

Pixel disparityVergence

Depth
Vi

ew
in

g
di

sc
om

fo
rt

Accommodation
(focal plane)

Single Image Random Dot Stereograms

 Fight the vergence vs. accommodation conflict to see the
hidden image

12

Viewing discomfort

Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

2 – 20 m0.3 – 0.5 m

Simple scene

70 cm

Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

0.5 – 2 m0.2 – 0.3 m

Simple scene, user allowed to look away
from screen

70 cm

Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

8 – 15 cm10 – 30 cm

Difficult scene

70 cm

Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

6 – 15 cm11 cm

Difficult scene, user allowed to look away from screen

70 cm

Comfort zones

Comfort zone size
depends on:

• Presented content
• Viewing condition
• Screen distance

“The zone of comfort: Predicting visual discomfort with stereo displays” by Shibata et al. 2011

Other factors:
• Distance between eyes
• Depth of field
• Temporal coherence

Reproduced depth

Depth manipulation

Comfort zone

Viewing discomfort Viewing comfortScene manipulation

Rafał Mantiuk
Dept. of Computer Science and Technology, University of Cambridge

Stereo Rendering

Part 2/3 – 3D display technologies

Advanced Graphics & Image Processing

Stereoscopic displays
 Stereoscopic (with glasses)

 Anaglyps (red & cyan glasses)
 Shutter glasses: most TV sets
 Circular polarization: RealD 3D cinema, 3D displays from LG
 Interference filters: Dolby 3D cinema

 How do they work?
 Which method suffers from:

 reduced brightness;
 distorted colours;
 cross-talk between the eyes;
 cost (to manufacture)?

Stereoscopic displays
 Auto-stereoscopic (without glasses)

 Parallax barrier
 Example: Nintendo 3DS, some laptops

and mobile phones
 Switchable 2D/3D

 Lenticular lens
 Better efficiency
 Non-switchable

Light field Displays
 integral photography, e. g. [Okano98]
 micro lens-array in front of screen
 screen at focal distance of micro lenses

 Parallel rays for each pixel
 Each eye sees a different pixel

Light field Displays

integral photograph close-up one particular view

 need high resolution images
 taken with micro lens array
 screen is auto-stereoscopic

 no glasses, multiple users

Rafał Mantiuk
Dept. of Computer Science and Technology, University of Cambridge

Stereo Rendering

Part 3/3 – stereo rendering

Advanced Graphics & Image Processing

2. Polarization

3. Shutter Glasses

4. Chromatic Filters (Dolby)

Put on Your 3D Glasses Now!

The slides used in this section are the courtesy of Gordon Wetzstein.
From Virtual Reality course: http://stanford.edu/class/ee267/

Glasses-based Stereo
pi

nt
re

st
.c

om

Anaglyph Stereo - Monochrome

• render L & R images, convert to grayscale

• merge into red-cyan anaglyph by assigning I(r)=L, I(g,b)=R (I is anaglyph)

from movie “Bick Buck Bunny”

Anaglyph Stereo – Full Color

• render L & R images, do not convert to grayscale

• merge into red-cyan anaglyph by assigning I(r)=L(r), I(g,b)=R(g,b) (I is anaglyph)

from movie “Bick Buck Bunny”

http://bbb3d.renderfarming.net/download.html

Open Source Movie: Big Buck Bunny

Rendered with Blender (Open Source 3D Modeling Program)

Glasses-based Stereo

case 1 case 2 case 3

http://paulbourke.net/stereographics/stereorender/

Parallax
 Parallax is the relative distance of a 3D point projected

into the 2 stereo images

Toe-in = incorrect! Off-axis = correct!

Parallax
 visual system only uses horizontal parallax, no vertical

parallax!
 naïve toe-in method creates vertical parallax and visual

discomfort

http://paulbourke.net/stereographics/stereorender/

Parallax – well done

Parallax – well done

1862
“Tending wounded Union soldiers at
Savage's Station, Virginia, during the

Peninsular Campaign”,
Library of Congress Prints and

Photographs Division

Parallax – not well done (vertical parallax = unnatural)

References
 LaValle "Virtual Reality", Cambridge University Press,

2016
 Chapter 6
 http://vr.cs.uiuc.edu/

 Stereoscopic displays:
 Hainich, Rolf R., and Oliver Bimber. Displays: Fundamentals and

Applications. 2nd ed. CRC Press, 2016.

Rafał Mantiuk, Univ. of Cambridge39

Advanced Graphics and Image Processing -

Lecture notes

Rafa l Mantiuk

Lent term 2018/19

1 Contrast- and gradient-based methods

Many problems in image processing are easier to solve or produce better
results if operations are not peformed directly on image pixel values but on
differences between pixels. Instead of altering pixels, we can transform an
image into gradient field and then edit the values in the gradient field. Once
we are done with editing, we need to reconstruct an image from the modified
gradient field.

A few examples of gradient-based methods are shown in Figures 1 and 2.
In one common case such differences between pixels represent gradients:

for image I, a gradient at a pixel location (x, y) is computed as:

∇Ix,y =

[

Ix+1,y − Ix,y
Ix,y+1 − Ix,y

]

. (1)

The equation above is obviously a discrete approximation of a gradient, as
we are dealing with discrete pixel values rather than a continous function.
This particular approximation is called forward difference, as we take the dif-
ference between the next and current pixel. Other choices include backward
differences (current minus previous pixel) or central differences (next minus
previous pixel).

Once a gradient field is computed, we can start modifying it. Usually
better effects are achieved if the magnitude of gradients is modified and the
orientation of each gradient remains unchanged. This can be achieved by

1

(a) Original image

(b) Details enhanced (c) Cartoonized image

Figure 1: Two examples of gradient-based processing. Texture details in the
original image were enhanced to produce the result shown in (b). Contrast
was removed everywhere except at the edges to produced a cartoonized image
in (c).

multiplying gradients by the gradient editing function f():

Gx,y = ∇Ix,y ·
f (||∇Ix,y||)

||∇Ix,y||
(2)

where || · || operator computes the magnitude (norm) of the gradient.
We try to reconstruct pixel values, which would result in a gradient field

that is the closest to our modifed gradient field G = [G(x) G(y)]′. In par-
ticular, we can try to minimize the squared differences between gradients in
actual image and modified gradients:

arg min
I

∑

x,y

[

(

Ix+1,y − Ix,y −G(x)
x,y

)2
+
(

Ix,y+1 − Ix,y −G(y)
x,y

)2
]

, (3)

2

(a) Naive image copy & paste (b) Gradient-domain copy & paste

Figure 2: Comparison of naive and gradient domain image copy & paste.

x,y x+1,yx-1,y

x,y-1

x,y+1

Figure 3: When using forward-differences, a pixel with the coordinates (x, y)
is referred to in at moost four partial derivates, two along x-axis and two
along y-axis.

where the summation is over the entire image. To minimize the function
above, we need to equate its partial derivatives to 0. As we optimze for pixel
values, we need to compute partial derivates with respect to Ix,y. Fortunately,
most terms in the sum will become 0 after differentiation, as they do not
contain the differentiated variable Ix,y. For a given pixel (x, y), we need
to consider only 4 partial derivates: two belonging to the pixel (x, y), x-
derivative for the pixel on the left (x− 1, y) and y-derivative for the pixel in
the top (x, y − 1), as shown in Figure 3. This gives us:

δF

δIx,y
= − 2(Ix+1,y − Ix,y −G(x)

x,y) − 2(Ix,y+1 − Ix,y −G(y)
x,y)+ (4)

2(Ix,y − Ix−1,y −G
(x)
x−1,y) + 2(Ix,y − Ix,y−1 −G

(y)
x,y−1) . (5)

3

After rearanging the terms and equating δF
δIx,y

to 0, we get:

Ix−1,y + Ix+1,y + Ix,y−1 + Ix,y+1 − 4Ix,y = G(x)
x,y −G

(x)
x−1,y + G(y)

x,y −G
(y)
x,y−1 . (6)

In these few steps we derived a discrete Poisson equation, which can be found
in many engineering problems. The Poisson equation is often written as:

∇2I = divG , (7)

where ∇2I is the discrete Laplace operator:

∇2Ix,y = Ix−1,y + Ix+1,y + Ix,y−1 + Ix,y+1 − 4Ix,y , (8)

and divG is the divergence of the vector field:

divGx,y = G(x)
x,y −G

(x)
x−1,y + G(y)

x,y −G
(y)
x,y−1 . (9)

We can also write the equation using discrete convolution operators:

I ∗

0 1 0
1 −4 1
0 1 0

 = G(x) ∗
[

−1 1 0
]

+ G(y) ∗

−1
1
0

 . (10)

Note that the covolution flips the order of elements in the kernel, thus the
row and column vectors on the right hand side are also flipped.

When equation 6 is satisfied for every pixel, it forms a system of linear
equations:

A ·

I1,1
I2,1
...

IN,M

= b (11)

Here we represent an image as a very large column vector, in which image
pixels are stacked column-after-column (in an equivalent manner they can be
stacked row-after-row). Every row of matrix A contains the Laplace operator
for a corresponding pixel. But the matrix also needs to account for the
boundary conditions, that is handle pixels that are at the image edge and
therefore do not contain neighbour on one of the sides. Matrix A for a tiny

4

3x3 image looks like this:

A =

−2 1 0 1 0 0 0 0 0
1 −3 1 0 1 0 0 0 0
0 1 −2 0 0 1 0 0 0
1 0 0 −3 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −3 0 0 1
0 0 0 1 0 0 −2 1 0
0 0 0 0 1 0 1 −3 1
0 0 0 0 0 1 0 1 −2

(12)

Obviously, the matrix is enormous for normal size images. However, most
matrix elements are 0, so it can be easily stored using a sparse matrix rep-
resentation. Note that only the pixel in the center of the image (5th row)
contains the full Laplace operator; all other pixels are missing neighbours so
the operator is adjusted accordingly. Accounting for all boundary cases is
probably the most difficult and error-prone part in formulating gradient-field
reconstruction problem. The column vector b corresponds to the right hand
side of equation 6.

2 Solving linear system

There is a large number of methods and software libraries, which can solve
a sparse linear problem given in Equation 11. The Poisson equation is typi-
cally solved using multi-grid methods, which iteratively update the solution
at different scales. Those, however, are rarther difficult to implement and tai-
lored to one particular shape of a matrix. Alternatively, the solution can be
readily found after transformation to the frequency domain (discrete cosine
transform). However, such a method does not allow introducing weights,
importance of which will be discussed in the next section. Finally, conju-
gate gradient and biconjugate gradient [1, sec. 2.7] methods provide a fast-
converging iterative method for solving sparse systems, which can be very
memory efficient. Those methods require providing only a way to compute
multiplication of the matrix A and its transpose with an arbitrary vector.
Such operation can be realized in an arbitrary way without the need to store
the sparse matrix (which can be very large even if it is sparse). The conjugate
gradient requires fewer operations than the biconjugate gradient method, but

5

(a) Uniform weights (b) Higher weights at low contrast

Figure 4: The solution of gradient field reconstruction often contain ”pinch-
ing” artefacts, such as shown in figure (a). The artefacts can be avoided if
small gradient magnitudes are weighted more than large magnitudes.

it should be used only with positive definite matrices. Matrix A is not posi-
tive definite so in principle the biconjugate gradient method should be used.
However, in practice, conjugate gradient method converges equally well.

3 Weighted reconstruction

An image resulting from solving Equation 11 often contains undesirable
”pinching” artefacts, such as those shown in Figure 4a. Those artefacts are
inherent to the nature of gradient field reconstruction — the solution is just
the best approximation of the desired gradient field but it hardly ever exactly
matches the desired gradient field. As we minimize squared differences, tiny
inaccuracies for many pixels introduce less error than large inaccuracies for
few pixels. This in turn introduces smooth gradients in the areas, where the
desired gradient field is inconsistent (cannot form an image). Such gradients
produce ”pinching” artefacts.

6

The problem is that the error in reconstructed gradients is penalized the
same regardless of whether the value of the gradient is small or large. This
is opposite to how the visual system perceives differences in color values:
we are more likely to spot tiny difference between two similar pixel values
than the same tiny difference between two very different pixel values. We
could account for that effect by introducing some form of non-linear metric,
however, that would make our problem non-linear and non-linear problems
are in general much slower to solve. However, the same can be achieved by
introducing weights to our objective function:

arg min
I

∑

x,y

[

w(x)
x,y

(

Ix+1,y − Ix,y −G(x)
x,y

)2
+ w(y)

x,y

(

Ix,y+1 − Ix,y −G(y)
x,y

)2
]

,

(13)

where w
(x)
x,y and w

(y)
x,y are the weights or importance we assign to each gradi-

ent, for horizontal and vertical partial derivatives respectively. Usually the
weights are kept the same for both orientations, i.e. w

(x)
x,y = w

(y)
x,y. To account

for the contrast perception of the visual system, we need to assign a higher
weight to small gradient magnitudes. For example, we could use the weight:

w(x)
x,y = w(y)

x,y =
1

||Gx,y|| + ǫ
(14)

where ||Gx,y|| is the magnitude of the desired (target) gradient at pixel (x, y)
and ǫ is a small constant (0.0001), which prevents division by 0.

4 Matrix notation

We could follow the same procedure as in the previous section and differ-
entiate Equation 13 to find the linear system that minimizes our objective.
However, the process starts to be tedious and error-prone. As the objective
functions gets more and more complex, it is worth switching to the matrix
notation. Let us consider first our original problem without the weights wx,y,
which we will add later. Equation 3 in the matrix notation can be written
as:

arg min
I

∣

∣

∣

∣

∣

∣

∣

∣

[

∇x

∇y

]

I −

[

G(x)

G(y)

]∣

∣

∣

∣

∣

∣

∣

∣

2

. (15)

In the equation I, G(x) and G(y) are stacked column vectors, representing
columns of the resulting image or desired gradient field. The square brackets

7

denote vertical concatenation of the matrices or vectors. Operator ||·||2 is
the L2-norm, which squares and sums the elements of the resulting column
vector. ∇x and ∇y are differential operators, which are represented as N×N

matrices, where N is the number of pixels. Each row of those sparse matrices
tells us which pixels need to be subtracted from one another to compute
forward gradients along horizontal and vertical directions. For a tiny 3×3
pixel image those operators are:

∇x =

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(16)

∇y =

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0

(17)

Note that the rows contain all zeros for pixels on the boundary, for which no
gradient can be computed: the last column of pixels for ∇x and the last row
of pixels for ∇y.

Equation 15 is in the format ||Ax − b||2, which can be directly solved
by some sparse matrix libraries, such as SciPy.sparse or the ”\” operator
in matlab Matlab. However, to reduce the size of the sparse matrix and to
speed-up computation, it is worth taking one more step and transform the
least-square optimization into a linear problem. For overdetermined systems,
such as ours, the solution of the optimization problem:

arg min
x

||Ax− b||2 (18)

8

can be found by solving a linear system:

A′Ax = A′b . (19)

Note that ′ denotes a matrix transpose and A′A is a square matrix. If we
replace A and b with the corresponding operators and gradient values from
our problem, we get the following linear system:

[

∇′

x ∇′

y

]

[

∇x

∇y

]

I =
[

∇′

x ∇′

y

]

[

G(x)

G(y)

]

, (20)

which, after multiplying stacked matrices, gives us:

(

∇′

x ∇x + ∇′

y ∇y

)

I = ∇′

x G
(x) + ∇′

y G
(y) . (21)

Weights can be added to such a system by inserting a sparse diagonal ma-
trix W . For simplicity we use the same weights for vertical and horizontal
derivatives:

(

∇′

x W ∇x + ∇′

y W ∇y

)

I = ∇′

x W G(x) + ∇′

y W G(y) . (22)

The above operations can be performed using a sparse matrix library (or
SciPy/Matlab), thus saving us effort of computing operators by hand.

There is still one problem remaining: our equation does not have a unique
solution. This is because the target gradient field contains relative informa-
tion about differences between pixels, but it does not say what the absolute
value of the pixels should be. For that reason, we need to constrain the
absolute value, for example by ensuring that a value of a first reconstructed
pixel is the same as in the source image (Isrc):

[

1 0 ... 0
]

I = Isrc(1, 1) . (23)

If we denote the vector on the left-hand side of the equation as C, the final
linear problem can be written as:

(

∇′

x W ∇x + ∇′

y W ∇y + C ′ C
)

I = ∇′

x W G(x) + ∇′

y W G(y) + C ′ Isrc(1, 1) .
(24)

The resulting equation can be solved using a sparse solver in Python or
Matlab.

9

References

[1] S. A. Teukolsky, B. P. Flannery, W. H. Press, and W. T. Vetterling.
Numerical recipes in C. Cambridge University Press, Cambridge, vol. 2
edition, 1992.

10

Advanced Graphics and Image Processing -

Lecture notes

Rafa l Mantiuk

Lent term 2018/19

1 Light field rendering using homographic trans-

formation

This section explains how to render a light field for a novel view position
using a parametrization with a focal plane. The method is explained on a
rather high level in [1]. These notes are meant to provide a practical guide
on how to perform the required calculations and in particular how to find a
homographic transformation between the virtual and array cameras.

The scenario and selected symbols are illustrated in Figure 1. We want to
render our light field ”as seen” by camera K. We have N images captured by
N cameras in the array (only 4 shown in the figure), all of which have their
apertures on the camera array plane C. We further assume that our array
cameras are pin-hole cameras to simplify the explanation. The novel view
is rendered assuming focal plane F . The focal plane has a similar function
as the focus distance in a regular camera: objects on the focal plane will
be rendered sharp, while objects that and in front or behind that plane will
appear blurry (in practice they will appear ghosted because of the limited
number of cameras). The focal plane F does not need to be parallel to
the camera plane; it can be titled, unlike in a traditional camera with a
regular lens. Because we have a limited number of cameras, we need to
use reconstruction functions A0, ..., A1 (only two shown) for each camera.
The functions shown contain the weights in the range 0-1 that are used to
interpolate between two neighboring views.

To intuitively understand how light field rendering is performed, imagine
the following hypothetical scenario. Each camera in the array captures the

1

C

F

K

3D object

A0

A1

pK

p0 p1

w

pA

Figure 1: Light field rendering for the novel view represented by camera K.
The pixels PK in the rendered image is the weighted average of the pixels
values p1, ..., pN from the images captured by the camera array.

image of the scene. Then, all objects in the scene are removed and you
put a large projection screen where the focal plane F should be. Then, you
swap all cameras for projectors, which project the captured images on the
projection screen F . Finally, you put a new camera K at the desired location
and capture the image of the projection screen. The projection screen (focal
plane) is needed to form an image. Ideally, to obtain a sharp image, we
would like to project the camera array images on a geometry. However, such
a geometry is not readily available when capturing scenes with a camera
array. In this situation a single plane is often a good-enough proxy, which
has its analogy in physical cameras (focal distance). More advanced light field
rendering methods attempt to reconstruct a more accurate proxy geometry
using multi-view stereo algorithms and then project camera images on that
geometry [3].

This simplified scenario misses one step, which is modulating each pro-
jected image by the reconstruction function A, as such modulation has no
physical counterpart. However, this scenario should give you a good idea
what operations need to be performed in order to render a light field from a

2

Data: Camera array images J1, J2, ..., JN
Result: Rendered image I
for each pixel at the coordinates pppK in the novel view do

I(pppK)←0;
w(pppK)←0;
for each camera i in the array do

Find the coordinates pppi in the i-th camera image
corresponding to the pixel pppK ;

Find the coordinates pppA on the aperture plane A
corresponding to the pixel pppK ;
I(pppK)←I(pppK) + A(pppA) Ji(pppi) ;
W (pppK)←W (pppK) + A(pppA) ;

end

I(pppK)←I(pppK)/W (pppK) ;

end

Algorithm 1: Light field rendering algorithm

novel view position.
Now let us see how we can turn such a high-level explanation into a

practical algorithm. One way to render a light field is shown in Algorithm 1.
The algorithm iterates over all pixels in the rendered image, then for each
pixel it iterates over all cameras in the array. The resulting image is the
weighted average of the camera images that are warped using homographic
transformations. The weights are determined by the reconstruction functions
Ai. The algorithm is straightforward, except for the mapping from pixel
coordinates in the novel view pK to coordinates in each camera image pi and
the coordinates on the aperture plane pA. The following paragraphs explain
how to find such transformations.

1.1 Homographic transformation between the virtual

and array cameras

The text below assumes that you are familiar with homogeneous coordinates
and geometric transformations, both commonly used in computer graphics
and computer vision. If these topics are still unclear, refer to Section 2.1 in
[4] (this book is available online) or Chapter 6 in [2].

We assume that we know the position and pose of each camera in the

3

http://szeliski.org/Book/

array, so that homogeneous 3D coordinates of a point in the 3D word co-
ordinate space w can be mapped to the 2D pixel coordinates pi of camera
i:

pppi = KKKPPP VVV iwww . (1)

where VVV is the view transformation, PPP is the projection matrix and KKK is the
intrinsic camera matrix. Note that we will use bold lower case symbols to
denote vectors, uppercase bold symbols for matrices and a regular font for
scalars. The operation is easier to understand if the coordinates and matrices
are expanded:

xi

yi
wi

 =

fx 0 cx
0 fy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
0 0 0 1

X
Y
Z
1

. (2)

The view matrix VVV translates and rotates the 3D coordinates of the 3D point
www so that the origin of the new coordinate system is at the camera centre,
and camera’s optical axis is aligned with the z-axis (as the view matrix in
computer graphics). This matrix can be computed using a LookAt function,
often available in graphics matrix libraries.

The projection matrix PPP may look like an odd version of an identity
matrix, but it actually drops one dimension (projects from 3D to 2D) and
copies the value of Z coordinate into the additional homogeneous coordinate
wi. Note that to compute Cartesian coordinates of the point from the homo-
geneous coordinates, we divide xi/wi and yi/wi. As wi is now equal to the
depth in the camera coordinates, this operation is equivalent to a perspec-
tive projection (you can refer to slides 88–92 in the Introduction to Graphics
Course).

The intrinsic camera matrix KKK maps the projected 3D coordinates into
pixel coordinates. fx and fy are focal lengths and cx and cy are the coordi-
nates of optical center expressed in pixel coordinates. We assume that the
intrinsic matrix is the same for all the cameras in the array.

Besides having all matrices for all cameras in the array, we also have a
similar transformation for our virtual camera K, which represents the cur-
rently rendered view:

pppK = KKKK PPP VVV K www . (3)

Our first task is to find transformation matrices that could transform from
pixel coordinates pppK in the virtual camera image into pixel coordinates pppi

4

https://www.cl.cam.ac.uk/teaching/1819/Graphics/Introduction_to_Graphics_2018_6pp.pdf

for each camera i. This is normally achieved by inverting the transformation
matrix for the novel view and combining it with the camera array transforma-
tion. However, the problem is that the product of KKKK PPP VVV K is not a square
matrix that can be inverted — it is missing one dimension. The dimension is
missing because we are projecting from 3D to 2D and one dimension (depth)
is lost.

Therefore, to map both coordinates, we need to reintroduce missing in-
formation. This is achieved by assuming that the 3D point lies on the focal
plane F . Note that the plane equation can be expressed as NNN ·(www−wwwF) = 0,
where NNN is the plane normal, and wwwF specifies the position of the plane in
the 3D space. Operator · is the dot product. If the homogeneous coordinates
of the point www are

[

X Y Z 1
]

, the plane equation can be expressed as

d =
[

nx ny nz −NNN ·wwwF

]

X
Y
Z
1

, (4)

where d is the distance to the plane and NNN =
[

nx ny nz

]

. We can introduce
the plane equation into the projection matrix from Equation 2:

xi

yi
di
wi

=

fx 0 0 cx
0 fy 0 cy
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0

n
(c)
x n

(c)
y n

(c)
z −N (c)N (c)N (c)

·www
(c)
F

0 0 1 0

v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
0 0 0 1

X
Y
Z
1

.

(5)
The product of the matrices in above is a full 4×4 transformation matrix,
which is not rank-deficient and can be inverted. Note that the pixel coordi-
nates pppK and pppi now have an extra dimension d, which should be set to 0
(because we constrain 3D point w to lie on the focal plane).

It should be noted that the normal and the point in the plane equation
have superscript (c), which denotes that the plane is given in the camera co-
ordinate system, rather than in the world coordinate system. This is because
the point

[

X Y Z 1
]

is transformed from the world to the camera coordi-
nates by the view matrix ViViVi before it is multiplied by our modified projection
matrix. This could be a desired behavior for the virtual camera, for example
if we want the focal plane to follow the camera and be perpendicular to the
camera’s optical axis. But, if we simply want to specify the focal plane in the

5

world coordinates, we have two options: either replace the third row in the
final matrix (obtained after multiplying the three matrices in Equation 5)
with our plane equation in the world coordinate system; or to transform the
plane to the camera coordinates:

www
(c)
F = VVV iwwwF (6)

and
NNN (c) = VVV iNNN . (7)

VVV i is the ”normal” or direction transformation for the view matrix VVV i, which
rotates the normal vector but it does not translate it. It is obtained by
setting to zero the translation coefficients w14, w24, and w34.

Now let us find the final mapping from the virtual camera coordinates p̂ppK
to the array camera coordinates p̂ppi. We will denote the extended coordinates
(with extra d) in Equation 5 as p̂ppK and p̂ppi. We will also denote our new

projection and intrinsic matrices in Equation 5 as P̂̂P̂P and K̂̂K̂K. Given that, the
mapping from pppK to pppi can be expressed as:

p̂ppi = K̂̂K̂Ki P̂̂P̂P VVV iVVV
−1
K P̂̂P̂P−1 K̂̂K̂K−1

K p̂ppK . (8)

The position on the aperture plane wwwA can be readily found from:

wwwA = VVV −1
K P̂̂P̂P−1

A K̂̂K̂K−1
K p̂ppK , (9)

where the projection matrix P̂̂P̂PA is modified to include the plane equation of
the aperture plane, the same way as done in Equation 5.

1.2 Reconstruction functions

The choice of the reconstruction function Ai will determine how images from
different cameras are mixed together. The functions shown in Figure 1 will
perform bilinear-interpolation between the views. Although this could be a
rational choice, it will result in ghosting for the parts of the scene that are
further away from the focal plane F . Another choice is to simulate a wide-
aperture camera and include all cameras in the generated view (set Ai = 1).
This will produce an image with a very shallow depth of field. Another
possibility is to use the nearest-neighbor strategy and a box-shaped recon-
struction filter (the width of the boxes being equal to the distance between
the cameras). This approach will avoid ghosting but will cause the views

6

to jump sharply as the virtual camera moves over the scene. It is worth
experimenting with different reconstruction startegies to choose the best for
a given application but also for the given angular resolution of the light field
(number of views).

References

[1] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically
reparameterized light fields. In Proc of SIGGRAPH ’00, volume 7, pages
297–306, New York, New York, USA, 2000. ACM Press.

[2] Steve Marschner and Peter Shirley. Fundamentals of Computer Graphics.
A K Peters/CRC Press, 4 edition edition, 2016.

[3] Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr,
and Paul Debevec. A system for acquiring, processing, and rendering
panoramic light field stills for virtual reality. ACM Transactions on

Graphics, 37(6):1–15, dec 2018.

[4] Richard Szeliski. Computer Vision: Algorithms and Applications.
Springer-Verlag New York Inc, 2010.

7

	Light field rendering using homographic transformation
	Homographic transformation between the virtual and array cameras
	Reconstruction functions

