Semantics of Programming Languages
Peter Sewell
1B, 12 lectures
2025-26

February 7, 2026

» Science

» Engineering
» Craft

> Art

» Bodgery

Fic. 5, AN ILLUSTRATION 0F WHAT EXPLOSION DID To STAYS AND Braces

1. Basic shape: ISO 68-1 ISO general purpose screw threads — Basic profile — Metric
screw threads

H/8

60° /8

5H/8
P12

Dimaj v

H/4|

EXTERNAL THREAD

1. Basic shape: ISO 68-1 ISO general purpose screw threads — Basic profile — Metric
screw threads

H/8

60° /8

5H8
P2
Dimaj v

H/4|

EXTERNAL THREAD

90°
—_ | .. _| AXISOFSCREW THREAD

2. Tolerances: ISO 965-1 ISO general purpose metric screw threads — Tolerances

1. Basic shape: ISO 68-1 ISO general purpose screw threads — Basic profile — Metric

screw threads

Drmaj

60°

P12

EXTERNAL THREAD

H/8

5H/8

H/4|

1| JEENNNE

2. Tolerances: ISO 965-1 ISO general purpose metric screw threads — Tolerances

3. Materials and strength: ISO 898 Mechanical properties of fasteners made of

carbon steel and alloy steel

10

Programming languages: basic engineering tools of our time

11

Semantics — What is it?
How to describe a programming language? Need to give:
» the syntax of programs; and

» their semantics (the meaning of programs, or how they behave).

12

Semantics — What is it?

How to describe a programming language? Need to give:

» the syntax of programs; and

» their semantics (the meaning of programs, or how they behave).
Styles of description:

P the language is defined by whatever some particular compiler does

» natural language ‘definitions’

» mathematically

Mathematical descriptions of syntax use formal grammars (eg BNF) — precise, concise,
clear. In this course we'll see how to work with mathematical definitions of
semantics/behaviour.

13

What do we use semantics for?
1. to understand a particular language — what you can depend on as a programmetr;
what you must provide as a compiler writer
2. as a tool for language design:

2.1 for clean design

2.2 for expressing design choices, understanding language features and how they interact.

2.3 for proving properties of a language, eg type safety, decidability of type inference.

3. as a foundation for proving properties of particular programs

14

vV Vv v V. vy V. v VY

Design choices, from Micro to Macro
basic values
evaluation order
what can be stored
what can be abstracted over
what is guaranteed at compile-time and run-time
how effects are controlled
how concurrency is supported
how information hiding is enforceable

how large-scale development and re-use are supported

15

Warmup
In C, if initially x has value 3, what's the value of the following?

X++ + X+t + X+ + X+

16

JavaScript

function bar(x) { return function() { var x =

var f = bar(200);
£0O

x; return x; }; }

17

Styles of Semantic Definitions
» Operational semantics
» Denotational semantics

> Axiomatic, or Logical, semantics

18

‘Toy’ languages
Real programming languages are large, with many features and, often, with redundant

constructs — things that can be expressed in the rest of the language.

When trying to understand some particular combination of features it's usual to define
a small ‘toy’ language with just what you're interested in, then scale up later. Even
small languages can involve delicate design choices.

10

What'’s this course?
Core
P operational semantics and typing for a tiny language
» technical tools (abstract syntax, inductive definitions, proof)
» design for functions, data and references
More advanced topics
» Subtyping and Objects
» Semantic Equivalence

» Concurrency

20

(assignment and while) L11:2:3:4 Operational semantics
Type systems

Implementations
(functions and recursive definitions) L2°" Language design choices

Inductive definitions
(products, sums, records, references) L38_v

Abstract syntax up to alpha

Subtyping Semantic

and Objects9 Equivalenc__e_‘10

Cohcurrency12

Inductive proof — structural; rule

21

Discrete
Maths

Compiler
Construction

Types

Category Theory

The Big Picture

Logic
& Proof

Semantics

Multicore
Semantics and
Programming

ML

Hoare Logic and
Model-Checking

Java and
C&DS

Computation

Theory
/ Optimising

Compilers

Advanced Topics
in Prog
Lang

29

Admin

» Please let me know of typos, and if it is too fast/too slow/too interesting/too dull
(please complete the on-line feedback at the end)

> Exercises in the notes.
» Implementations on web.

» Books (Pierce, Harper, Hennessy, Winskel)

L1

24

L1 — Example

L1 is an imperative language with store locations (holding integers), conditionals, and
while loops. For example, consider the program

b :=0;

while !'/; > 1 do
b =lb+!1k;
h=h+-1

done

in the initial store {/; — 3,k > 0}.

75

L1 — Syntax

Booleans b € B = {true, false}
Integers n € Z ={...,—1,0,1,...}
Locations ¢ € L. ={/,lo,h, b, ...}

Operations op 1=+ |>

Expressions

e == n|ble op elif e then e else e3 |
0:=el|ll]
skip | e1; €2 |

while e¢; do & done

Write Ly for the set of all expressions.

2%

Transition systems
A transition system consists of
P> a set Config, and
» a binary relation —C Config * Config.

The elements of Config are often called configurations or states. The relation — is
called the transition or reduction relation. We write — infix, so ¢ — ¢’ should be
read as ‘state ¢ can make a transition to state ¢’’.

27

L1 Semantics (1 of 4) — Configurations

Say stores s are finite partial functions from L. to Z. For example:

{/1 — 7, /3 — 23}

Take configurations to be pairs (e, s) of an expression e and a store s, so our transition
relation will have the form
(e,s) — (€,§)

Transitions are single computation steps. For example we will have:

(I =24, {l—3})
— (=243, {I—3})
— (=5, {lI'—3})
— (skip, {l'—5})
/o

want to keep on until we get to a value v, an expression in

V=B U Z U {skip}.

Say (e, s) is stuck if e is not a value and (e, s) /—. For example 2 + true will be stuck.

29

20

L1 Semantics (2 of 4) — Rules (basic operations)

(op +) (m +n2,s) —(n,s) ifn=n+n
(op =) (m >nm,s) —(b,s) if b=(n > m)

(e1,5) —> (ef,s)

(op1) ; ,
(e1 op ex,5) — (€] op e,s’)

(e2,5) — (eh,)
op2
) v op ens) = (v op &)

Example

If we want to find the possible sequences of transitions of ((2+ 3) + (6 +7),0) ... look

for derivations of transitions.
(you might think the answer should be 18 — but we want to know what this definition

says happens)

(op1) N T Y
(

(243)+(6+7),0) — (5+(6+7),0)

(op +)
(6+7,0) — (13,0)
(5+(6+7),0) — (5+13,0)

(op +)

(op2)

(5+13,0) — (18,0)

20

21

L1 Semantics (3 of 4) — store and sequencing

(deref) (l0.s) — (n,s) if ¢ € dom(s) and s(¢) =n

(assignl) (¢ :=n,s) — (skip,s+ {{+— n}) if £ € dom(s)
- (e,s) — (€, >
ign2
G2 e =)
(seql) (skip;ex,s) — (e2,s)
(seq2) <elvs> — <ei,5’>

(e1;e2,5) — (e1; €2,5)

29

Example

(l=31{l—0}) —
s
—
(I:=3;1:=!,{l+0}) —
—

(15411, 0)

(skip; !, {I — 3})
(1, {1+ 3})
(3,{I—3})

?

?

23

L1 Semantics (4 of 4) — The rest (conditionals and while)

(ifl) (if true then e, else e3,s) — (ey,s)
(if2) (if false then e, else e3,s) — (e3,s)

(if3) <ela5> — <e£’5/>
if e then e else e3,5) — (if ¢/ then e else e3,s
1

(while)
(while e; do e done ,s) — (if e; then (e;;while e; do e, done) else skip,s)

24

Example
If
e =(h:=0;while '} > 1 do (h:=!h+'h;h :='h + —1) done)
s={h—3,hL— 0}
then

(e,s) —* 7

L1: Collected Definition

Booleans b € B
Integers n € Z
Locations / & L
Operations op =
Expressions

(deref) (1£,5) — (n,s) if ¢ & dom(s) and s(¢) = n

(assignl) n,s) —» (skip,s + {¢+> n}) if £ € dom(s)

(e;s) — (€,5)

e i= n|ble op e|if e then & else e (assign2) . - —
8 l=é,

(et es) — ((:=¢€.5)

skip | er; e |

while e, do e, done (seql) (skip; e, s) — (e2,s)
Note that for each construct there are some computation rules, doing ‘real work’, and (e1,s) — (e}, s')
some context (or congruence) rules, allowing subcomputations and specifying their or- o) e
der. \e1; €,5) \ey; €2,5)
Stores s are finite partial functions from IL to Z. Values v are expressions from the
grammar v = b | n | skip. (if1) (if true then e else e3,s) — (e, 5)

(op+) (m+m.s)—(ns) ifn=n+m
(if2) (if false then e else e3,s) — (e3,s)

(0p =) (m >ms)— (bys) ifb=

n > m)

(i) {e1,s) — (/-ef{‘s? :
(1) <€1-53r*> feé'ﬂ , (if e then e else e3,s) — (if €] then e else e3,5')
(e1 op ex,s) — (6] op e,s)
(while)
o | . . P
(op2) (e2,5) — {eb.s)) (while e; do e, done,s) — (if e then (e;;while e do e done) else skip,s)

(v op e,s) —+ (v op é&,s)

26

The semantics of the semantics: what do those rules mean, more formally?

We defined the transition relation (e,s) — (&', s") by giving some rules, eg
(op +) (m+mys)—(n,s) ifn=n+nm

(e1,5) — (e1,5')

(op1) ; ;
(e1 op ex,s) — (€] op e, s’)

e Start with the set A = Config * Config = (Ly * store) * (L; * store).
e The rules define a subset — C A
e Notation: (e,s) — (€, s') is just infix notation for ((e,s), (¢’.s")) e—

Derivations

For each rule we can construct the set of all concrete rule instances, taking all values
of the metavariables that satisfy the side condition. For example, for (op +) and (op1)
we take all values of ny, no. s, n (satisfying n = ny + n2) and of e, s, 5, €], 5.

m=2,m=2s={},n=4 m=2m=3,s={},n=5
(op+) (op +)
2+2,{}) — & {H 2+3,{}) — 6,{})
e1=2+2e=3s={},ee=4s5s={} aea=2+2,&=3,s={},ei=false, s ={/—~ 7}
(op1) 2+4+2,{}) — 4,{} (op1) (24 2,{}) —> (false, {/ — 7})
((24+2)+3,{}) — 4+3,{}) ((2+2)+3,{}) — (false + 3, {/ — 7})

Note the last has a premise that is not itself derivable, but nonetheless it is a concrete
instance of (opl).

27

28

Derivations

A derivation of a transition (e,s) — (€/,s') is a finite tree of elements of A in which
every node is justified as a concrete rule instance.

(op+)
(opl)
(opl)

2+2,{}) — &)
(2+2)+3,{}) — (4+3,{})
(2+2)+3=25{}) — (4+3=5,{})

Definition 1. (e,s) — (€, s') is an element of the reduction relation iff there is a
derivation with that as the root node.

(for —, the rules all have either 0 or 1 premises, so these trees are spindly)

20

Closure
Equivalently:

Each rule defines the subsets X C A that are closed under that rule
X ={X C A| for all concrete instancesal%a'a” (ameXN...NapeX)=ae X}
Definition 2. The relation — is the smallest subset of A closed under all those

implications:
— = ﬂX

(The subsets have to closed under intersection for this to work out — but for
non-pathological rules, this is fine).

A0

Search for derivations

That defines —, but not in a way that's practically computable.

Often one wants to compute, for some concrete (e, s), the set of all (¢/,s’) such that
(e,s) — (€, s').

(Or for partly symbolic (e, s))
(Or, for some concrete (e, s) and (€', s"), whether (e,s) — (€, 5"))

Search algorithm:

1.

start trying to construct a derivation ending in (e,s) — (€', "), for fresh
metavariables ¢’ and s’

find all the rules that could possibly match

for each, construct the most general instance(s) that match, introducing fresh
metavariables as needed, and unifying with the information you already have

keep on going until you reach the leaves

A1

Example: compute the set of all (¢/,s") such that (((2+2)+3) >5,{}) — (¢/,).

Start with a partial derivation with that conclusion:
.)
(2+2)+32>5,{}) —(e",5")
The only rule that can be instantiated to match that is (opl) (rules (op +) and (op >) only

apply to concrete numbers, (op2) only if the LHS is a value, and all the others have different
top-level expression constructors)

opl) (ens) — (e5)

(e1 op ey, s) — (e] op ey, s’)

The instantiation must have e; = (2+2)+3, op =>, & =5, s = {}. We don't yet have any
constraint on the instantiations of] and s/, but we do know ¢’ = ¢] op e and s =s'. So
instantiate e with some fresh e/’ (picking a metavariable that doesn't occur in any rule, to
reduce confusion).

! (?)
(2+2)13,{}) — (s
(2+2)+3)>5,{}) — (ef > 5,5

(op1)

49

! (?)
(2+2)+3,{}) — (ef,5")
(2+2)+3)>5,{}) — (e > 5,5

(op1)

The only rule that can be instantiated to match that is again (opl).

(Opl) <6‘1,S> — <e£',5/>
(e1 op e, s) — (e] op ey, s')

This instantiation must have e; =2+ 2, op =+, e =3, s = {}. We don't yet have any
constraint on the instantiations of] and s’, but we do know ¢’ = ¢] op e and s =s’. So

instantiate ef with some fresh e’

! (?)
2+2,{}) — (&f",s") (op1)
(2+2)+3,{}) — (]’ +3,57) P (op1)

((2+2)+3)=5,{}) — ((ef" +3) > 5,5")

A3

! (?)
2+2,{}) — (ef,5"))

T2 +3.00) = (e 1397 P
((2+2)+3) =5,{}) — ((e/" +3) = 5,5")

(op1)

The only rule that can be instantiated to match that is (op +). (To know that (opl) and (op2)
can't apply, we need to check that (n,s) can never reduce, which we can see from inspecting
each rule conclusion.)

(op +) (m+m,s)y—(ns) ifn=n+m
This instantiation must have ny =2, no =2, s = {}, n=n; + n. Son=4,so0 e’ =4, and

s" = {}. Substituting those in, we have a concrete derivation:

2 () —am Pl
(@+2)73.00) = (4 +3.0)
(@+2)13)25.0) > (6+3) 5.0

Moreover, because we never had any choice, and always constructed the most general
instances, that is the only derivation. (Of the first transition...)

(opl)

44

Determinacy

Theorem 1 (L1 Determinacy) If (e,s) — (e1,s1) and (e,s) — (ex, s») then
(e1,51) = (€2, %2).

Proof — see later

AE,

L1 implementation
Many possible implementation strategies, including:

1. animate the rules — use unification to try to match rule conclusion left-hand-sides
against a configuration; use backtracking search to find all possible transitions.
Hand-coded, or in Prolog/LambdaProlog/Twelf.

2. write an interpreter working directly over the syntax of configurations. Coming up,
in ML and Java.

3. compile to a stack-based virtual machine, and an interpreter for that. See
Compiler Construction.

4. compile to assembly language, dealing with register allocation etc. etc. See
Compiler Construction/Optimizing Compilers.

A6

L1 implementation

Will implement an interpreter for L1, following the definition. Use OCaml (or mosml —

Moscow ML) as the implementation language, as datatypes and pattern matching are
good for this kind of thing.

First, must pick representations for locations, stores, and expressions:

type loc = string

type store = (loc * int) list

47

type oper

type expr

Plus | GTEQ

Integer of int

Boolean of bool

Op of expr % oper * expr
If of expr x expr * expr
Assign of loc * expr
Deref of loc

Skip

Seq of expr x expr

While of expr x expr

A8

Store operations
Define auxiliary operations

lookup : storexloc

—> int option
update

storex(locxint) —> store option

which both return None if given a location that is not in the domain of the store.

Recall that a value of type T option is either None or
Some v for a value v of T.

AQ

The single-step function
Now define the single-step function
reduce : expr*store -> (expr*store) option

which takes a configuration (e,s) and returns either

None, if (e,s) #—,

or Some (e',s"), if it has a transition (e,s) — (€, s').

Note that if the semantics didn't define a deterministic transition system we'd have to
be more elaborate.

50

(op +), (op =)

let rec reduce (e,s) =

match e with

| Integer n — None

| Boolean b —> None

| Op (el,opr,e2) —>

(match (el,opr,e2) with
(Integer nl, Plus, Integer n2) —> Some(Integer (nl4+n2), s)

|
| (Integer nl, GTEQ, Integer n2) —> Some(Boolean (nl>=n2),s)
| (el,opr,e2) — (

51

(op1), (op2)

(el,opr,e2) — (

if (is_value el) then

match reduce (e2,s) with

Some (e2',s’') — Some (Op(el,opr,e2'),s’)
None —> None)

match reduce (el,s) with
Some (el’',s') —> Some(Op(el’', opr,e2),s")

(
|
|
else
|
| None —> None)))

(+ (op2) *)

(+ (opl) x)

~o)

(assignl), (assign2)

| Assign (l,e) —
(match e with

Integer n —>
(match update s (I,n) with
| Some s' —> Some(Skip, s')
| None —> None)
—>
(match reduce (e,s) with

| Some (e',s') —> Some(Assign (I,e"),

| None —> None))

s')

(+ (assignl)

(+ (assign2)

The many-step evaluation function
Now define the many-step evaluation function
evaluate: exprxstore —> (exprxstore) option
which takes a configuration (e,s) and returns the (e’,s’) such that
(e,s) —* (€', s") /—, if there is such, or does not return.

let rec evaluate (e,s) =
match reduce (e,s) with
| None — (e,s)
| Some (e',s’') —> evaluate (e',s’)

53

.}

ocaml
#use "11/I1_ocaml

(e,s):;

.ml’

— : expr % (string * int) list

(Seq (Assign ("I11", Integer 3),
reduce (e,s);;
— : (expr % (loc * int) list)
Some (Seq (Skip, Deref "I1"),
prettyreduce (e,s);;

< 11:=3;111 , {11=0 } >
—> < skip;!i1 , {11=3 } >
—> < 1, {I11=3 } >
—> < 3 {11=3 } >
—/—> (a value)
— : unit = ()

Demo

Deref "I1”
option =
(e, 3)1)

55

The Java Implementation

Quite different code structure:

» the ML groups together all the parts of each algorithm, into the reduce,
infertype, and prettyprint functions;

> the Java groups together everything to do with each clause of the abstract syntax,
in the IfThenElse, Assign, etc. classes.

[~

Language design 1. Order of evaluation

For (e1 op e), the rules above say e; should be fully reduced, to a value, before we
start reducing e;. For example:

((1:=1;0) + (1 := 2;0), {I = 0}) —> (0, {/ =[2]}

For right-to-left evaluation, replace (opl) and (op2) by

<6’2,S> — <eé75/>
(e1 op e, s) — (e1 op €),5)

(oplb)

<e1ﬂ S> — <eiv 5/>

(op2b)
(e1 op v,s) — (e] op v,s)

In this language (call it L1b)

(1:=1;0) + (1 :=2;0), {I — 0}) —> (0, {/ = [1]}

K7

Recall

So

Language design 2. Assignment results

(assignl) (¢:=n,s) — (skip,s + {¢+— n}) if £ € dom(s)
(seql) (skip; e, s) — (e, s)

(I'=1,1:=2{l—0}) — (skip;/:=2,{/—1})
—* (skip, {/ — 2})

We've chosen ¢ := n to result in skip, and e;; e; to only progress if e; = skip, not for
any value. Instead could have this:

(assignl’) ((:=n,s) — (n,s+ ({+> n)) if £ € dom(s)
(seql’) (v;en,s) — (e, s)

=]

Language design 3. Store initialization
Recall that

(deref) (10.s) — (n,s) if ¢ € dom(s) and s(¢) =n

(assignl) (¢ :=n,s) — (skip,s + {¢{ — n}) if £ € dom(s)
both require / € dom(s), otherwise the expressions are stuck.
Instead, could
1. implicitly initialize all locations to 0, or

2. allow assignment to an ¢ ¢ dom(s) to initialize that /.

5Q

Language design 4. Storable values

Recall stores s are finite partial functions from L. to 7Z, with rules:
(deref) (10,s) — (n,s) if ¢ € dom(s) and s(¢) =n

(assignl) (¢ :=n.s (skip,s + {{ — n}) if £ € dom(s)

(assign2)

)y —
<e s) — (¢,s")
) — (L:=¢€.5)

e,s

Can store only integers. (/ := true,s) is stuck.

Why not allow storage of any value? of locations? of programs?

Also, store is global. We will consider programs that can create new locations later.

60

Language design 5. Operators and basic values
Booleans are really not integers (unlike in C)
The L1 impl and semantics aren’t quite in step.
Exercise: fix the implementation to match the semantics.

Exercise: fix the semantics to match the implementation.

61

Expressiveness
Is L1 expressive enough to write interesting programs?

> vyes: it's Turing-powerful (try coding an arbitrary register machine in L1).

')

Expressiveness

Is L1 expressive enough to write interesting programs?
> vyes: it's Turing-powerful (try coding an arbitrary register machine in L1).

A register machine is specified by:
¢ finitely many registers Ro, R1, ... R, (each capable of storing a natural number);
* a program consisting of a finite list of instructions of the form label: body, where for

i =0,1,2,... the (i + 1)™ instruction has label ;. The instruction body takes one
of three forms:

Rt L/ add 1 to contents of register R and jump to instruction labelled L’

R~ — L', L" if contents of R is larger than 0, then subtract 1 from it and jump
to L', else jump to L”

HALT stop executing instructions

A3

Expressiveness
Is L1 expressive enough to write interesting programs?
> vyes: it's Turing-powerful (try coding an arbitrary register machine in L1).

P> no: there's no support for gadgets like functions, objects, lists, trees, modules,

A

Expressiveness
Is L1 expressive enough to write interesting programs?
» yes: it's Turing-powerful (try coding an arbitrary register machine in L1).
» no: there's no support for gadgets like functions, objects, lists, trees, modules,.....
Is L1 too expressive? (ie, can we write too many programs in it)

> yes: we'd like to forbid programs like 3 + false as early as possible, rather than let
the program get stuck or give a runtime error. We'll do so with a type system.

L1 Typing

A6

Type systems
used for
P describing when programs make sense
> preventing certain kinds of errors
P structuring programs
» guiding language design

Ideally, well-typed programs don’t get stuck.

A7

Run-time errors

Trapped errors. Cause execution to halt immediately. (E.g. jumping to an illegal
address, raising a top-level exception, etc.) Innocuous?

Untrapped errors. May go unnoticed for a while and later cause arbitrary behaviour.
(E.g. accessing data past the end of an array, security loopholes in Java abstract
machines, etc.) Insidious!

Given a precise definition of what constitutes an untrapped run-time error, then a
language is safe if all its syntactically legal programs cannot cause such errors.

Usually, safety is desirable. Moreover, we'd like as few trapped errors as possible.

Formal type systems

We will define a ternary relation [= e: T, read as ‘expression e has type T, under
assumptions I on the types of locations that may occur in e'. For example (according
to the definition coming up):

{} F if true then 2 else 3+4 : int
l:intref + if 14 >3 then !/, else 3 ©int
{} t/ 3+ false : T forany T

{} t/ if true then 3 else false : int

A8

A0

Types for L1
Types of expressions:
T == int| bool | unit

Types of locations:

Tioc intref

Write T and T, for the sets of all terms of these grammars.

Let I range over TypeEnv, the finite partial functions from locations IL to T)..
Notation: write a I as /y:intref, ..., [s:intref instead of {/; — intref, ..., [, — intref}.

70

Defining the type judgement (1 of 3)

(int) TFnint forn € Z

(bool) T F b:bool for b € {true,false}

[+ er:int [er:int
[es:int [+ es:int
(op+) —— =™ (op>) ?
[+ e + eint [e > er:bool

(if) [+ e1:bool Fe:T Thkes:T
Eif e; then e else e3: T

71

Example

To show {} I~ if false then 2 else 3+ 4:int we can give a type derivation like this:

(bool) {} | false:bool (int) {} F 2:int V

if
(i) {} Fif false then 2 else 3+ 4:int

where V is int in
(op +) (int) {} F 3:int (int) {} F 4:int
{} F3+4int

79

Defining the type judgement (2 of 3)

M(¢) =intref T+ eint

assign
(assign) [+ ¢ := e:unit

I F14:int

73

Defining the type judgement (3 of 3)

(skip) T+ skip:unit

IF er:unit MlFe:T

seq
(sea) Ml-ep;en: T

(while) I+ er:bool T F eunit
I~ while e do e done :unit

74

Properties

Theorem 2 (Progress) If [+ e:T and dom(I") C dom(s) then either e is a value or
there exist €', s' such that (e,s) — (€', s).

Theorem 3 (Type Preservation) /f [= e:T and dom(I') C dom(s) and
(e,s) —» (€/,s') then T+ €": T and dom(I') C dom(s').

From these two we have that well-typed programs don't get stuck:

Theorem 4 (Safety) If '+ e:T, dom(I') C dom(s), and (e,s) —* (€', s') then
either €' is a value or there exist €”,s" such that (e',s") — (&",s").

75

Type checking, typeability, and type inference
Type checking problem for a type system: given [, e, T, is [= e: T derivable?

Type inference problem: given [and e, find T such that I' - e: T is derivable, or
show there is none.

Second problem is usually harder than the first. Solving it usually results in a type
inference algorithm: computing a type T for a phrase e, given type environment [(or
failing, if there is none).

For this type system, though, both are easy.

76

More Properties

Theorem 5 (Type inference) Given I', e, one can find T such that [- e: T, or show
that there is none.

Theorem 6 (Decidability of type checking) Given I, e, T, one can decide I - e: T.
Also:

Theorem 7 (Uniqueness of typing) If[= e:T and T+ e:T' then T = T'.

77

Type inference — Implementation

First must pick representations for types and for [''s:

type type_L1l =
| Ty_int
| Ty_unit
| Ty_bool

type type_loc =
| Ty_intref

type typeEnv = (locxtype_loc) list

Now define the type inference function

infertype : typeEnv — expr —> type_L1

option

79

let

rec infertype gamma e =

match e with

Integer n —> Some Ty_int
Boolean b —> Some Ty_bool

| Op (el,opr,e2) —>

The Type Inference Algorithm

, opr, infertype gamma e2) with

(Some Ty_int, Plus, Some Ty_int) —> Some Ty_int
(Some Ty_int, GTEQ, Some Ty_int) —> Some Ty_bool

match (infertype gamma el
ype &

|

\

_ —> None)
If (el,e2,e3) —>
(match (infertype gamma el,

infertype gamma e2, infertype gamma e3) with

| (Some Ty_bool, Some t2, Some t3) —>
(if t2=t3 then Some t2 else None)

| - —> None)
Deref | —
(match lookup gamma | with

| Some Ty_intref —> Some Ty_int

| None —> None)
Assign (I ,e) —

(match (lookup gamma |, infertype gamma e) with

| (Some Ty_intref Some Ty_

| - —> None)
Skip —> Some Ty_unit
Seq (el,e2) —>
(match (infertype gamma el,

int) —> Some Ty_unit

infertype gamma e2) with

| (Some Ty_unit, Some t2) —> Some t2

| - — None)
While (el,e2) —>

(match (infertype gamma el, infertype gamma e2) with
| (Some Ty_bool, Some Ty_unit) —> Some Ty_unit

| - —> None)

70

The Type Inference Algorithm — If

let rec infertype gamma e =
match e with

| If (el,e2,e3) —
(match (infertype gamma el, infertype gamma e2,
| (Some Ty_bool, Some t2, Some t3) —>
(if t2=t3 then Some t2 else None)
| - — None)

[+ e1:bool
MN-e:T
MN-es3:T

Eif e; then e else e3: T

(if)

infertype gamma e3) with

20

The Type Inference Algorithm — Deref

Deref | —

(match lookup gamma | with

| Some Ty_intref — Some Ty_int
| None —> None)

(deref) I(f) = intref
[=12:int

Q1

Demo

Q9

Executing L1 directly as OCaml
L1 is (roughly) a fragment of OCaml — given a typable L1 expression e and an initial
store s, e can be executed in OCaml by wrapping it

let skip = ()
and 11 = ref nl
and 12 = ref n2

and 1k = ref nk
in

’

where s is the store {/; — ny,.... I — ni} and all locations that occur in e are
contained in {/1,..., lx}.

(under what condition is the semantics the same?)

Q2

Why Not Types?
“I can’t write the code | want in this type system.”
(the Pascal complaint) usually false for a modern typed language
“It's too tiresome to get the types right throughout development.”
(the untyped-scripting-language complaint)
“Type annotations are too verbose.”
type inference means you only have to write them where it's useful
“Type error messages are incomprehensible.”
hmm. Sadly, sometimes true.

“I really can’t write the code | want.”

oA

Testing the semantics

We stated several properties (progress, preservation) of our definitions. We want to
prove that they hold in general — but first, can we dynamically test them, to quickly
and easily shake out obvious errors?

Testing won't give us the complete assurance of proof — it typically can't cover all
cases — and it doesn't give us the insight and strengthened intuition from doing proof,
but it can quickly find some issues at low cost. Executing our mathematical definitions
is often very useful, and under-exploited.

o]~

Recall:

Theorem 2 (Progress) If ' e:T and dom(I') C dom(s) then either e is a value or
there exist €', s' such that (e,s) — (€, s).

It's an implication, so we have to generate random I', e, T, and s such that the
premise holds, and check whether the conclusion holds.

We have implementations of type inference and reduction, and the subset and
is-a-value relations are also easy to check. If those implementations are correct w.r.t.
the mathematical rules, we've made our semantics executable as a test oracle.

A

What does “random” mean? The sets of possible ', e, and s are all infinite. What
distribution? Simplest thing: impose a size bound, on the number of AST nodes in e

and the maximum size of integer constants, and generate some flat-ish distribution up
to that size.

Q7

What does “random” mean? The sets of possible ', e, and s are all infinite. What
distribution? Simplest thing: impose a size bound, on the number of AST nodes in e

and the maximum size of integer constants, and generate some flat-ish distribution up
to that size.

Most stupid algorithm: literally as above, generate and then check the premises.

Q0

What does “random” mean? The sets of possible ', e, and s are all infinite. What
distribution? Simplest thing: impose a size bound, on the number of AST nodes in e
and the maximum size of integer constants, and generate some flat-ish distribution up
to that size.

Most stupid algorithm: literally as above, generate and then check the premises.

Probably hopelessly inefficient: [= e: T will usually be false.

20

What does “random” mean? The sets of possible ', e, and s are all infinite. What
distribution? Simplest thing: impose a size bound, on the number of AST nodes in e
and the maximum size of integer constants, and generate some flat-ish distribution up
to that size.

Most stupid algorithm: literally as above, generate and then check the premises.

Probably hopelessly inefficient: [= e: T will usually be false.

How can we do better? Generate random derivations?

o0

What does “random” mean? The sets of possible ', e, and s are all infinite. What
distribution? Simplest thing: impose a size bound, on the number of AST nodes in e
and the maximum size of integer constants, and generate some flat-ish distribution up
to that size.

Most stupid algorithm: literally as above, generate and then check the premises.

Probably hopelessly inefficient: [= e: T will usually be false.

How can we do better? Generate random derivations?

Probably need to be symbolic...

Proof about semantics — really,
proof about inductive definitions

Q2

We've stated several ‘theorems’, but how do we know they are true?

Intuition is often wrong — we need proof.

Use proof process also for strengthening our intuition about subtle language features,
and for debugging definitions — it helps you examine all the various cases.

Most of our definitions are inductive. To prove things about them, we need the
corresponding induction principles.

03

Three forms of induction
Prove facts about all natural numbers by mathematical induction.

Prove facts about all terms of a grammar (e.g. the L1 expressions) by structural
induction.

Prove facts about all elements of a relation defined by rules (e.g. the L1 transition
relation, or the L1 typing relation) by rule induction.

We shall see that all three boil down to induction over certain trees.

04

Principle of Mathematical Induction
For any property ®(x) of natural numbers x € N = {0,1,2,...}, to prove
Vx € N.O(x)
it's enough to prove
®(0) and V x € N.d(x) = d(x +1).
i.e.

(®(0) A (Vx € NO(x) = d(x+1))) =Vx € No(x)

0]

(@(0) A (Vx € NO(x) = d(x+1))) = Vx € No(x)

For example, to prove
Theorem 81 +2 + ... +x =1/2%x*(x+ 1)

use mathematical induction for ®(x) = (1 +2+4 ... + x =1/2% x* (x + 1))

There's a model proof in the notes, as an example of good style. Writing a clear proof
structure like this becomes essential when things get more complex — you have to use
the formalism to help you get things right. Emulate it!

06

Principle of Mathematical Induction

For any property ®(x) of natural numbers x € N = {0,1,2,...}, to prove
Vx € N.O(x)

it's enough to prove (a) ®(0) and (b) V x € N.®(x) = d(x + 1),

Why is this sound? Looking back to our definitions of what inductive definitions
mean...

N is isomorphic to the abstract syntax trees of the grammar n::=zero | succ (n).
Then, roughly speaking:

1. in terms of derivations: (a) establishes ® for any root zero , and (b) shows that if
® holds for a tree x, then it holds for (all) trees succ (x) — and one can imagine
stitching together those implications, or

2. in terms of least fixed points: N is the smallest set closed under zero and
succ (—). (a) and (b) show that ® is also closed under those, so N C &, i.e.
VxxeN=xecod

Q7

Abstract Syntax and Structural Induction

How to prove facts about all expressions, e.g. Determinacy for L17

Theorem 1 (Determinacy) If (e,s) — (e1,s1) and (e, s) — (e», o) then
<€1751> = <6‘2,52> .

First, don't forget the elided universal quantifiers.

Theorem 1 (Determinacy) For all e, s, e1,s1, e, 5, if (e,s) — (e1,s1) and
(e,s) — (e2, s2) then (e1,s1) = (€2, 52) .

08

Abstract Syntax
Then, have to pay attention to what an expression is.

Recall we said:

e = n|b|le op el|if e then e else e|
C:=el|ll]
skip | e; e |

while e do e done

defining a set of expressions.

Q: Is an expression, e.g. if |/ > 0 then skip else (skip;/:= 0):
1. a list of characters [‘i’, ‘f’>, ‘_>, 1> <17, . .]:
2. a list of tokens [IF, DEREF, LOC "1", GTEQ, ..];or

3. an abstract syntax tree?

if_then_else_

100

A: an abstract syntax tree. Hence: 24+ 2 # 4
+ 4

/ \
2 2

1+ 2+ 3 — ambiguous
(1+2)+3#1+(2+3)

- +
/\ / N\
+ 3 1+
/ N\ / N\
1 2 2 3

Parentheses are only used for disambiguation — they are not part of the grammar.

1+2=(1+2)=((1+2)) = (((((1)) + ((2)))

101

Theorem 1 (Determinacy) For all e,s,e1,s1, €, 5, if (e,5) — (e1,s1) and
(e,s) — (ep,) then (e1,s1) = (&2, %) .

Does it seem likely to be true?

More to the point: can we easily see any reason why it's false? Do we have some
intuition why it's true?

10?2

Principle of Structural Induction (for abstract syntax)
For any property ®(e) of expressions e, to prove
Ve € L1<D(e)

it's enough to prove for each tree constructor ¢ (taking k > 0 arguments) that if ®
holds for the subtrees e1, .., e, then ® holds for the tree c(ey, .., e). i.e.

(VcVer, .., en(P(er) n... nD(ex)) = (c(er, .., e))) = V e.d(e)

where the tree constructors (or node labels) ¢ are n, true, false, !/, skip, / :=,
while_do_, if_then_else_, etc.

103

In particular, for L1: to show Ve € L;.®(e) it's enough to show:

nullary: ®(skip)
V b € {true,false}.®(b)

V' n € Z.9(n)
Ve e Lol
unary: VYV /7 e LVed(e O :=e)
binary: V op .V e, e.(P(e) d(er)) = P(e1 op &)
v €1, e2.(¢(e1) A CD(EQ)) = <D(e1 62)
Voep, e.(P(e1) A P(e2)) = d(while e; do e done)
ternary: Vep, e, e3.(P(e1) A P(e2) A P(e3)) = P(if e then e else e3)

(See how this comes directly from the grammar)

104

Proving Determinacy (Outline)
Theorem 1 (Determinacy) If (e,s) — (e1,s1) and (e,s) — (ez, so) then
(e1,51) = (€2, %) -
Take
de) = Vs, e, s e s".
((e,s) — (€/,s') n(e,s) — (€",5"))
= (e s) = (¢, ")

and show V e € L;.9(e) by structural induction.

105

d(e) = Vs, ée,s,€e",s".
((e,s) — (€/,s") n {e,s) — (€",s"))
<e/’ S/> — <e//’5//>
nullary: ®(skip)
V b € {true, false}.®(b)
Vn € Z.9(n)
Ve e Lol
unary: V/{ € LV ed(e)= ol :=e)
binary: YV op Ve, e.(P(e1) A P(e2)) = P(e1 op &)
Ve, e (P(er) A d(e)) = P(er; &)
Ve, e.(P(e1) A P(e2)) = P(while e do e, done)
ternary: Ve, e, e3.(P(er) A P(e2) A P(e3)) = P(if e then e, else e3)

(op +) (m + n2,s) — (n,s) ifn=n1+m
(op >) (m > ny,s) — (b,s) if b= (n > m)

(e1,5) — (ef, ")

1 . .
(op1) (e1 op e2,5) — (€] op e,5) (if1) (if true then e, else e3,s) — (e,s)
(e,5) — (eh,s") (if2) (if false then e else e3,s) —> (es3,s)
(0p2) s 25
(v op e,s) — (v op €}, s)
) fer.s) — (e].5)
ref) (14,s) — (n,s) if £ € dom(s) and s({) = n (if er then e else e3,s) — (if e then e else e3,s')
signl) (0 :=n,s) — (skip,s+ {£+— n}) ifl € dOTV\(/f"lzle)
ian2) (e,s) — (&', s') (while e; do e, done,s) — (if e; then (e; while e; do e done
Ssign
(:=e,s) — (L:=¢€s)

(seql) (skip; ez, s) — (e2,s)

(seq2) (e1,5) — (ef,s)

(e1; e2,5) — (e]; e2,5")

106

(assignl) (¢ :=n,s) — (skip,s+ {¢— n}) if £ € dom(s)

(assign2)

108

Lemma: Values don’t reduce

Lemma 9 For alle € Ly, ifeis a value then ¥ s.— Je’.s'.(e,s) — (€', 5).

Proof.

By defn e is a value if it is of one of the forms n, b, skip. By examination of the rules
on slides ..., there is no rule with conclusion of the form (e,s) — (€', s’) for e one of
n, b, skip. []

100

Inversion

In proofs involving multiple inductive definitions one often needs an inversion property,
that, given a tuple in one inductively defined relation, gives you a case analysis of the
possible “last rule” used.

Lemma 10 (Inversion for —) If (e,s) — (&,5) then either

1. (op +) there exists n1, ny, and n such that e = ny + ny, € =n, $ = s, and
n = ny + ny (NB watch out for the two different +s), or

2. (opl) there exists e1, e, op, and €| such that e = e; op e, & =¢| op e, and
(e1,5) —> (e1,s), or

3. ..

Lemma 11 (Inversion for) If '+ e:T then either

1. ..

110

All the determinacy proof details are in the notes.

111

Having proved those 9 things, consider an example (!/ + 2) + 3. To see why
O((! +2) + 3) holds:

+
/ N\
+ 3

/ N\

) 2

112

Inductive Definitions and Rule Induction

How to prove facts about all elements of the L1 typing relation or the L1 reduction
relation, e.g. Progress or Type Preservation?

Theorem 2 (Progress) If [+ e:T and dom(I') C dom(s) then either e is a value or
there exist €', s' such that (e,s) — (€',).

Theorem 3 (Type Preservation) If [= e:T and dom(I') C dom(s) and
(e,s) —» (€/,s') thenT - €T and dom(I') C dom(s").

Recall that a derivation of a transition (e,s) — (€’,s’) or typing judgment [- e: T is
a finite tree such that each step is a concrete rule instance.

(op+)

er2) — @

(2+2)+3,{}) — (4+3,{})

<(2+2)+3257{}> — <4+325’{}> (Op]_)
—————— (deref) ————— (int)
[F1lin [2:in _
FtF (! + 2):int . (op +) E3int (int)
(op +)

M= (1 +2)+ 3int

and (e,s) — (€’,s') is an element of the reduction relation (resp. [e: T is an
element of the transition relation) iff there is a derivation with that as the root node.

113

114

Principle of Rule Induction

For any property ®(a) of elements a of A, and any set of rules which define a subset
Sk of A, to prove

Va € Sg.o(a)

it's enough to prove that {a | ®(a)} is closed under the rules, ie for each concrete rule

instance
hi .. hg

if ®(h1) A ... n D(hg) then d(c).

Why is this sound? Just like mathematical induction, you can think of the soundness
argument informally in terms of stitching together implications about derivations, or
use the fact that the inductively defined relation is a least fixed point.

115

Principle of rule induction (a slight variant)

For any property ®(a) of elements a of A, and any set of rules which inductively define
the set Sk, to prove

Vace SR.d)(a)

it's enough to prove that
for each concrete rule instance

hi .. hy
C

if q)(hl)/\.../\q)(hk)/\hl € SpAa..Ahg € Sg then q)(C).

116

Proving Progress (Outline)

Theorem 2 (Progress) If [= e:T and dom(I") C dom(s) then either e is a value or
there exist €', s' such that (e,s) — (€', s).
Proof Take
o(le T) s, dom(l") € dom(s) =
value(e) v (3 €,5'.(e,s) — (€,5'))

We show that for all [, e, T, if [- e:T then ®(I', e, T), by rule induction on the
definition of +.

117

Principle of Rule Induction (variant form): to prove ®(a) for all a in the set Sg, it's
enough to prove that for each concrete rule instance

ht .. hg
C

if q)(hl) Ao A q)(hk) Ahi € Sga..Ahe € Sg then CD(C).
Instantiating to the L1 typing rules, have to show:

(int) VT, n.d(,n,int)

(deref) VT, 0.I(¢) = intref = &(T, 14, int)

(op+) VT e, e (d(e, int) A d(T e, int) AT F epint AT F eytint)
= ¢(F, €1 + e, int)

(seq) VT,en, e TP(Me,unit) A d(M e, T)ATFepunital - ep:T)
= CD(F, €1, €2, T)

etc.

118

Having proved those 10 things, consider an example I' - (!/ 4 2) + 3:int. To see why
O(T, (1/+2)+ 3, int) holds:

Frrne (deref) o (int)
M= (1 +2)int
M= (1 +2)+ 3int

110

Proving Progress

Theorem 2 (Progress) If [= e:T and dom(I") C dom(s) then either e is a value or
there exist €', s' such that (e,s) — (€', s).
Proof Take
o(le T) s, dom(l") € dom(s) =
value(e) v (3 €,5'.(e,s) — (€,5'))

We show that for all [, e, T, if [- e:T then ®(I', e, T), by rule induction on the
definition of +.

120

Principle of Rule Induction (variant form): to prove ®(a) for all a in the set S defined

by the rules, it's enough to prove that for each rule instance

ht .. hg
C

if q)(hl) Ao A q)(hk) Ahi € Sgpa..nhe € Sk then CD(C).
Instantiating to the L1 typing rules, have to show:

(int) VT, n.d(,n,int)
(deref) VT, 0.I(¢) = intref = &(T, 14, int)

= ¢(F, e1 + e, int)

= CD(F, €1, €2, T)

etc.

(op+) VT e, e (d(e, int) A d(T e, int) AT F epint AT F eytint)

(seq) VT,en, e TP(Me,unit) A d(M e, T)ATFepunital - ep:T)

ol e T) © s, dom(lN) C dom(s) =

value(e) v (3 €,5'.(e,s) — (€,5'))

Case (op+). Recall the rule
[eq:int

[+ eint

op+) 2
() [+ e + eint

Suppose ®(I', e1,int), ®(I, ex,int), ' - e:int, and I - ex:int. We have to
show ®(I, e; + e, int).

Consider an arbitrary s. Assume dom(l") C dom(s).

Now e; + e is not a value, so we have to show
A(e',s").(e1 + e2,5) — (€,).

Using ®(T, e1,int) and ®(I, e, int) we have:
case e; reduces. Then e + e does, using (opl).
case e is a value but e, reduces. Then e; + e, does, using (op2).

case Both e; and e, are values. Want to use:

‘(OP‘F) (m + nm,s) — (n,s) ifn:n1+n2‘

Lemma 12for allT,e, T, ifT = e:T, e is a value and T = int then for
some n € 7 we have e = n.

We assumed (the variant rule induction principle) that I - e;:int and
[+ ex:int, so using this Lemma have e; = ny; and e; = n».

Then e; + e, reduces, using rule (op+).

1292

123

Lemma: Values of integer type

Lemma 13 forall,e, T, ifT' - e:T, e is a value and T = int then for somen € 7
we have e = n.

124

All the other cases are in the notes.

128

Which Induction Principle to Use?

Which of these induction principles to use is a matter of convenience — you want to use
an induction principle that matches the definitions you're working with.

126

Example Proofs

In the notes there are detailed example proofs for Determinacy (structural induction),
Progress (rule induction on type derivations), and Type Preservation (rule induction on
reduction derivations).

You should read them off-line, and do the exercises.

127

When is a proof a proof?

What's a proof?

Formal: a derivation in formal logic (e.g. a big natural deduction proof tree).
Often far too verbose to deal with by hand (but can machine-check such

things).

Informal but rigorous: an argument to persuade the reader that, if pushed, you could
write a fully formal proof (the usual mathematical notion, e.g. those we
just did). Have to learn by practice to see when they are rigorous.

Bogus: neither of the above.

clear
structure!
1t matters!

1209

Sometimes it seems hard or pointless to prove things because they seem ‘too
obvious'....

1.
2.

proof lets you see (and explain) why they are obvious

sometimes the obvious facts are false...

. sometimes the obvious facts are not obvious at all

. sometimes a proof contains or suggests an algorithm that you need — eg, proofs

that type inference is decidable (for fancier type systems)

1320

Determinacy

Progress

Type Preservation
Safety

Uniqueness of typing
Decidability of typability
Decidability of checking

Summarising Proof Techniques

structural induction for e

rule induction for [- e: T

rule induction for (e,s) — (€, s)
mathematical induction on —*

exhibiting an algorithm
corollary of other results

Functions — L2

132

Functions, Methods, Procedures...

fun addone x = x+1

public int addone(int x) {
x+1

}

<script type="text/vbscript">
function addone(x)

addone = x+1

end function

</script>

133

Functions — Examples

We will add expressions like these to L1.

fun xint - x+1)

fun xint > x+1)7

yint — (fun x:int — x +y))

y:int — (fun xiint - x+y)) 1

un x:int — int — (fun y:int — x (x y)))

un x:int — int — (fun y:int — x (xy))) (fun xiint - x+ 1)
(fun x:int — int — (fun y:int — x (xy))) (fun xint > x+1))7

-
c
=

-

A~ N N AN N S
_., -t
=
=

134

Functions — Syntax

First, extend the L1 syntax:
Variables x € X for a set X = {x,y,7,...}

Expressions
e = ..|[fun xxT —e|ee|x

Types

T int | bool | unit | Ty — T>
Tioe = intref

135

Variable shadowing
(fun x:int — (fun x:int — x+ 1))

class F {
void m() {
int y;
{int y; ... 1} // Static error

{int y; ... }

}

Alpha conversion
In expressions fun x:T — e the x is a binder.

» inside e, any x's (that aren't themselves binders and are not inside another
fun x:T' — ..) mean the same thing — the formal parameter of this function.

» outside this fun x: T — e, it doesn't matter which variable we used for the formal
parameter — in fact, we shouldn’t be able to tell. For example, fun x:int — x+ 2
should be the same as fun y:int — y + 2.

cf f01x+x2dx:f01y+y2dy

136

137

Alpha conversion — free and bound occurrences

In a bit more detail (but still informally):

Say an occurrence of x in an expression e is free if it is not inside any (fun x:T — ...).
For example:

17

X+y

fun x:int - x+2

fun xint > x+7z

if y then 2 +x else ((fun x:int — x +2)z)

All the other occurrences of x are bound by the closest enclosing fun x: T — ...

138

Alpha conversion — Binding examples

fun erz
fun m-m

fun m—i—z

fun i@z

fun x:int — (fun m+2)

130

Alpha Conversion — The Convention

Convention: we will allow ourselves to any time at all, in any expression
..(fun x:T — e)..., replace the binding x and all occurrences of x that are bound by
that binder, by any other variable — so long as that doesn't change the binding graph.

For example:
fun m+z = fun m+z % funm

140

This is called ‘working up to alpha conversion'. It amounts to regarding the syntax not
as abstract syntax trees, but as abstract syntax trees with pointers...

141

Abstract Syntax up to Alpha Conversion

fun xiint > x+2z = fun yiint—>y+z # fun zint -z 4z
Start with naive abstract syntax trees:
fun x:int — fun y:int — fun z:int —

| | |
N NN

add pointers (from each x node to the closest enclosing fun x: T — node);
remove names of binders and the occurrences they bind
fun -:int — fun -:int — fun -:int —

| | |
LN L TN

fun x:int — (fun x:int — x+ 2)
= fun y:int — (fun zint > z+2) # fun zint — (fun y:int — z + 2)

fun -:int — fun -:int —

fun -:int — fun -:int —

+ +

RN PN

° 2 ° 2

149

143

(fun xiint - x) 7

/\

fun -:int —

(|

fun z:int — int — int — (fun yiint > zyy)

fun -:int — int — int —

fun -:int —

De Bruijn indices

Our implementation will use those pointers — known as De Bruijn indices. Each
occurrence of a bound variable is represented by the number of fun -:T7 — nodes you
have to count out to to get to its binder.

fun -:int —» (fun -:int > vo+2) # fun -:int — (fun -:int — v; +2)

fun -:int — fun -:int —

fun -:int — fun -:int —

| |
+

/TN PN

° 2 ° 2

Free Variables

Say the free variables of an expression e are the set of variables x for which there is an
occurence of x free in e.

fv(x) {x}
fv(er op e) fv(er) U fv(en)
fv(fun x:T —e) = fv(e) — {x}

Say e is closed if fv(e) = {}.
If E is a set of expressions, write fv(E) for | J, . ¢ fv(e).

(note this definition is alpha-invariant - all our definitions should be)

Substitution — Examples

The semantics for functions will involve substituting actual parameters for formal
parameters.

Write {e/x}e’ for the result of substituting e for all free occurrences of x in €’. For
example

{3/x}(x = x) = (323)

{3/x}((fun xiint > x+y)x) = (fun xint > x+y)3
{y+2/x}(fun yint = x+y) = fun zint = (y +2)+z

146

147

Substitution — Definition

Defining that:

{e/z}x = e if x=1z
= X otherwise
{e/z}(fun x:T —e1) = fun x:T — ({e/z}e1) if x # z (*)
and x ¢ fv(e) (¥)

{e/z}(e1 &) = ({e/z}e)({e/z}er)

if (*) is not true, we first have to pick an alpha-variant of fun x:T7 — e; to make it so
(always can)

148

Substitution — Example Again

{y +2/x}(fun y:int > x+y)
= {y+2/x}(fun y"int — x +y’) renaming
= fun y:int — {y+2/x}(x+y)asy #xandy ¢ fv(y+2)
= fun y"int — {y +2/x}x+ {y +2/x}y’
= fun y:int— (y+2)+y

(could have chosen any other z instead of v/, except y or x)

140

Simultaneous substitution
A substitution o is a finite partial function from variables to expressions.

Notation: write a o as {e;/x1, .., ex/xx} instead of {x; — ey, ..., xx + e} (for the
function mapping x; to e; etc.)

A definition of o e is given in the notes.

150

Function Behaviour
Consider the expression
e = (fun x:unit — (/:=1);x) (/ :=2)
then
(e, {l— 0}) —* (skip, {/ — 777})

151

Function Behaviour. Choice 1: Call-by-value

Informally: reduce left-hand-side of application to a fun-term; reduce argument to a
value; then replace all occurrences of the formal parameter in the fun-term by that
value.

= (fun x:unit — (/ :=1);x)(/ := 2)

(e,{I=0}) — {((fun xwunit — (/:= 1);x)skip, {/ = 2})
— {((I:=1); skip Al=2})
— (skip; skip Al=1})
— (skip Al=1})

152

L2 Call-by-value

Values vi:=b | n|skip | fun x:T — e

(appl) <61,S> — <eivsl>

(e1 e2,5) — (€] e, 5)

(e2,5) — (&3,5)
2
(app2) (ve,s) — (vés)

(fun) ((fun x:T — e) v,s) — ({v/x}e,s)

L2 Call-by-value — reduction examples

(fun x:iint — fun y:iint > x+y)(3+4)5,s)
((fun x:int — fun y:int = x+y) (3+4))5,s)
((fun x:int — fun y:int > x+y)7)5,s)
({7/x}(fun y:int = x+y)) 5,s)

((fun yiint > 7+4y))5,s)

7+5,s)

12

{
{
{
{
{
{
(12,s)

llllllll

(fun fiint — int — f 3) (fun x:int — (14 2) 4 x)

153

Function Behaviour. Choice 2: Call-by-name

Informally: reduce left-hand-side of application to a fun-term; then replace all
occurrences of the formal parameter in the fun-term by the argument.

e = (fun x:unit — (/:=1);x) (/ :==2)

(e,{l—0}) — ((I:=1);1:=2,{I—0})
— (skip ;/:=2,{I—1})
— (=2 Al 1))
— (skip A= 2})

L2 Call-by-name

(same typing rules as before)

(e1,5) —> (e1,s)

CBN-app
() (e1 €2,5) — (€] e, 5)

(CBN-fun) {((fun x:T — e)ey,s)
Here, don't evaluate the argument at all if it isn't used

((fun x:unit — skip)(/ :
— ({/:=2/x}skip
= (skip

but if it is, end up evaluating it repeatedly.

— ({e2/x}e;s)

=2),{/—0})
A= 0})

{l—0})

156

Call-By-Need Example (Haskell)

let notdivby x y = y ‘mod‘ x /= 0

enumFrom n = n : (enumFrom (n+1))
sieve (x:xs) =
x : sieve (filter (notdivby x) xs)

in

sieve (enumFrom 2)
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,
59,61,67,71,73,79,83,89,97,101,103,107,109,
113,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229, 233,
mInterrupted!

157

Purity

158

Function Behaviour. Choice 3: Full beta

Allow both left and right-hand sides of application to reduce. At any point where the
left-hand-side has reduced to a fun-term, replace all occurrences of the formal
parameter in the fun-term by the argument. Allow reduction inside lambdas.

(fun xiint - 2+ 2) — (fun x:int — 4)

150

L2 Beta

(e1,5) — (e, ")
(e1 e2,5) — (e e2,5)

(beta-appl)

<62, 5> — <eév 5/>

beta-app2
() (e1 e2,5) — (e1 €b,5)

(beta-funl) ((fun x:T — e)es,s) — ({e2/x}e,s)

(e,s) — (€,)
fun x:T = e,s) — (fun x:T — €', ¢)

(beta-fun2)

160

L2 Beta: Example
(fun x:int — x+x) (24 2)

v

(fun xiint > x+x)4 2+2)+(242)

\ L \
44+ (2+2) (2+2)+4
| /

4+4

|

8

161

Function Behaviour. Choice 4: Normal-order reduction

Leftmost, outermost variant of full beta.

162

Back to CBV (from now on).

163

Typing functions (1)

Before, I gave the types of store locations; it ranged over TypeEnv which was the set
of all finite partial functions from locations IL to T,..

Now, it must also give assumptions on the types of variables:

Type environments [are now pairs of a [, (a partial function from LL to T}, as
before) and a I',.,, a partial function from X to T.

For example, we might have N, = h:intref and 'y, = x:int, y:bool — int.

Notation: we write dom(I") for the union of dom(I',c) and dom(lyz,). If
x ¢ dom(lyar), we write I, x: T for the pair of [',c and the partial function which
maps x to T but otherwise is like I'y,,.

164

Typing functions (2)
(var) TExT ifl(x)=T

Mx:TrkeT
(fun)
lfun xxT —e: T =T/

Feep:T— T e T
I+ €1 eziT/

(app)

165

Typing functions — Example

x:int - x:int (var) x:int F 2:int (int)

x:int F x + 2:int (op+)

{} F (fun x:int — x + 2):int — int (Fun) {} F 2:int

{} F (fun x:int — x + 2) 2:int

(int)
(ap

p)

166

Typing functions — Example

(fun (x:int — int) — x((fun x:int — x)3))

167

Properties of Typing
We only consider executions of closed programs, with no free variables.

Theorem 14 (Progress) If e closed and [= e: T and dom(I") C dom(s) then either e
is a value or there exist €', s’ such that (e,s) — (€', s).

Note there are now more stuck configurations, e.g.((3) (4))

Theorem 15 (Type Preservation) If e closed and [- e: T and dom(I") C dom(s)
and (e,s) — (€',s') then T+ €":T and €' closed and dom(I') C dom(s").

168

Proving Type Preservation

Theorem 15 (Type Preservation) If e closed and I = e: T and dom(I") C dom(s)
and (e,s) — (€/,s') then T €T and €’ closed and dom(I") C dom(s").

Taki
e d(e, s, €,s') =
VI, T.
Nt e:T A closed(e) A dom(l") € dom(s)
=
e e':T A closed(e') Adom(lN) C dom(s’)

we show V e, s, €' s’ .(e.s) — (€/,s') = ®(e,s, €', s") by rule induction.

160

To prove this one uses:

Lemma 16 (Substitution) /fT - e:T and I, x:T = €T with x ¢ dom(I") then
-{e/x}e:T.

170

Normalization

Theorem 17 (Normalization) /n the sublanguage without while loops or store
operations, if [= e:T and e closed then there does not exist an infinite reduction
sequence (e, {}) — (e1,{}) — (&2, {}) — ...

Proof.

? can't do a simple induction, as reduction can make terms grow. See Pierce Ch.12
(the details are not in the scope of this course).

O

171

Local definitions

For readability, want to be able to name definitions, and to restrict their scope, so add:
e == ..|let xxT=¢ in &

this x is a binder, binding any free occurrences of x in e;.

Can regard just as syntactic sugar.

let xxT=¢ in &g ~ (fun xT = &)e

172

Local definitions — derived typing and reduction rules (CBV)

let xxT=¢ in &g ~ (fun x:T — e)e;

M-e:T Mx:Tke:T
l-let x:T =e; in ex:T'

(let)

(letl)
(e1,5) — (el,s)
(let x:T =¢; in e,s) — (let x:T =¢] in e,5)

(let2)
(let x:T =v in ey,s) — ({v/x}ess)

173

Recursive definitions — first attempt

How about
x = (fun y:int —if y>1 then y+ (x (y+ —1)) else 0)

where we use x within the definition of x? Think about evaluating x 3.

Could add something like this:
e == ..|let rec xxT =¢ in €
(here the x binds in both e and €’) then say
let rec x:iint — int =

(fun y:int —if y > 1 then y+ (x(y + —1)) else 0)
in x3

But...
What about
let rec x=(x,x)in x7
Have some rather weird things, eg
let rec x:int list=3:x in x

does that terminate? if so, is it equal to let rec x:int list=3::3::x in x 7 does
let rec x:int list =3: (x+ 1) in x terminate?

In a CBN language, it is reasonable to allow this kind of thing, as will only compute as
much as needed. In a CBV language, would usually disallow, allowing recursive
definitions only of functions...

175

Recursive Functions

So, specialize the previous let rec construct to

T = T1— T recursion only at function types
e = fun y:T; — e and only of function values
e == ..|let rec xxT; = To=(fun y:T1 — €) in &

(here the y binds in ej; the x binds in (fun y:T — e;) and in &)

Mx:Ty = To,y:T1 Fe: Ty Mx:T1 — Tob e T
F-let rec x:T;1 — To=(fun y:T; — 1) in ex:T

(let rec fun)

Concrete syntax: In OCaml can write let rec f(x:T1):To = e; in ey, or even
let rec f x==¢€1 in e, forlet rec f:T71 — To =fun x:T1 — e Iin e.

176

Recursive Functions — Semantics

(letrecfun) (let rec x:Ty — To = (fun y:T; — &) in e,s)
—
({(fun y:T; — let rec x:T1 — To = (fun y:T; — e1) in e1)/x}ey, s)

177

Recursive Functions — Minimization Example

Below, in the context of the let rec , x f n finds the smallest n’ > n for which f n’ evaluates
to some m’ < 0.

let rec x:(int — int) — int — int
= fun fiint — int — fun z:int — if (fz) > 1 then xf (z+1) else z
in
let f:int — int
= (fun z:int —if z>3 then (if 3>z then 0 else 1) else 1)
in
xf0

178

More Syntactic Sugar
Do we need e;; e,?

No: Could encode by e1; e ~~ (fun y:unit — e)e;

Do we need while e¢; do e, done ?

No: could encode by while ¢; do e done ~~

let rec w:unit — unit =

fun y:unit — if e; then (e; (w skip)) else skip
in

w skip

for fresh w and y not in fv(e;) U fv(e).

170

OTOH, Could we encode recursion in the language without?

We know at least that you can't in the language without while or store, as had
normalisation theorem there and can write

let rec x:int — int =fun y:int = x(y +1) in x0

here.

180

Implementation
There is an implementation of L2 on the course web page.

See especially Syntax.sml and Semantics.sml. It uses a front end written with
mosmllex and mosmlyac.

Syntax.sml
Semantics.sml

181

Implementation — Scope Resolution

datatype expr_raw =

| Var_raw of string

| Fun_raw of string * type_expr * expr_raw
| App_raw of expr_raw * expr_raw
I

datatype expr = ...
| Var of int
| Fun of type_expr * expr
| App of expr * expr

resolve_scopes : expr_raw —> expr

182

Implementation — Substitution
subst : expr -> int -> expr -> expr
subst e O e’ substitutes e for the outermost var in e’.

(the definition is only sensible if e is closed, but that's ok — we only evaluate whole
programs. For a general definition, see [Pierce, Ch. 6])

fun subst e n (Var n1) = if n=nl1 then e else Var nl
| subst e n (Fun(t,el)) = Fun(t,subst e (n+1) el)
| subst e n (App(el,e2)) = App(subst e n el,subst e n e2)
| subst e n (Let(t,el,e2))
= Let (t,subst e n el,subst e (n+l) e2)

| subst e n (Letrecfun (tx,ty,el,e2))
= Letrecfun (tx,ty,subst e (nt+2) el,subst e (n+l) e2)
|

183

Implementation — CBV reduction

reduce (App (el,e2),s) = (match el with
Fun (t,e) ->
(if (is_value e2) then
Some (subst e2 0 e,s)
else
(match reduce (e2,s) with
Some(e2’,s’) -> Some(App (el,e2’),s’)
| None -> None))
_ => (match reduce (el,s) with
Some (el’,s’)->Some(App(el’,e2),s’)
| None -> None))

184

Implementation — Type Inference

type typeEnv
= (loc*type_loc) list * type_expr list

inftype gamma (Var n) = nth (snd gamma) n
inftype gamma (Fun (t,e))
= (match inftype (fst gamma, t::(snd gamma)) e with
Some t’ -> Some (func(t,t’))
| None -> None)
inftype gamma (App (el,e2))
= (match (inftype gamma el, inftype gamma e2) with
(Some (func(t1,t1’)), Some t2) —->
if t1=t2 then Some t1’ else None
| _ -> None)

185

Implementation — Closures

Naively implementing substitution is expensive. An efficient implementation would use
closures instead — cf. Compiler Construction.

We could give a more concrete semantics, closer to implementation, in terms of
closures, and then prove it corresponds to the original semantics...

(if you get that wrong, you end up with dynamic scoping, as in original LISP)

186

Aside: Small-step vs Big-step Semantics
Throughout this course we use small-step semantics, (e,s) — (¢/,s).
There is an alternative style, of big-step semantics (e,s) || (v, s’), for example

(e1,5) ¥ (n1,s") (e2,5") | (m2,s")
(n,s) (n,s) (e1 +e,s) (ns"y n=n+ny

(see the notes from earlier courses by Andy Pitts).

For sequential languages, it doesn't make a major difference. When we come to add
concurrency, small-step is more convenient.

Data — L3

188

Products

‘ Tl* T2

.| (e1,e) | fst e|snd e

180

Products — typing
H—elle F}—eg:Tg

(pair)
M+ (e1, 62)2T1 * T2

H M+ e:T1 * T2
projl) L' ©-f1% 12
() M-fst e:Ty

: e Ty x T
proj2) L= € 1% 2
() Esnd e:T»

190

Products — reduction

v = | (v1,v2)

(pairl) (e1,5) — (e1,s")

<(e17 62), 5> — <(eiv 82), S/>
(2,5) — (e,5)

ir2
P22) e s) — (.09

(projl) (fst (vi,v),s) — (v1,s) (proj2) (snd (vi,v2),s) — (va,s)

(proj3) (e,s) — (€', s) (proj4) (e,s) — (€', s)

(fst e,s) — (fst €',s') (snd e,s) — (snd ¢€',s)

101

Sums (or Variants, or Tagged Unions)

=L ‘ T+ T»
e == ..|linl eT |inr eT |
match e with inl (x;:T7) — e | inr (x2: T2) — &

Those xs are binders, treated up to alpha-equivalence.

102

Sums — typing

(inl) ([e:T1
Ninl exT1+ To: T+ T

(inr) -eTs
Minr eTy +To:T1 + T

MN-eTi1+ T
Mx:TiFe:T

My TobFe:T
(match) A

'+ match e with inl (x:T1) = e |inr (y:T2) = ex: T

103

Sums — type annotations

match e with inl (x1:T7) = e |inr (x2:T2) — &

Why do we have these type annotations?

To maintain the unique typing property. Otherwise
inl 3:int + int

and
inl 3:int + bool

104

Sums — reduction

v o= .. |inl v:T |inr v:T

(inl (e,s) — (€,5)
(inl e:T,s) — (inl €:T,s)

(e,s) — (€,s)

(matchl) (match e with inl (x:T7) — e |inr (y:T2) — e2,s)
— (match € with inl (x:T7) — e |inr (y:T2) — e, 5)

(match2) (match inl v:T with inl (x:T;) — e | inr (y:T2) — e2,s)
— ({v/x}er,s)
(inr) and (match3) like (inl) and (match2)

105

Constructors and Destructors

type constructors destructors
T—T|fun x:T — _ _e

T«T |(5-) fst _ snd _
T+ T |inl (L) inr ()| match

bool true false if

Proofs as programs: The Curry-Howard correspondence

(var) T,x:ThkxT

. M
(fun) r,X.Tl_e.T

lfun x:T —e: T — T

. / .
(app) e T =T [-exT

rPHP

rPkP

PP

(FP—sP TFHP

MN-e; e: T’

106

r-p

197

Proofs as programs: The Curry-Howard correspondence

(var) T,x:TEx:T

Mx:TkeT

(fun)
Fr-fun xT e T =T

l-e:T— T Fe:T

app
(app) MN-e e:T’

erl:Tl FF@:TZ

pair
(pair) N (e, e):Tix T

. FlFeTix Ty . MFeTyi*To
projl) —_—_ = "1% "2 proj2
() M-fst e Ty ()

(ml) M= e:T1
MN-inl eT1 + To:T1 + T2

(inr), (match), (unit), (zero), etc.. — but not (letrec)

+snd e:T,

rPEP

PP
rEP— P

r-pP— P rep
TP

repP TP
[PiAP

TEPLAP, TFPLAP,
rep re P

r-p

Py P

108

ML Datatypes
Datatypes in ML generalize both sums and products, in a sense

datatype IntList = Null of unit
| Cons of Int * IntList

is (roughly!) like saying

IntList = unit + (Int * IntList)

100

Records
A generalization of products.

Take field labels
Labels /ab € ILAB for a set LAB = {p,q, ...}

= ... | {lab1: T, .., laby: Ty}
e = ..|{laby =e1,..labx = e} | e.lab

(where in each record (type or expression) no /ab occurs more than once)

200

Records — typing

FFel:Tl .. FFek:Tk

(record)
([{Iab1 = €1, .., /abk = ek}:{/abl:Tl, ey /abk:Tk}

I+ e{laby:Tx,..,laby: Ty}
[e.lab;:T;

(recordproj)

201

(recordl)

(record2)

(record3)

Records — reduction

v u= .. |{laby = wi,.., labx = v\}

(er,s) — (€], ')

({laby = w1, .., lab; = ej, .., labx = ek}, s)
— ({laby = v1, .., lab; = €, .., lab, = e}, s')

({laby = w1, .., labx = vi}.lab;,s) — (vj,s)

(e,s) — (€, s)

(e.lab;,s) — (€'.lab;,s")

202

Mutable Store
Most languages have some kind of mutable store. Two main choices:

1 What we've got in L1 and L2:

e = . |l=elll]|x

P locations store mutable values
> variables refer to a previously-calculated value, immutably

> explicit dereferencing and assignment operators for locations
fun x:int — /:= (1)) +x

203

2 In C and Java,

> variables let you refer to a previously calculated value and let you
overwrite that value with another.

void foo(x:int) {
» implicit dereferencing, 1 =1 + x

3
» have some limited type machinery to limit mutability.

— pros and cons:

204

References

T == . |T ref
Toe 1= intref T ref
e n= | e=e |

|er:=ex|le| refe|’

205

References — Typing

[FeT

(ref)

ME refe: T ref

(assign)

(deref)

M e:T ref M e:T
[+ e := e:unit
e T ref

[=le:T

(loc) M) =T ref
FE20:T ref

206

References — Reduction

A location is a value:
v o= |4

Stores s were finite partial maps from IL to Z. From now on, take them to be finite
partial maps from L to the set of all values.

(refl) (refv,s) — ({,s+{l— v}) ¢ ¢ dom(s)

(e,s) — (€/,s')
(ref e,s) — (ref €,5)

(ref2)

207

(derefl) (14,s) — (v,s) if £ € dom(s) and s(¢) = v

(deref2) e,s) — (e,s)
(le,s) — (le/,s)

(assignl) (¢ :=v,s) — (skip,s + {¢ — v}) if ¢ € dom(s)

i (e,s) (e,s")
(assign2) (0:=e;s) — (L:=¢€,5)

l

(e,s) — (€,)

assign3
() (e :=ey,s) — (¢ :=ep,5)

208

Type-checking the store

For L1, our type properties used dom(I') C dom(s) to express the condition ‘all
locations mentioned in [exist in the store s’.

Now need more: for each / & dom(s) need that s(/) is typable. Moreover, s(¢) might
contain some other locations...

200

Type-checking the store — Example

Consider
e = let x:(int — int) ref = ref(fun z:int — z) in
(x:= (fun zint —if z>1 then z+ (('x) (z+ —1)) else 0);
() 3)
which has reductions
(e,{}) —
(e1,{h — (fun zint — z)}) —*
(e2,{h + (fun ziint —if z>1 then z+ (('h) (z+ —1)) else 0)})

—* (6, ...)

210

So,say sif VvVl edom(s)I T.I(4)=T refal Fs(f):T.

The statement of type preservation will then be:

Theorem 18 (Type Preservation) If e closed and [+ e:T and ' - s and

(e,s) — (€', s') then for some [" with disjoint domain to I we have [,[" - €T and
rres.

2711

Definition 19 (Well-typed store) Let [+ s if dom(I") = dom(s) and if for all
¢ € dom(s), ifT(¢) =T ref thenT - s(¢):T.

Theorem 20 (Progress) If e closed and ' = e:T and ' &= s then either e is a value or
there exist €', s’ such that (e,s) — (/. s').

Theorem 21 (Type Preservation) If e closed and [- e:T and I - s and
(e,s) — (€/,s') then €' is closed and for some I" with disjoint domain to I we have
M I'Ee:Tandl, " F s

Theorem 22 (Type Safety) If e closed and [+ e:T and ' - s and (e,s) —* (€', s)
then either €' is a value or there exist €”, s such that (¢/,s") — (e, s").

2719

Implementation
The collected definition so far is in the notes, called L3.

It still roughly an OCaml fragment, but the OCaml syntax and typing rules for records
are different.

2713

Evaluation Contexts

Define evaluation contexts

E = _opel|vop_|if _ then e else e |
e
—e|v_]
let x:xT=_in e|

(e) | (vo) | fst [snd |

inl T |inr _:T |

match _ with inl (x:T) — e|inr (x:T) — e |
{laby = v1,..,lab;j = _, .., laby = e} | _.lab |
=e|vi= || ref _

2714

and have the single context rule

(e,s) — (€/,s)
(Ele],s) — (E[€],)

(eval)

replacing the rules (all those with > 1 premise) (opl), (op2), (seq2), (if3), (appl),
(app2), (letl), (pairl), (pair2), (proj3), (proj4), (inl), (inr), (matchl), (recordl),
(record3), (ref2), (deref2), (assign2), (assign3).

To (eval) we add all the computation rules (all the rest) (op +), (op >), (seql),
(if1), (if2), (while), (fun), (let2), (letrecfun), (projl), (proj2), (match2), (case3),
(record2), (refl), (derefl), (assignl).

Theorem 23 The two definitions of — define the same relation.

2715

(assignment and while) L11:2:3:4 Operational semantics
Type systems

Implementations
(functions and recursive definitions) L2°" Language design choices

Inductive definitions
(products, sums, records, references) L38_v

Abstract syntax up to alpha

Subtyping Semantic

and Objects9 Equivalenc__e_‘10

Cohcurrency12

Inductive proof — structural; rule

Subtyping and Objects

217

Polymorphism
Ability to use expressions at many different types.
» Ad-hoc polymorphism (overloading).

e.g. in Moscow ML the built-in 4+ can be used to add two integers or to add two
reals. (see Haskell type classes)

» Parametric Polymorphism — as in ML. See the Part Il Types course.

can write a function that for any type « takes an argument of type « list and
computes its length (parametric — uniform in whatever « is)

» Subtype polymorphism — as in various OO languages. See here.

Dating back to the 1960s (Simula etc); formalized in 1980,1984,...

2718

Subtyping — Motivation

Recall

M-e:T— T
M-e:T

app
(ap) M-e e:T

so can't type
/ (fun x:{p:int} - x.p) {p =3,q=4} :int

even though we're giving the function a better argument, with more structure, than it
needs.

210

Subsumption

‘Better’? Any value of type {p:int, q:int} can be used wherever a value of type {p:int}
is expected. (*)

Introduce a subtyping relation between types, written T <: T’, read as T is a subtype
of T" (a T is useful in more contexts than a 7').

Will define it on the next slides, but it will include {p:int, q:int} <: {p:int} <: {}

Introduce a subsumption rule

(sub) Nl-eT T<: T
M-e:T’

allowing subtyping to be used, capturing (*).

Can then deduce {p = 3,q = 4}:{p:int}, hence can type the example.

2790

Example

e (var) — (var) — (var)
x{pint} Fx{pint} , {} F 3int {}F &int -
x:{pint} Fx.print (record-prozzun) J{HH{p =3,q= 4:{pint, gint} recr) (%) (b
{} F (fun x:{p:int} = x.p){pint} = int {}F{p=3,q=4}{pint} om)

{}F (fun x:{p:int} = x.p){p=3,q=4}:int

where (%) is {p:int, q:int} <: {p:int}

71

The Subtype Relation

(s-refl)

T<:T

(s-trans) | < T T < T
T< T

Subtyping — Records

Forgetting fields on the right:

{/abl: Tl, .oy /abk: Tk./ labk+1: Tk+1, ey labk+k/:Tk+k/}
< (s-record-width)

{lab1: Ty, .., laby: Ty}

Allowing subtyping within fields:

T < T{ .. Ty <: TL

(s-record-depth)
{labi: Ty, .., laby: Ty} <: {lab1:Tj, .., laby:T}}

Combining these:

(s-record-width)
(s-record-depth)

(s-record-width)

{p:int, q:int} <: {p:int} {rint} <: {}
{x:{p:int, q:int}, y:{r:int}} <: {x:{p:int},y:{}}

2799

793

Allowing reordering of fields:

(s-record-order)
7 a permutation of 1, ... k

{/abl: T1,..,laby: Tk} < {/abﬂ(l): T7r(1)7 . /abﬂ(k): Tw(k)}

(the subtype order is not anti-symmetric — it is a preorder, not a partial order)

Subtyping — Functions

(s—fun) T{ <: T Ty <: T2/

T1—>T2<ZT{—>T2/

contravariant on the left of —

covariant on the right of — (like (s-record-depth))

74

1~

If f:T1 — T» then we can give f any argument which is a subtype of T7; we can
regard the result of f as any supertype of T». e.g., for

f = fun x:{p:int} — {p =x.p,q =28}

we have
{} F f:{p:int} — {p:int, q:int}
{} F f{p:int} — {p:int}
{} F f{p:int, qint} — {p:int, q:int}
{} F f{p:int, q:int} — {p:int}
as

{p:int, q:int} <: {p:int}

760

On the other hand, for

fun x:{p:int,qint} — {p = (x.p) + (x.q)}

we have
{} F f{p:int, q:int} — {p:int}
{} / f{pint} = T forany T
{} I/ F£:T — {p:int,q:int} for any T

27

Subtyping — Products
Just like (s-record-depth)

. / . /

T1x T <: T{*Té

Subtyping — Sums

Exercise.

778

Subtyping — References

Are either of these any good?

T < T

T < T

T ref <: T ref

No...

T ref <: T’ ref

2790

Semantics
No change (note that we've not changed the expression grammar).
Properties
Have Type Preservation and Progress.
Implementation
Type inference is more subtle, as the rules are no longer syntax-directed.

Getting a good runtime implementation is also tricky, especially with field re-ordering.

2320

Subtyping — Down-casts
The subsumption rule (sub) permits up-casting at any point. How about
down-casting? We could add

e = ..[(T)e

with typing rule
rEeT
F=(T)e:T

then you need a dynamic type-check...

This gives flexibility, but at the cost of many potential run-time errors. Many uses
might be better handled by Parametric Polymorphism, aka Generics. (cf. work by
Martin Odersky at EPFL, Lausanne, now in Java 1.5)

2731

(Very Simple) Objects

let c:{get:unit — int, inc:unit — unit} =
let x:int ref = ref 0 in
{get = fun y:unit —!x,
inc = fun y:unit — x := 1+Ix}

in

(c.inc)(); (c.get)()

Counter = {get:unit — int, inc:unit — unit}.

2739

Using Subtyping

let c:{get:unit — int, inc:unit — unit, reset:unit — unit} =
let x:int ref = ref 0 in
{get = fun y:unit —!x,
inc = fun y:unit — x := 1+Ix,
reset = fun y:unit — x := 0}

in

(c.inc)(); (c.get)()

ResetCounter = {get:unit — int, inc:unit — unit, reset:unit — unit}

<: Counter = {get:unit — int, inc:unit — unit}.

2733

Object Generators

let newCounter:unit — {get:unit — int, inc:unit — unit} =
fun y:unit —
let x:int ref = ref 0 in
{get = fun y:unit —x,
inc = fun y:unit — x == 1+Ix}

in

((newCounter ()).inc) ()

and onwards to simple classes...

234

Reusing Method Code (Simple Classes)
Recall Counter = {get:unit — int, inc:unit — unit}.

First, make the internal state into a record. CounterRep = {p:int ref}.

let counterClass: CounterRep — Counter =
fun x:CounterRep —
{get = fun y:unit —!(x.p),
inc = fun y:unit — (x.p) ;= 1+!(x.p)}

let newCounter:unit — Counter =
fun y:unit —
let x:CounterRep = {p = ref 0} in
counterClass x

735

Reusing Method Code (Simple Classes)

let resetCounterClass: CounterRep — ResetCounter =
fun x:CounterRep —
let super = counterClass x in
{get = super.get,
inc = super.inc,
reset = fun y:unit — (x.p) := 0}

CounterRep = {p:int ref}.
Counter = {get:unit — int, inc:unit — unit}.

ResetCounter = {get:unit — int, inc:unit — unit, reset:unit — unit}.

2736

Reusing Method Code (Simple Classes)

class Counter
{ protected int p;
Counter() { this.p=0; }
int get (O { return this.p; 7}
void inc () { this.p++ ; }
s

class ResetCounter
extends Counter
{ void reset () {this.p=0;}
};

237

Subtyping — Structural vs Named

A = {} with {p:int}
A’ A" with {g:bool}
A" = A" with {r:int}

{ Object (ish!)

| |
{p:int} A

> T

{p:int, g:bool} {p:int, r:int} A" A"

2738

Concurrency

230

Our focus so far has been on semantics for sequential computation. But the world is
not sequential...

» hardware is intrinsically parallel (fine-grain, across words, to coarse-grain, e.g.
multiple execution units)

» multi-processor machines
» multi-threading (perhaps on a single processor)

» networked machines

240

Problems

the state-spaces of our systems become large, with the combinatorial explosion —
with n threads, each of which can be in 2 states, the system has 2" states.

the state-spaces become complex

computation becomes nondeterministic (unless synchrony is imposed), as different
threads operate at different speeds.

parallel components competing for access to resources may deadlock or suffer
starvation. Need mutual exclusion between components accessing a resource.

241

More Problems!

partial failure (of some processes, of some machines in a network, of some
persistent storage devices). Need transactional mechanisms.

communication between different environments (with different local resources
(e.g. different local stores, or libraries, or...)

partial version change

communication between administrative regions with partial trust (or, indeed, no
trust); protection against mailicious attack.

dealing with contingent complexity (embedded historical accidents;
upwards-compatible deltas)

249

Theme: as for sequential languages, but much more so, it's a complicated world.

Aim of this lecture: just to give you a taste of how a little semantics can be used to
express some of the fine distinctions. Primarily (1) to boost your intuition for informal
reasoning, but also (2) this can support rigorous proof about really hairy crypto
protocols, cache-coherency protocols, comms, database transactions,....

Going to define the simplest possible concurrent language, call it L1, and explore a
few issues. You've seen most of them informally in C&DS.

243

Booleans b € B = {true, false}
Integers n € Z ={...,—1,0,1,...}
Locations ¢/ € .= {l Iy, h, b, ...}

Operations op 1=+ |>

Expressions

e == n|b|le op e|if e then e else e;3 |
l:=el|ll]
skip | er; €2 |
while e; do e, done |
erle
T == int|bool | unit | proc

Tioc = intref

244

Parallel Composition: Typing and Reduction

(thread) [= ewunit

F e:proc
(parallel) [e:proc I ex:proc
[+ er|ex:proc
(parallell) (e1,5) — (e1,5")
(e1]e,s) — (e]]en, s')
(parallel2) (e2,5) — (&5, 5")

(e1lex,s) — (e1]é€h,s’)

245

vV v.v. v Y

Parallel Composition: Design Choices
threads don't return a value
threads don't have an identity
termination of a thread cannot be observed within the language
threads aren’t partitioned into ‘processes’ or machines

threads can't be killed externally

Threads execute asynchronously — the semantics allows any interleaving of the
reductions of the threads.

All threads can read and write the shared memory.

(O17:=2,{1=1}) —= (010, {/ = 2})

/

(I:==1]1:=2,{I — 0})

\

(=10, /= 2}) —= (010, {/ = 1})

246

247

But, assignments and dereferencing are atomic. For example,
(I := 3498734590879238429384 | | :=7,{/ — 0})

will reduce to a state with / either 3498734590879238429384 or 7, not something with
the first word of one and the second word of the other. Implement?

But but, in (/:= e)|¢€, the steps of evaluating e and €’ can be interleaved.

Think of (/:= 1+!/)|(/ := 7+!/) — there are races....

248

The behaviour of (/ := 1+!/)|(/ := 7+!/) for the initial store {/ — 0}:

(ON0 =7+1), {1 = 1}) - . . = (010: 41— 8})

\

(= 1)1(/ = 7+1), {1 > 0}) (O10:=7+0),{/ = 1})

\
/
\
/

(1= 1+ 0)1(/ :=7+1),{I > 0O}) (1= 1)1(1:=7+0),{/ —~ 0}) (010 = 7). {1+ 1)) —"—= (010 { = 7))
(1= 1) (1= T+10), {1 = O}) ((1:=1+0)I(1:=7+0),{/ - 0}) (=110 =7). {1 0})
G ¥ >

(1= 1411 (1 =7+ 0),{I = O}) (1= 140)I(1:=7), {/ > O}) (1= 110,41 = 7)) ——= (010, {1 = 1})

/
\
/
\

(1= 14111 := 7). {1 = 0}) (1=1+010,{/ =7}

/

- + w

(1= 141010, 112 7)) . . (010,11 8)

240

Morals
» There is a combinatorial explosion.

» Drawing state-space diagrams only works for really tiny examples — we need better
techniques for analysis.

» Almost certainly you (as the programmer) didn't want all those 3 outcomes to be
possible — need better idioms or constructs for programming.

2750

So, how do we get anything coherent done?

Need some way(s) to synchronize between threads, so can enforce mutual exclusion for
shared data.

cf. Lamport's “Bakery” algorithm from Concurrent and Distributed Systems. Can you
code that in L1? If not, what's the smallest extension required?

Usually, though, you can depend on built-in support from the scheduler, e.g. for
mutexes and condition variables (or, at a lower level, tas or cas).

751

Adding Primitive Mutexes
Mutex names m € M = {m,my,...}
Configurations (e, s, M) where M:M — B is the mutex state

Expressions e::=... [lock m | unlock m

(lock) (unlock)
[+ lock m:unit [+ unlock m:unit

(lock) (lock m,s,M) — ((),s, M + {m — true}) if =M(m)

(unlock) (unlock m,s, M) — ((),s, M + {m false})

759

Need to adapt all the other semantic rules to carry the mutex state M around. For
example, replace
(op2) (e2,5) — (&3,5")
(v op e,s) — (v op €),5s)

by
(e2,5,M) — (€b,s’, M)

(Op2) ! / !
(v op e,5,M) — (v op e5,s", M)

Using a Mutex
Consider
e = (lock m;/:=1+!/;unlock m)|(lock m;/:=7+!/;unlock m)

The behaviour of (e, s, M), with the initial store s = {/ — 0} and initial mutex state
My = Am € M.false, is:

:= 14!/;unlock m)|(lock m;/:=7+!/;unlock m),s, M")

lock m

\
(e, s, Mp) O, {/— 8}, M)

ock m;/:=1+!/;unlock m)|(/:=7+!/;unlock m),s, M")

(where M" = My + {m + true})

753

2754

Using Several Mutexes

lock m can block (that's the point). Hence, you can deadlock.

e= (lock mj;lock my;/ :=!h;unlock mj;unlock mj)
| (lock mp;lock mj;h :=!/;unlock mj;unlock my)

914

Locking Disciplines

So, suppose we have several programs e, ..., ek, all well-typed with I = ¢;:unit, that we
want to execute concurrently without ‘interference’ (whatever that is). Think of them
as transaction bodies.

There are many possible locking disciplines. We'll focus on one, to see how it — and
the properties it guarantees — can be made precise and proved.

2756

An Ordered 2PL Discipline, Informally

Concurrent & Distributed Systems, Lecture 7:

» Associate a lock with every object
» Could be mutual exclusion, or MRSW
» Transactions proceed in two phases:
» Expanding Phase: during which locks are acquired but none are released,
» Shrinking Phase: during which locks are released, and no further are acquired.
» Operations on objects occur in either phase, providing appropriate locks are held
> Guarantees serializable execution.

» Non-Strict Isolation: releasing locks during execution means others can access those objects
> Fixed using strict 2PL: hold all locks until transaction end.

2757

An Ordered 2PL Discipline, still informally but less so

Fix an association between locations and mutexes. For simplicity, make it 1:1 —
associate / with m, /; with mq, etc.

Fix a lock acquisition order. For simplicity, make it m, mp, my, mo,
Require that each ¢;
» acquires the lock m; for each location /; it uses, before it uses it
P acquires and releases each lock in a properly-bracketed way
» does not acquire any lock after it's released any lock (two-phase)
P acquires locks in increasing order

Then, informally, (e1]...|ex) should (a) never deadlock, and (b) be serializable — any
execution of it should be ‘equivalent’ to an execution of e;(y); ...; €(x) for some
permutation .

2758

Problem: Need a Thread-Local Semantics

Our existing semantics defines the behaviour only of global configurations (e, s, M). To
state properties of subexpressions, e.g.

» e acquires the lock m; for each location /; it uses, before it uses it
which really means

» in any execution of ((ei|...|ej|...|ex), s, M), e acquires the lock m; for each
location /; it uses, before it uses it

we need some notion of the behaviour of the thread ¢; on its own

2750

Solution: Thread local semantics
Instead of only defining the global (e, s, M) — (e’ s’, M’), with rules
(assignl) (¢:=n,s,M) — (skip,s+ {{ — n}, M) if { € dom(s)

(e1,5, M) — (e],s’, M")
<61|62757 M> — <e{|92-,5/:M/>

(parallell)

define a per-thread e —°+ ¢’ and use that to define (e, s, M) — (¢/,s', M’), with rules
like
(t-assignl) (:=n =2 skip

e — e
(t-parallell) %
el — efle
l:=n
(c-assign) e—¢€ (&€dom(s)

(e,s, M)y — (e/,s+{l+— n}, M)

260

Note the per-thread rules don't mention s or M. Instead, we record in the label a what
interactions with the store or mutexes it has.

a == 71|f:=n|W=n|lock m|unlock m

Conventionally, 7 (tau), stands for “no interactions’, so e "5 ¢’ if e does an internal
step, not involving the store or mutexes.

Theorem 24 (Coincidence of global and thread-local semantics) The two
definitions of — agree exactly.

Proof strategy: a couple of rule inductions.

Example of Thread-local transitions

For e = (lock m; (/:= 1+!/;unlock m)) we have

=~

ocC m

e — skip; (/ :== 1+!/; unlock m)

. (1 :== 1+!Y; unlock m)

= (I := 1+ n;unlock m) forany n € Z
4 (I := n’;unlock m) forn’ =1+n

l::—">/ skip; unlock m

- unlock m

unlock m .
— skip

Hence, using (t-parallel) and the (c-*) rules, for s = s+ {/— 1+ s(/)},
(ele/,s, My) ——————— (skip|é€’, s’, Mp)

2761

262

Global Semantics

(©p 1) (mtmsM) > (0 M) #n=nim
(@02) (> ms M) — (b5, M) itb=(n>m)

15, M) — (e],5', M)

(op1) e M) vlen s M)
Ter op &5, M) — (¢ op &5 M)

(a5, M) — (&'

op2) __ems M) (e S
O e M o &

(deref) (1t.5.M) — (n.s.M) if £ < dom(s) and s() = n

(assign1) (¢ = n,s, M) —» {skip. s + {¢ > n). M) if £ € doun(s

.5 M) — (¢, 5. M)
assign?) h

R =y N P=r R
(seal) (skip: 2,5, M) — (e, M)

Cer, M) > (ef, 5, M)

seqz) s M) (el S M)
(seq2) T s M) — (e s, M)

(1) (i true then e else es,s, M) — (e5.M)

() (i false then e else e, M) — (o35, M)

) (o5 M) — (ef, 5" M)

Thread-Local Semantics

(top+) mtmTon Hn-min
(top=) mzm-"sb ifb=(mz=n)

rop) —
fwabdwa
(to52) a>g

PR

(t-deref) 10"~

(easignt) €= n"Tskip
(vassign?) —2—

et

(tseql) skipie; > e

(ese2) :
(1) i true then e clse & T e

(+i%2) if false then & else & e,

T & then & clse &5, M) (if ¢ then & clse &5

(while)
while ¢ do e done s M) — (if & then (e while e do

(o5, M) — (ef. 5" M

) _(01:5.M) 0 (6.5 M)
L B Py 1 P

(2,5, M) — (&5 M

(paralle) (22 M) (.5 M)
Teales,s. M) — (eleg.5- M)

(lock) (lock m,s, M) > (().5, M+ {m > true}) if ~M(m)

(unlock) (unlock m. s, M) — (().5. M+ {m > false].

i atq
ey if & then e else e > if ¢ then e else &

daotiefse sk,)

while & do e done —+if & then (e while & do e done) else skip

f— ‘;

(eparaer) —2
ale s ale

(t-ock) lock m %" ()

(tunlock) unlock m "% ()

o) e

ceassign e ¢ edom(s) o e e M(m)
(casien) Tes M) — (@5 {Lms n}. M) feloc) == W) — (5. M + (m > true})
o) £ L edom(e) s =0 ook

(cderet) Tes M) — (&,5.M] (cunlock) e s M — (.5, M = [m o false]|

2763

Now can make the Ordered 2PL Discipline precise
Say e obeys the discipline if for any (finite or infinite) e = e; 2 ey —% ...

» if a;is (/; := n) or (!/; = n) then for some k < i we have a, = lock m; without
an intervening unlock m;.

» for each j, the subsequence of a1, a>, ... with labels lock m; and unlock mj; is a

prefix of ((lock m;)(unlock m;))*. Moreover, if —(e, —) then the subsequence
does not end in a lock m;.

» if a; = lock m; and a; = unlock mj then i < /

» if a; = lock m; and a; = lock mj and / </ thenj < J

2764

. and make the guaranteed properties precise

Say e, ..., e are serializable if for any initial store s, if
((e1]...lex),s, Moy —* (€/,s", M") /— then for some permutation 7 we have
<e7T(1); e eﬂ'(k)a S, M0> —* <e//v 5/7 M/>

Say they are deadlock-free if for any initial store s, if

k
((e1]...1ex), s, Mo) —* (€, s', M) /— then not &’ *==" ¢”
i.e.e’ does not contain any blocked lock m subexpressions.

(Warning: there are many subtle variations of these properties!)

2765

The Theorem

Conjecture 25/f each e; obeys the discipline, then ey, ...e are serializable and
deadlock-free.

(may be false!)
Proof strategy: Consider a (derivation of a) computation
<(ell...|ek), S, MQ> — <é1, S1, /\/I1> — <@2, S?, M2> — ...

We know each &; is a corresponding parallel composition. Look at the points at which
each e; acquires its final lock. That defines a serialization order. In between times,
consider commutativity of actions of the different e; — the premises guarantee that
many actions are semantically independent, and so can be permuted.

2966

We've not discussed fairness — the semantics allows any interleaving between parallel
components, not only fair ones.

2967

Language Properties
(Obviously!) don't have Determinacy.
Still have Type Preservation.

Have Progress, but it has to be modified — a well-typed expression of type proc will
reduce to some parallel composition of unit values.

Typing and type inference is scarcely changed.

(very fancy type systems can be used to enforce locking disciplines)

2768

Semantic Equivalence

2760

?
24+2 ~ 4

In what sense are these two expressions the same?
They have different abstract syntax trees.
They have different reduction sequences.

But, you'd hope that in any program you could replace one by the other without

affecting the result....
242 4
/ esin(x)dx _ / esin(x)dx
0 0

270

How about (/:= 0;4) L (I:=1;3+!)

They will produce the same result (in any store), but you cannot replace one by the
other in an arbitrary program context. For example:

Cl] =+

C[l:=0;4] = (I:=0;4)+!

\\1\&\

Cll:=13+]= (I:=13+!)+!

On the other hand, consider

(=14 1): (1=l —1) £ (1:=11)

271

Those were all particular expressions — may want to know that some general laws are

valid for all e;, e, How about these:

?
€1, (e2; 63) ~ (el; 62); €3

[
(if e1 then e else e3);e ~ if e; then e;e else e3;¢

~

e;(if e; then e, else e3) ~ if e; then e;e; else e;e;

~

e;(if e; then e, else e3) ~ if e;e; then e else e;

279

let x= ref 0 in fun y:int — (x :=Ix+y);!x
?

~

let x= ref 0 in fun y:int — (x :=Ix —y); (0—x)

Temporarily extend L3 with pointer equality

Ee:T ref
[+ e: T ref

(op =)

[e; = er:bool

(Op :) (= 6/75> — (b, s)

2773

if b= (¢

1

274

let x= ref0 in
let y= ref 0 in
fun z:int ref —» if z=x then y else x

let x= ref0 in
let y= ref 0 in
fun z:int ref —»if z=1y then y else x

f= let x= ref0 in

let y= ref0 in

fun z:int ref - if z =x then y else x
g= let x= ref 0 in

let y= ref0 in

fun zint ref —if z=y then y else x

2775

Consider C = t _, where

t = fun h:(int ref — int ref) —

let z= ref0 in h(hz)=hz
(t f,{}) —"* (false,...)
(t g, {}) —* (true, ...)

276

With a ‘good’ notion of semantic equivalence, we might:

1.
2.

understand what a program is

prove that some particular expression (say an efficient algorithm) is equivalent to
another (say a clear specification)

prove the soundness of general laws for equational reasoning about programs
prove some compiler optimizations are sound (source/IL/TAL)

understand the differences between languages

277

What does it mean for ~ to be ‘good’?

. programs that result in observably-different values (in some initial store) must not

be equivalent

(3 S,51,5, v, V2.<61,S> — <V1,Sl> A <e2,5> — <V2,52> A V1 75 V2) = €1 ¢ €

. programs that terminate must not be equivalent to programs that don't

. ~ must be an equivalence relation

ex~e, €1 X e = e e, e X e xe3 — € X e3

. =~ must be a congruence

if e ~ e then for any context C we must have Cle;] ~ C[es]

. =~ should relate as many programs as possible subject to the above.

2778

Semantic Equivalence for L1
Consider Typed L1 again.

Define e =~ e to hold iff forall s such that dom(I') C dom(s), we have I - e;: T,
[+ e: T, and either

(a) (e1,s) —* and (e, 5) —¥, or

(b) for some v, s’ we have (e;,s) —* (v,s’) and (ep,s) —" (v, s').

2770

If T =unitthen C = _;1/.
If T =bool then C =if _ then!/ else!/.
If T=intthen C =hL :=_; !l

280

Congruence for Typed L1

The L1 contexts are:

C u= _opele op |
if _ then e else e3 |if e; then _ else e3 |
if e then e else _|
0= _|
e |en—|
while _ do e, done |while ¢; do _ done

Say ~/ has the congruence property if whenever e; :rT e> we have, for all C and T/,
if [Cler]: 7" and T Cles]: T/ then Cle] ~I" Cles].

2781

Theorem 26 (Congruence for L1) ~ has the congruence property.

Proof Outline By case analysis, looking at each L1 context C in turn.

For each C (and for arbitrary e and s), consider the possible reduction sequences
(Cle],s) — (e1,51) — (€2, 5) — ...

For each such reduction sequence, deduce what behaviour of e was involved
(e,s) — (&1,51) — ...

Using e ~ ¢’ find a similar reduction sequence of ¢'.

Using the reduction rules construct a sequence of C[e/].

2789

Theorem 26 (Congruence for L1) ~ has the congruence property.

By case analysis, looking at each L1 context in turn.
Case C=(/:=_). Suppose e ~! €, [+ (:=eT and '+ (:=¢€"T". By

examining the typing rules T = int and 7’ = unit.
To show (£ :=e) ~[" (¢ := ¢’) we have to show for all s such that
dom(l) € dom(s), then T =0 :=eT' (), T H{:=€:T"(y/), and
either

1. ({:=e,s) —* and ({ :=¢€,s) —*, or

2. for some v,s" we have (¢ :=e,s) —" (v,s’) and

(0:=¢s) —* (v,d).

2783

Consider the possible reduction sequences of a state (¢ := e, s). Either:
Case: (:=e,s) —", i.e.
(0:=es) — (e1,51) — (e2,%) — ...
hence all these must be instances of (assign2), with
(e,s) — (&1,51) — (&2, %) — ...
and e = (0 :=8&1), & = (L := &),...
Case: —((0 :=e,s) —v), i.e.
(0:=e,s) — (e1,51) — (€2, %)... —> {(ex,Sk) /—

hence all these must be instances of (assign2) except the last, which
must be an instance of (assignl), with

(e,s) — (&1,51) — (&2, 5) —> ... —> (Bk—1,5k—1)

and e; = ((:=81), & = (L = &),..., k1 = ({ := &,_1) and for some n
we have &1 = n, e, = skip, and s, = s, 1 + {/ — n}.

2784

Now, if (£ := e, s) —“ we have (e,s) —“, so by e ~[¢ we have (¢.s) —

(using (assign2)) we have (¢ :=¢',s) —*.

“. so

On the other hand, if =((/ := e, s) —*) then by the above there is some n and s;_;
such that (e,s) —* (n,sx_1) and (¢ := e, s) — (skip, sx—1 + {{ — n}).

By e ~/ € we have (¢/,s) —* (n,sc_1).

Then using (assignl)

(0:=¢€,s) —* (L :=n,sk_1) —> (skip,sk—1 + {¢ — n}) = (ek, sk) as required.

785

Back to the Examples

We defined e; =~/ e iff for all s such that dom(I') C dom(s), we have I - e;: T,
[+ e: T, and either

1. (e1,s) —* and (e2,5) —“, or
2. for some v, s" we have (e;,s) —* (v,s) and (e, 5) —* (v, 5).
So:
242 ~nt 4 for any I
(/:=0;4) £t (] :=1;3+!/) for any T
(1 =11+ 1); (] :=1] — 1) ~u"t (] :=1]) for any I including /:intref

2786

And the general laws?

Conjecture 27¢;; (e; €3) er (e1;€0);e3 forany I', T, ey, ex and e3 such that
[epunit, T'E exunit, and N e3: T

Conjecture 28((if e; then e, else e3);e) ~/ (if e; then e;eelse es;e) for any
[, T, e, e, & and e3 such that I b e;:bool, [- ex:unit, [+ e3:unit, and '+ e: T

Conjecture 29(e; (if e; then e else e3)) ~/[(if e; then e;e else e;e3) for any
[, T, e, e, & and e3 such that ' b e:unit, ' = e;:bool, T+ ex:T, and [+ e3: T

2787

Q: Is a typed expression I - e: T, e.g.
Liintref = if 1/ > 0 then skip else (skip; / := 0):unit:

1. alist of tokens [IF, DEREF, LOC "1", GTEQ, ..];

2. an abstract syntax tree . :
RPN
Vi S
|

3. the function taking store s to the reduction sequence
(e,s) — (e1,51) — (€2, %) —> ...; or
4. » the equivalence class {¢' | e ~] ¢}

» the partial function [e] that takes any store s with dom(s) = dom(I") and either is
undefined, if (e,s) —, oris (v,s), if (e,s) —* (v, s)

2788

Suppose I - er:unit and I - ex:unit.

When is e;; e gF”it e e ?

2780

Contextual equivalence for L3

Definition 30Consider typed L3 programs, [= e;: T and [= eyx: T. We say that they
are contextually equivalent if, for every context C such that {} - C|[e1|:unit and
{} I Clex]:unit, we have either

(a) (Cle], {}) —* and (Cles], {}) —¥, or

(b) for some s; and s, we have (Clei],{}) —" (skip,s1) and
(Clea], {}) — (skip, 52).

290

Semantics in practice

2701

A Little History

Formal logic

Untyped lambda calculus

Simply-typed lambda calculus

Fortran

Curry-Howard, Algol 60, Algol 68, SECD machine (64)
Pascal, Polymorphism, ML, PLC

Structured Operational Semantics

Standard ML definition

Haskell

Subtyping

Module systems

Object calculus

Typed assembly and intermediate languages

1880-
1930s
1940s
1950s
1960s
1970s
1981-
1985

1987

1980s
1980-
1990-
1990-

2709

Low-level semantics

203

Low-level semantics

2704

Can usefully apply semantics not just to high-level languages but to
» Intermediate Languages (e.g. Java Bytecode, MS IL, C——)
» Assembly languages (esp. for use as a compilation target)
» C-like languages (cf. Cyclone)

By making these type-safe we can make more robust systems.

(see separate handout)

Epilogue

206

Lecture Feedback

Please do fill in the lecture feedback form — we need to know how the course could be
improved / what should stay the same.

2797

Good language design?

Need:

» precise definition of what the language is (so can communicate among the

designers)
» technical properties (determinacy, decidability of type checking, etc.)

» pragmatic properties (usability in-the-large, implementability)

2708

What can you use semantics for?

1. to understand a particular language — what you can depend on as a programmer;

what you must provide as a compiler writer

2. as a tool for language design:

2.1 for clean design

2.2 for expressing design choices, understanding language features and how they interact.

2.3 for proving properties of a language, eg type safety, decidability of type inference.

3. as a foundation for proving properties of particular programs

The End

	Syllabus
	The Actual Schedule 2005–2006 (Lent 2006)
	The Actual Schedule 2004–2005 (Lent 2005)
	The Actual Schedule 2003–2004 (Lent 2004)
	The Actual Schedule 2002–2003 (Easter 2003)

	Changes
	Learning Guide
	Summary of Notation
	Introduction
	A First Imperative Language
	Operational Semantics
	Syntax
	Operational Semantics
	Typing
	L1: Collected definition
	Syntax
	Operational semantics
	Typing
	Exercises

	Proof about semantics – really, proof about inductive definitions
	Abstract Syntax and Structural Induction
	Inductive Definitions and Rule Induction
	Example proofs
	Inductive Definitions, More Formally (optional)
	Exercises

	Functions
	Abstract syntax up to alpha conversion, and substitution
	Function Behaviour
	Function Typing
	Local Definitions and Recursive Functions
	Implementation
	L2: Collected Definition
	Exercises

	Data
	Products and sums
	Datatypes and Records
	Mutable Store
	Evaluation Contexts
	L3: Collected definition
	Exercises

	Subtyping and Objects
	Exercises

	Concurrency
	Exercises

	Semantic Equivalence
	Contextual equivalence
	Exercises

	Semantics in practice
	Low-level semantics
	Epilogue

