- Advanced topics in programming languages

Verified compilation

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2025 -

Verified compilation principles

Motivation and aim

Principles

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent.

[...] we have devoted about six CPU-years to the task.”

Finding and Understanding Bugs in C Compilers (2011)
X. Yang, Y. Chen, E. Eide, J. Regehr

https://dl.acm.org/doi/10.1145/1993316.1993532

What is the guarantee?

Principles P |l B: program P has observable behaviour B

VB,
SyB&CUB

Bisimulation

if C deterministic
Forward — Backward
simulation S simulation

if S deterministic

if C deterministic
Safe forward Safe backward Preservation of
simulation simulation specifications

if S deterministic

Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137

What is the guarantee?

Principles P |l B: program P has observable behaviour B

VB,
SIB&CUB

Bisimulation

VB,

Sy{B=C|B if C deterministic
Forward — Backward
simulation S simulation

if S deterministic

if Cdetermmlstlc
Safe forward Safe backward Preservation of
simulation simulation specifications

if S deterministic

Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137

What is the guarantee?

Principles P |l B: program P has observable behaviour B

VB,
SIB&CUB

Bisimulation

VB, VB

Sy{B=C|B . _if € deterministic Cy{B=S|B
orward Backward
simulation S simulation

if S deterministic

if C deterministic
Safe foomard \—— &/ Safe backward Preservation of
simulation .~ 00— simulation specifications

if S deterministic

Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137

is the guarantee?

P |l B: program P has observable behaviour B

Principles

VB,
SU{B&CUB

Bisimulation

VB, VB,

SyIB=C|B . if C deterministic ClB=S|B
orward — Backward
simulation o S———— simulation

if S deterministic

if C deterministic
Safe foowmard \—— &/ Safe backward Preservation of
Ciele — G5
VB ¢ Wrong,

if S deterministic
SUB=ClB

Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137

is the guarantee?

P |l B: program P has observable behaviour B

Principles
VB,

Sy{B&ClB

Bisimulation

VB, VB

Sy{B=ClB if € deterministic C{B=S|B
Forward Backward
simulation .~ 0000 — simulation

if S deterministic

if C deterministic
Safe forward — &/ Safe backward Preservation of
simulation .~ — simulation specifications
VB ¢ Wrong, if S deterministic

S{B=CyB if Safe(S) then VB,

ClB=S|B

'Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137

What is the guarantee?

P |l B: program P has observable behaviour B

Principles

VB,
S|BeCyB

Bisimulation

VB, VB,

Sy{B=ClB if C deterministic C{B=S|B
Forward Backward
simulation .~ 0000 — simulation

if S deterministic

|f C deterministic
Safe forward Safe backward Preservation of
simulation simulation specifications
VB ¢ Wrong, lf S deterministic
SkE Spec= CEB
SB=CUE if Safe(S) then VB, = Sp =

ClB=S|B

'Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137

Checking the compiler vs checking the output

Principles
Verified compilation:

VS, C, Comp(S) =0K(C) = S~ C

Translation validation:

If Comp(S) = OK(C) and Validate(S, C) = true
then deem C trustworthy

Q: does the difference matter??

*More details in A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137

Existing projects

CompCert

other ™,
. languages?.” P Programmed
e) n Caml

Programmed and
proved in Cog

Systems

Language: (most of) standard C Implementation: mostly Rocq/Coq

Proofs: backwards simulation Approach: mostly verified
(some translation validation)

Systems

Languages Compier ransiormatons

> Parso concrta symtax

Replace.

5| Emem)®
=

> Comple patem matches
o nested s and Lots

> Fugtvase e

Pt i

2> Track whero cosure vaives
flow; annotate program

s | = inroduce Gt fast
Bls wherover possible

"
2 e demicode
5 e
G Lottt

i smauncions

> spitoversizea uncions
nko many smal funcions

‘Compie global vars nto 2
Gynamicaly resized anay

2> e Letarpessions:

> Alocaio register names.
S Conootes sack
15> implement GG primitve

O Moo

Bl

o Fatencode
2> Dote no-ops (T, Skp)

Encods program as
e i e

wmipss4)(AISCV

CakeML

Language: (variant of) Standard ML
Implementation: HOL4
Proofs: forwards simulation

Approach: almost entirely verified

Building on CakeML

Several smaller projects reuse parts of existing verified compilers:

Candle PureCake : :
(HOL) . (Haskell) . (Scheme)

Systems

Abrahamsson et al Kanabar et al Lasnier et al
ITP'22 PLDI'23 CPP’26

Reading

Paper 1: CompCert (2009)

A formally verified compiler back-end “For the last four years, we have been Working on the
Kavir Leroy development of a realistic, verified compiler called
Compcert.

By verified, we mean a compiler that is accompanied
Abstrnct This i st oo by a machine-checked proof that the generated code
behaves exactly as prescribed by the semantics of the
source program (semantic preservation property).

By realistic, we mean a compiler that could realisti-
R . cally be used in the context of production of critical
software.”

Reading

Paper 2: CakeML (2014)

CakeML: A Verified Impls tati f ML “ n e
o erited mplementation o We have developed and mechanically verified an ML

system called CakeML, which supports a substantial
subset of Standard ML. CakeML is implemented as
: an interactive read-eval-print loop (REPL) in x86-64
: ‘ machine code.

Ramana Kumar* ' Magnus O. Myreen’ ! Michael Norrish? Scott Owens *

Our correctness theorem ensures that this REPL im-
plementation prints only those results permitted by
the semantics of CakeML. Our verification effort
touches on a breadth of topics including lexing, pars-
ing, type checking, incremental and dynamic compi-
lation, garbage collection, arbitrary-precision arith-
metic, and compiler bootstrapping.”

Reading

Reading

Certified code generation from CPS to C

Olivier s:
i

1 Introduction

Paper 3: CertiCoq (20

“CertiCoq is a verified-in-Coq extracter/compiler
from Coq's Gallina language through CompCert C
to assembly language, written as a functional pro-
gram in Cogq.

As we were not interested in verifying register al-
location or supporting multiple back-ends for many
target architectures, we translate our CPS into Com-
pCert C light, and use CompCert as our verified reg-
ister allocator and back-end code generator.”

Writing suggestions

Principles
The relationship between backwards and forward simulation

The relationship between compiler verification and translation validation

Practicalities
How should we choose a proof assistant?

Are some languages more suited to verified compilation than others?

Economics
When is the cost worth it?

Reading Will verified compilation eventually be the norm?

