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Verified compilation principles
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“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent.
[...] we have devoted about six CPU-years to the task.”

Finding and Understanding Bugs in C Compilers (2011)
X. Yang, Y. Chen, E. Eide, J. Regehr

https://dl.acm.org/doi/10.1145/1993316.1993532
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P ⇓ B: program P has observable behaviour B1

Bisimulation

Backward
simulation

Safe backward
simulation

Preservation of
specifications

Forward
simulation

Safe forward
simulation

if C deterministic

if S deterministic

if C deterministic

if S deterministic

∀B,
S ⇓ B ⇔ C ⇓ B

1Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137
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S ⇓ B ⇒ C ⇓ B if Safe(S) then ∀B,
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S |= Spec ⇒ C |= B

1Taxonomy from A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137


Checking the compiler vs checking the output
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Verified compilation:

∀S,C, Comp(S) = OK(C) =⇒ S ≈ C

Translation validation:

If Comp(S) = OK(C) and Validate(S,C) = true
then deem C trustworthy

Q: does the difference matter?2

2More details in A formally verified compiler back-end (2009) by Xavier Leroy

https://arxiv.org/abs/0902.2137


Existing projects



CompCert

Principles

Systems

Reading

Language: (most of) standard C Implementation: mostly Rocq/Coq

Proofs: backwards simulation Approach: mostly verified
(some translation validation)



CakeML
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ZU064-05-FPR paper 19 November 2018 11:55

4 Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, M. Norrish

Compiler transformations

source syntax

source AST

LanguagesValues
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ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules

Replace constructor 
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible

Remove dead code

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove dead code

Combine adjacent
memory allocations

Concretise data repr.

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

BVL: 
functional
language 
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language 

with array-like 
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor 
patterns upwards

High-level comments

Parsing and type inference
are essentially unchanged
from the previous version.

The initial phases of the 
compiler backend 
successively remove 
features from the input 
language. These phases 
remove modules, 
declarations, pattern 
matching. All names are 
turned into representations 
based on the natural 
numbers, e.g. de Brujin
indices are used for local
variables and constructor
names become numbers. 

ClosLang is a language for
optimising function calls
before closure conversion.
These phases fuse all 
single-argument function 
applications into true multi-
argument applications, and 
attempt to turn as many
function applications as 
possible into fast C-like 
calls to known functions. 

The languages after closure
converstion but before data
becomes concrete machine
words, i.e. languages from 
BVL to DataLang, are 
particularly simple both to
write optimisations for 
and for verification proofs.
The compiler performs 
many simple optimisations 
in these laguages, including
function inlining, constant 
folding and merging of 
nearby memory allocations.

One of the most delicate 
compiler phases. This 
introduces the bit-level
data representation, GC & 
bignum implementation.

The rest of the compiler is 
similar to the backend of a 
simple compiler for a C-like
language. Our compiler 
implements fast long jumps 
in order to support ML-style 
execptions. The compiler 
differs from a C compiler
by having to interact with 
and implement the GC.

The GC is introduced as a 
language primitive on 
compilation into WordLang.
Further down in StackLang, 
the GC is implemented as a 
helper function that is 
attached to the currently 
compiled program. 

The final stage turns a
target-neutral assembly 
language to concrete 
machine for for five target
architectures, including 
32- and 64-bit architectures, 
and bigendian and 
littleendian architectures.

Fig. 1. The structure of the new CakeML compiler.

Language: (variant of) Standard ML

Implementation: HOL4

Proofs: forwards simulation

Approach: almost entirely verified



Building on CakeML
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Several smaller projects reuse parts of existing verified compilers:

PureCake
(Haskell)

Candle
(HOL)

Brack
(Scheme)

Lasnier et al
CPP’26

Abrahamsson et al
ITP’22

Kanabar et al
PLDI’23
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Paper 1: CompCert (2009)
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A formally verified compiler back-end

Xavier Leroy

Received: 21 July 2009 / Accepted: 22 October 2009

Abstract This article describes the development and formal verification (proof of

semantic preservation) of a compiler back-end from Cminor (a simple imperative inter-

mediate language) to PowerPC assembly code, using the Coq proof assistant both for

programming the compiler and for proving its soundness. Such a verified compiler is

useful in the context of formal methods applied to the certification of critical software:

the verification of the compiler guarantees that the safety properties proved on the

source code hold for the executable compiled code as well.

Keywords Compiler verification · semantic preservation · program proof · formal

methods · compiler transformations and optimizations · the Coq theorem prover

1 Introduction

Can you trust your compiler? Compilers are generally assumed to be semantically trans-

parent: the compiled code should behave as prescribed by the semantics of the source

program. Yet, compilers—and especially optimizing compilers—are complex programs

that perform complicated symbolic transformations. Despite intensive testing, bugs in

compilers do occur, causing the compiler to crash at compile time or—much worse—to

silently generate an incorrect executable for a correct source program [67,65,31].

For low-assurance software, validated only by testing, the impact of compiler bugs

is low: what is tested is the executable code produced by the compiler; rigorous testing

should expose compiler-introduced errors along with errors already present in the source

program. Note, however, that compiler-introduced bugs are notoriously difficult to

track down. Moreover, test plans need to be made more complex if optimizations are

to be tested: for example, loop unrolling introduces additional limit conditions that are

not apparent in the source loop.

The picture changes dramatically for safety-critical, high-assurance software. Here,

validation by testing reaches its limits and needs to be complemented or even replaced

by the use of formal methods: model checking, static analysis, program proof, etc..

X. Leroy
INRIA Paris-Rocquencourt, B.P. 105, 78153 Le Chesnay, France
E-mail: Xavier.Leroy@inria.fr

“For the last four years, we have been working on the
development of a realistic, verified compiler called
Compcert.

By verified, we mean a compiler that is accompanied
by a machine-checked proof that the generated code
behaves exactly as prescribed by the semantics of the
source program (semantic preservation property).

By realistic, we mean a compiler that could realisti-
cally be used in the context of production of critical
software.”



Paper 2: CakeML (2014)
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CakeML: A Verified Implementation of ML

Ramana Kumar ∗ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK
2 Canberra Research Lab, NICTA, Australia ‡

3 School of Computing, University of Kent, UK

Abstract
We have developed and mechanically verified an ML system called
CakeML, which supports a substantial subset of Standard ML.
CakeML is implemented as an interactive read-eval-print loop
(REPL) in x86-64 machine code. Our correctness theorem ensures
that this REPL implementation prints only those results permitted
by the semantics of CakeML. Our verification effort touches on
a breadth of topics including lexing, parsing, type checking, in-
cremental and dynamic compilation, garbage collection, arbitrary-
precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-
ing a system that is end-to-end verified, demonstrating that each
piece of such a verification effort can in practice be composed
with the others, and ensuring that none of the pieces rely on any
over-simplifying assumptions. The second is developing novel ap-
proaches to some of the more challenging aspects of the veri-
fication. In particular, our formally verified compiler can boot-
strap itself: we apply the verified compiler to itself to produce a
verified machine-code implementation of the compiler. Addition-
ally, our compiler proof handles diverging input programs with a
lightweight approach based on logical timeout exceptions. The en-
tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs, Formal
methods; F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical veri-
fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;
machine code verification; read-eval-print loop; verified parsing;
verified type checking; verified garbage collection.

∗ supported by the Gates Cambridge Trust
† supported by the Royal Society, UK
‡NICTA is funded by the Australian Government through the Department
of Communications and the Australian Research Council through the ICT
Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535841

1. Introduction
The last decade has seen a strong interest in verified compilation;
and there have been significant, high-profile results, many based
on the CompCert compiler for C [1, 14, 16, 29]. This interest is
easy to justify: in the context of program verification, an unverified
compiler forms a large and complex part of the trusted computing
base. However, to our knowledge, none of the existing work on
verified compilers for general-purpose languages has addressed all
aspects of a compiler along two dimensions: one, the compilation
algorithm for converting a program from a source string to a list of
numbers representing machine code, and two, the execution of that
algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified
a compiler along the full scope of both of these dimensions for a
practical, general-purpose programming language. Our language is
called CakeML, and it is a strongly typed, impure, strict functional
language based on Standard ML and OCaml. By verified, we mean
that the CakeML system is ultimately x86-64 machine code along-
side a mechanically checked theorem in higher-order logic saying
that running that machine code causes an input program to yield
output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in
machine code. Instead we write it in higher-order logic and synthe-
sise CakeML from that using our previous technique [22], which
puts the compiler on equal footing with other CakeML programs.
We then apply the compiler to itself, i.e., we bootstrap it. This
avoids a tedious manual refinement proof relating the compilation
algorithm to its implementation, as well as providing a moderately
large example program. More specifically,
• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler
inside the logic;
• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and
• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.
Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an
interactive read-eval-print loop (REPL). A verified REPL enables
high-assurance applications that provide interactivity, an important
feature for interactive theorem provers in the LCF tradition, which
were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-
porting a verified implementation. (Section 3)
• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified
compilation). (Sections 4–6, 10)

“We have developed and mechanically verified an ML
system called CakeML, which supports a substantial
subset of Standard ML. CakeML is implemented as
an interactive read-eval-print loop (REPL) in x86-64
machine code.

Our correctness theorem ensures that this REPL im-
plementation prints only those results permitted by
the semantics of CakeML. Our verification effort
touches on a breadth of topics including lexing, pars-
ing, type checking, incremental and dynamic compi-
lation, garbage collection, arbitrary-precision arith-
metic, and compiler bootstrapping.”
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Certified code generation from CPS to C
Olivier Savary Bélanger

Princeton University
olivier@galois.com

Matthew Z. Weaver
Princeton University

mzw@cs.princeton.edu

Andrew W. Appel
Princeton University
appel@princeton.edu

Abstract
CertiCoq is a verified-in-Coq extracter/compiler from Coq’s
Gallina language through CompCert C to assembly language,
written as a functional program in Coq. Here we describe the
implementation and Coq verification of its code generator,
which translates from a continuation-passing style (CPS)
intermediate language into CompCert Clight. We show how
invariants over our CPS IR facilitate the generation of well
behaved, efficient C code. A key point is our proved-correct
interface to an external proved-correct (by other authors)
generational garbage collector written in C. The semantics
of C can be quite intricate, as can the design of a compiler-
to-g.c. interface for finding roots—but the design of our CPS
intermediate language facilitates a (relatively) simple imple-
mentation and correctness proof. Our measurements show
that both the code generator and the generated code have
good performance. Via CompCert, we have proved-correct
back ends for several instruction-set architectures: x86-32,
x86-64, ARM-32, ARM-64, RISC-V, and Power-PC.

CCS Concepts • Software and its engineering → For-
mal software verification; Compilers; Correctness; Func-
tional languages; • Theory of computation → Program
verification.

ACM Reference Format:
Olivier Savary Bélanger, Matthew Z.Weaver, and AndrewW. Appel.
2019. Certified code generation from CPS to C. In Proceedings of
(October 2019). ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 Introduction
If you prove your functional program in correct in Coq,
then why entrust it to an unverified extraction/compilation
pipeline? Neither Coq’s extraction-to-Ocaml, nor the Ocaml
compiler, nor Ocaml’s runtime system is proved correct.

October 2019

CertiCoq [1] is a verified-in-Coq extracter/compiler from
Coq’s Gallina functional language to assembly language, via
CompCert C. The source program is extracted from the Coq
kernel (its AST is reified from Ocaml datatype constructors
to Coq datatype constructors) by MetaCoq [2]; this is the
only phase that cannot be proved correct but it does no more
than transliteration. After that (and with proofs!), we erase
proofs, types, and related computationally irrelevant content
[3]; constructors are eta-expanded so each constructor ap-
plication is fully applied to all its arguments; the program is
combined with its environment by let-binding all imported
definitions, resulting in an untyped program in a simple
de Bruijn functional language with inductive constructors.
Then we convert to continuation-passing style (CPS) using
a named representation, and we apply optimizations such
as uncurrying [4], shrink-reduction [5], and lambda lifting;
we closure-convert [6] into CPS terms in which all functions
are closed (except for references to other closed functions in
the global scope).

As we were not interested in verifying register allocation
or supporting multiple back-ends for many target architec-
tures, we translate our CPS into CompCert C light, and use
CompCert as our verified register allocator and back-end
code generator.
CertiCoq has a high-performance generational garbage

collector, written in C and proved correct in Coq [7]. When
one connects any compiler to a garbage collector, one must
make an interface by which the compiler calls the collector,
indicating where to find all the roots of the data graph—that
is, the live local variables; and (when copying collection is
used) one must be prepared for all variables of the program
to be modified to point to their new locations.

Contributions. In this paper we describe the proof of cor-
rectness of our CPS-to-C translation phase: how we relate
the operational semantics of CPS to the operational seman-
tics of CompCert C, and how we reason about the graph
transformation inherent in the call to the collector. These
proofs are connected to proofs of the front-end phases via the
CPS syntax and semantics, and to the CompCert back-end
via the CompCert Clight syntax and semantics.

The artifact accompanying this paper has the code gen-
erator and its correctness proofs (not the rest of CertiCoq)
plus the imported components of CompCert (that is, files
leading up to the AST and operational semantics of Comp-
Cert Clight). We use no axioms, but CompCert Clight uses
some; see the readme.

“CertiCoq is a verified-in-Coq extracter/compiler
from Coq’s Gallina language through CompCert C
to assembly language, written as a functional pro-
gram in Coq.

As we were not interested in verifying register al-
location or supporting multiple back-ends for many
target architectures, we translate our CPS into Com-
pCert C light, and use CompCert as our verified reg-
ister allocator and back-end code generator.”



Writing suggestions

Principles

Systems

Reading

Principles
The relationship between backwards and forward simulation
The relationship between compiler verification and translation validation

Practicalities
How should we choose a proof assistant?
Are some languages more suited to verified compilation than others?

Economics
When is the cost worth it?
Will verified compilation eventually be the norm?


