- Advanced topics in programming languages

Taming functions

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2025 -

Translations

Functions are hard to handle

Functions

nesting makes program
transformation difficult

let rec loop = fun 1 —
match 1 with
[[1 — [1
| x :: xs ~>||f x||:: |loop xs|
in loop 1 (analysis is difficult

functions in advance

let map = fun f — fun 1 — [

can't know all possible]

(control flow is implicit/unclear)

Some taming translations

o We'll consider total translations that introduce syntactic invariants:

AX.€e

ANF

CPS conversion ———m—

closure conversion ———»

defunctionalization ————

lambda lifting ——

every intermediate value is named

every call is a tail call

every function is closed

every function is enumerated

every function is top-level

Functions

How should we view these translations?

Translations are not optimizations

Translations don't make programs faster (and may well make them slower)

Translations don't use heuristics, and aren’t sensitive to structure

Translations are representation changes

The translation targets are inconvenient as programming languages

Changing representation makes analysis and further translation easier

Translations by example

Translation to A-normal form

[Intermediate expressions named J

let map = fun f — fun 1 —
let rec loop = fun 1 —
match 1 with
| [1 — [1]
| x :: xs — |let y f x in
let ys loop xs in

Translations let v in

v
in let v = loop 1 in v L

Arguments always trivial
(values or variables)

Full details: The Essence of Compiling with Continuations (PLDI 1993)
Cormac Flanagan, Amr Sabry, Bruce F. Duba, Matthias Felleisen

Translation to continuating-passing style

[Computed values passed to continuations,]

not returned the rest of the computation

Every function passed a continuation Kk,]

let map_cps = fun/f[k |= k (fun 1
let rec loop = (fun 1 —
match 1 with

Translations

|loop xs (fun ys —>|
kK (y :: ys)P)

in loop 1 k)

let id x = x
let map = fun f 1 — map_cps un x k — k (f x)) id 1 id

(Every call a tail call

Translations

Closure conversion

Free-variable environ-
[AII functions closed (i.e. C-style function] ments bundled with

pointers) functions

type ('a, 'b) clo =
Clo : ('a — 'env — 'b) * 'env — ('a, 'b) clo

let app (Clo (f, env)) x = f x env

let fp3 = fun 1l[env|— match 1 with

| [0 — [
| x :: xs — app[env.f]x :: app [env.Toop] xs

let fp2 = fun 1 env —
let rec loop = Clo (fp3, {f=env.g; loop}) in
app loop 1

[Tet fp1 = fun f env — Clo (fp2, {g=f1}) |

let map Clo (fp1, O)

Translations

Defunctionalization

All source functions
enumerated as constructors

type ('a, 'b) fn =

| Map1l : (('a, 'b) fn, ('a list, 'b list) fn) fn
Ca
Ca

| Map2 ’b) fnl - ('a list, 'b list) fn
| Loop ") fn] — ('a list, 'b list) fn

let rec apply : type a b. (a, b) fn — a — b =
fun fn x — match fn, x with

Map1} f — |Map2|f

Map2|f|, 1 — apply ([Loop[f) 1

Loop[f], 1 —

match 1 with

| [1 — [1

| x :: xs — apply f x :: apply XS
let map =[Map1]

Free-variable environments
attached to constructors

Lambda lifting

[Functions moved to the top Ievel]

additional parameters

[Free variables passed as]

let map = fun f — fun_1/— let rec loop = fun 1 f —

Translations let rec loop = fun l — match 1 with
match 1 with | [1 — []
| [1 — [1 | x :: xs — f x :: loop xs f
| x :: xs - f x :: loop xs
in loop l let map = fun f — fun 1 — loop 1 f

Reading

Background reading

Simon L. Peyton Jones
The :
Implementation
of Functional

s . Programming
Compiling with Languages

Continuations

Andrew W. Appel

Reading C.AR HOARE SERIES EDITOR

(for closure conversion) (for lambda lifting)

Defunctionalization at Work

Defunctionalization at Work * Defunctionalization is thus a whole-
program transformation where function

Olivier Danvy and Lasse R. Nielsen types are replaced by an enumeration of

BRICS f the function abstractions in this program.
Department of Computer Science
University of Aarhus * []

June, 2001 Compared to closure conversion and to

combinator conversion, defunctionaliza-
Abstract tion has been used very little.

Reynolds’s defunctionalization technique is a whole-program transfor-

mation from higher-order to first-order functional programs. We study []
practical applications of this transformation and uncover new connec-
tions between seemingly unrelated higher-order and first-order specifica- ..one can use several app|y fUnCtiOnS, eg.,
tions and between their correctness proofs. Defunctionalization therefore

appears both as a springboard for revealing new connections and as a grou ped by types, ..One can also defunc-

bridge for transferring existing results between the first-order world and

_ the highor-order world, tionalize a program selectively, e.g., only
Reading its continuations ..One can even envision
a lightweight defunctionalization”

Paper 2: Typed closure conversion

“Closure conversion is a program transformation used by
compilers to separate code from data.

[.]

translating to typed target languages is a useful method-
ology for building compilers

[.]

we use existential type abstraction to ensure the privacy
of environment representation in much the same way that
Pierce and Turner hide the representation types of in-
stance variables”

Reading

Reading

Paper 3: Lambda-Lifting in Quadratic Time

Lambda-Lifting in Quadratic Time *

Ulrik P. Schultz

ISIS Katrinebjerg

Department of Compute ce
University of Aarhus *

Olivier Danvy

June 17, 2004

Abstract

Lambda-lifting is a program transformation that is used in compilers,
and p transformers. In this article, we show
complexity from cubic time to quadratic time, and we
itive lambda-lifter that also works in quadratic time.
Lambda-lifting transforms a_ block-structured program into a set of
o local fanction in the source
sters to account for the free
1 function and of all its callees. Tt is
s that yields the cubic factor in the t
ting, which is due to Johnsson. This scarch is

lifting, we partition ﬂu
nected component;
in each compo
We therefore
arch for extra parameters by trea strongly con-
f cach function as a unit, reducing
ambdalifting from O(n’) to O(n?)

er can output programs of size O(n), our algorithm
is asympotically optimal.

Keywords
Block structure, lexical scope, functional programming, inner classes in Java.

“Lambda-lifting is a program transformation that is used
in compilers, partial evaluators, and program transform-
ers.

[.]

Lambda-lifting transforms a block-structured program
into a set of recursive equations, one for each local func-
tion in the source program. Each equation carries extra
parameters to account for the free variables of the corre-
sponding local function and of all its callees.

[.]

Since a lambda-lifter can output programs of size O(n?),
our algorithm is asympotically optimal.”

Reading

Writing suggestions

Relations
How are closure conversion and lambda lifting related?

How are closure conversion and defunctionalization related?

Preservation
Can the result of each translation always be given a type?

Do the translations extend to languages with more sophisticated type systems?

Variations
Can the translations be applied selectively? Do they support separate
compilation?

Facilitation
What analyses and subsequent translations do the translations facilitate?

