
Advanced topics in programming languages Michaelmas 2025

Taming functions

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Translations

Functions are hard to handle

Functions

Translations

Reading

l e t map = fun f → fun l →
l e t rec loop = fun l →

match l with
| [] → []
| x :: xs → f x :: loop xs

i n loop l

can’t know all possible
functions in advance

analysis is difficult

control flow is implicit/unclear

nesting makes program
transformation difficult

Some taming translations

Functions

Translations

Reading

We’ll consider total translations that introduce syntactic invariants:

λx.e

every intermediate value is named

every call is a tail call

every function is closed

every function is enumerated

every function is top-level

ANF

CPS conversion

closure conversion

defunctionalization

lambda lifting

How should we view these translations?

Functions

Translations

Reading

Translations are not optimizations
Translations don’t make programs faster (and may well make them slower)
Translations don’t use heuristics, and aren’t sensitive to structure

Translations are representation changes
The translation targets are inconvenient as programming languages
Changing representation makes analysis and further translation easier

Translations by example

Translation to A-normal form

Functions

Translations

Reading

l e t map = fun f → fun l →
l e t rec loop = fun l →

match l with
| [] → []
| x :: xs → l e t y = f x i n

l e t ys = loop xs i n
l e t v = y :: ys i n
v

i n l e t v = loop l i n v

Arguments always trivial
(values or variables)

Intermediate expressions named

Full details: The Essence of Compiling with Continuations (PLDI 1993)
Cormac Flanagan, Amr Sabry, Bruce F. Duba, Matthias Felleisen

Translation to continuating-passing style

Functions

Translations

Reading

l e t map_cps = fun f k → k (fun l k →
l e t rec loop = fun l k →

match l with
| [] → k []
| x :: xs → f x (fun y →

loop xs (fun ys →
k (y :: ys)))

i n loop l k)

l e t id x = x
l e t map = fun f l → map_cps (fun x k → k (f x)) id l id

Every function passed a continuation k,
the rest of the computation

Every call a tail call

Computed values passed to continuations,
not returned

Closure conversion

Functions

Translations

Reading

type ('a, 'b) clo =
Clo : ('a → 'env → 'b) * 'env → ('a, 'b) clo

l e t app (Clo (f, env)) x = f x env

l e t fp3 = fun l env → match l with
| [] → []
| x :: xs → app env.f x :: app env.loop xs

l e t fp2 = fun l env →
l e t rec loop = Clo (fp3 , {f=env.g; loop}) i n
app loop l

l e t fp1 = fun f env → Clo (fp2 , {g=f})

l e t map = Clo (fp1 , ())

All functions closed (i.e. C-style function
pointers)

Free-variable environ-
ments bundled with
functions

Defunctionalization

Functions

Translations

Reading

type ('a, 'b) fn =
| Map1 : (('a, 'b) fn, ('a list , 'b list) fn) fn
| Map2 : ('a, 'b) fn → ('a list , 'b list) fn
| Loop : ('a, 'b) fn → ('a list , 'b list) fn

l e t rec apply : type a b. (a, b) fn → a → b =
fun fn x → match fn , x with
| Map1 , f → Map2 f
| Map2 f, l → apply (Loop f) l
| Loop f, l →

match l with
| [] → []
| x :: xs → apply f x :: apply (Loop f) xs

l e t map = Map1

All source functions
enumerated as constructors

Free-variable environments
attached to constructors

Lambda lifting

Functions

Translations

Reading

l e t map = fun f → fun l →
l e t rec loop = fun l f →

match l with
| [] → []
| x :: xs → f x :: loop xs f

i n loop l f

l e t rec loop = fun l f →
match l with
| [] → []
| x :: xs → f x :: loop xs f

l e t map = fun f → fun l → loop l f

Free variables passed as
additional parameters Functions moved to the top level

Reading

Background reading

Functions

Translations

Reading

(for closure conversion) (for lambda lifting)

Paper 1: Defunctionalization at Work

Functions

Translations

Reading

Defunctionalization at Work ∗

Olivier Danvy and Lasse R. Nielsen

BRICS †

Department of Computer Science
University of Aarhus ‡

June, 2001

Abstract

Reynolds’s defunctionalization technique is a whole-program transfor-
mation from higher-order to first-order functional programs. We study
practical applications of this transformation and uncover new connec-
tions between seemingly unrelated higher-order and first-order specifica-
tions and between their correctness proofs. Defunctionalization therefore
appears both as a springboard for revealing new connections and as a
bridge for transferring existing results between the first-order world and
the higher-order world.

∗Extended version of an article to appear in the proceedings of PPDP 2001, Firenze, Italy.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
E-mail: {danvy,lrn}@brics.dk

1

“Defunctionalization is thus a whole-
program transformation where function
types are replaced by an enumeration of
the function abstractions in this program.

[…]

Compared to closure conversion and to
combinator conversion, defunctionaliza-
tion has been used very little.

[…]

…one can use several apply functions, e.g.,
grouped by types, …One can also defunc-
tionalize a program selectively, e.g., only
its continuations …One can even envision
a lightweight defunctionalization”

Paper 2: Typed closure conversion

Functions

Translations

Reading

Typed Closure Conversion�

Yasuhiko Minamide y

Research Institute for Mathematical Sciences

Kyoto University

Kyoto ������� Japan

nan�kurims�kyoto�u�ac�jp

Greg Morrisett

School of Computer Science

Carnegie Mellon University

Pittsburgh� PA ����	�	
��

jgmorris�cs�cmu�edu

Robert Harper

School of Computer Science

Carnegie Mellon University

Pittsburgh� PA ����	�	
��

rwh�cs�cmu�edu

Abstract

Closure conversion is a program transformation used by
compilers to separate code from data� Previous accounts
of closure conversion use only untyped target languages� Re

cent studies show that translating to typed target languages
is a useful methodology for building compilers� because a
compiler can use the types to implement e�cient data rep

resentations� calling conventions� and tag
free garbage col

lection� Furthermore� type
based translations facilitate se

curity and debugging through automatic type checking� as
well as correctness arguments through the method of logical
relations�
We present closure conversion as a type
directed� and

type
preserving translation for both the simply
typed and
the polymorphic �
calculus� Our translations are based on
a simple �closures as objects� principle� higher
order func

tions are viewed as objects consisting of a single method
�the code� and a single instance variable �the environment��
In the simply
typed case� the Pierce
Turner model of ob

ject typing where objects are packages of existential type
su�ces� In the polymorphic case� more careful tracking of
type sharing is required� We exploit a variant of the Harper

Lillibridge �translucent type� formalism to characterize the
types of polymorphic closures�

� Introduction

Closure conversion ���� 	�� �� ��� ��� �� 	�� �� is a program
transformation that achieves a separation between code and

�This research was sponsored in part by the Advanced Research
Projects Agency CSTO under the title �The Fox Project� Advanced
Languages for Systems Software�� ARPA Order No� C���� issued
by ESC	ENS under Contract No� F
��
�����C������ and in part
by the National Science Foundation under Grant No� CCR����
����
and in part by the Isaac Newton Institute for Mathematical Sciences�
Cambridge� England� The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing o�cial policies� either expressed or implied� of ARPA
or the U�S� Government� Any opinions� �ndings� and conclusions
or recommendations expressed in this material are those of the au�
thors and do not necessarily re�ect the views of the National Science
Foundation�

yThis research was performed while the �rst author was visiting
the Fox Project at Carnegie Mellon University�

data� Functions with free variables are replaced by code ab

stracted on an extra environment parameter� Free variables
in the body of the function are replaced by references to the
environment� The abstracted code is partially applied to an
explicitly constructed environment providing the bindings
for these variables� This partial application of the code to
its environment is in fact suspended until the function is ac

tually applied to its argument� the suspended application�
called a closure� is a data structure consisting of a piece of
pure code and a representation of its environment�
A critical decision in closure conversion is the choice

of representation for the environment � whether to use a
�at FAM
like ���� linked CAM
like ���� or hybrid representa

tion �	��� The choice of representation is in�uenced by a de

sire to minimize closure creation time� the space consumed
by the environment� and the time to access a variable in
the environment �	�� 	��� An important property of closure
conversion is that the representation of the environment is
private to the closure� This a�ords considerable �exibility
in the representation of environments and is thus exploited
to good advantage by Shao and Appel �	�� and Wand and
Steckler �	���
Previous accounts consider closure conversion as a trans

formation to untyped terms� even if the source language is
typed �	�� ��� �� 	�� ��� This is adequate for compilers that
make little or no use of types in the back end or at run
time� However� when compiling typed languages� it is often
advantageous to propagate type information through each
stage of the compiler� and to make use of types at link
 or
even run time� For example� Leroy�s representation analy

sis ��
� 	�� uses types to determine procedure calling conven

tions� and Ohori�s record compilation ���� uses a representa

tion of types at run time to access components of a record�
Compilation strategies for polymorphic languages� such as
those proposed by Morrison et al� ���� and Harper and Mor

risett ����� rely on analyzing types at run time to support
unboxed representations and non
parametric operators� in

cluding printing and structural equality� Tag
free garbage
collection �	� 	�� �	� for both monomorphic and polymor

phic programming languages relies on analyzing types at
run time to determine the size and layout of objects in the
heap� To support any of these implementation strategies�
it is necessary to propagate type information through clo

sure conversion and into the generated code� The purpose
of this paper is to demonstrate how this can be done in both
a simply
typed and a polymorphic setting�
We present closure conversion as an example of a type�

directed and type�preserving translation� In general� such

“Closure conversion is a program transformation used by
compilers to separate code from data.

[…]

translating to typed target languages is a useful method-
ology for building compilers

[…]

we use existential type abstraction to ensure the privacy
of environment representation in much the same way that
Pierce and Turner hide the representation types of in-
stance variables”

Paper 3: Lambda-Lifting in Quadratic Time

Functions

Translations

Reading

Lambda-Lifting in Quadratic Time ∗

Olivier Danvy
BRICS †

Ulrik P. Schultz
ISIS Katrinebjerg

Department of Computer Science
University of Aarhus ‡

June 17, 2004

Abstract

Lambda-lifting is a program transformation that is used in compilers,
partial evaluators, and program transformers. In this article, we show
how to reduce its complexity from cubic time to quadratic time, and we
present a flow-sensitive lambda-lifter that also works in quadratic time.

Lambda-lifting transforms a block-structured program into a set of
recursive equations, one for each local function in the source program.
Each equation carries extra parameters to account for the free variables
of the corresponding local function and of all its callees. It is the search
for these extra parameters that yields the cubic factor in the traditional
formulation of lambda-lifting, which is due to Johnsson. This search is
carried out by computing a transitive closure.

To reduce the complexity of lambda-lifting, we partition the call graph
of the source program into strongly connected components, based on the
simple observation that all functions in each component need the same
extra parameters and thus a transitive closure is not needed. We therefore
simplify the search for extra parameters by treating each strongly con-
nected component instead of each function as a unit, thereby reducing
the time complexity of lambda-lifting from O(n3) to O(n2), where n is
the size of the program.

Since a lambda-lifter can output programs of size O(n2), our algorithm
is asympotically optimal.

Keywords
Block structure, lexical scope, functional programming, inner classes in Java.

∗To appear in the Journal of Functional and Logic Programming.
A preliminary version of this article was presented at FLOPS’02 [17].

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
E-mail addresses: {danvy,ups}@daimi.au.dk
Home pages: http://www.daimi.au.dk/~{danvy,ups}

1

“Lambda-lifting is a program transformation that is used
in compilers, partial evaluators, and program transform-
ers.

[…]

Lambda-lifting transforms a block-structured program
into a set of recursive equations, one for each local func-
tion in the source program. Each equation carries extra
parameters to account for the free variables of the corre-
sponding local function and of all its callees.

[…]

Since a lambda-lifter can output programs of size O(n2),
our algorithm is asympotically optimal.”

Writing suggestions

Functions

Translations

Reading

Relations
How are closure conversion and lambda lifting related?
How are closure conversion and defunctionalization related?

Preservation
Can the result of each translation always be given a type?
Do the translations extend to languages with more sophisticated type systems?

Variations
Can the translations be applied selectively? Do they support separate
compilation?

Facilitation
What analyses and subsequent translations do the translations facilitate?

