
Advanced topics in programming languages Michaelmas 2025

Program synthesis

Γ ⊢ ? : τ
Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

The program synthesis problem

What is the synthesis problem?

The problem

Challenges

Reading

Program Synthesis (Gulwani et al, 2017):

…is the task of automatically finding a program in the underly-
ing programming language that satisfies the user intent ex-
pressed in the form of some specification.

(emphasis mine)

That is, it’s a search for a constructive proof of a quantified formula:

∃f.∀ input.Specification

When is program synthesis useful?

The problem

Challenges

Reading

Efficiency in
programming

(low-level code from
high-level specifications)

Effective compilation

(e.g.superoptimization)

Program repair

(updating buggy programs
to fit a specification)

Deobfuscation

(restoring readability)

End-user programming

(e.g. interactive
programming-by-examples)

Program
transformation

(updating programs as
specifications evolve)

What is a specification?

The problem

Challenges

Reading

“…the user intent expressed in the form of some specification …”

A logical specification

f(x, y) ≥ x ∧ f(x, y) ≥ y

A type

x : Z → y : Z →
{z : Z | z = max(x, y)}

An existing program

slow_max(x,y)

Input-output examples

f(2, 4) = 4, f(5, 2) = 5, . . .

Natural language

“The larger of x and y”

One approach: Syntax-Guided Synthesis (SyGuS)

The problem

Challenges

Reading

SyGuS

T ::= x | y | 0 | 1 | ITE(C,T,T)
C ::= T ≤ T | ¬ T | C ∧ C

f : Z× Z → Z
f (x, y) = f (y, x) ∧ f (x, y) ≥ x

f(x,y) = ITE((x≤y),y,x)

grammar (search space)

logical formula

Example from Search-based Program Synthesis, Alur et al (2018)

Why is program synthesis hard?

Challenge: big search space

The problem

Challenges

Reading

Synthesis is often based on some form of enumeration of programs.

However, the search space is extremely large (exponential in program length).

Some form of pruning or guidance is necessary, e.g. by using

abstract interpretation grammar refinement syntactic templates
domain equations component-based construction

stochastic search constraint solving precise types

Challenges 2: determining correctness

The problem

Challenges

Reading

How can we tell when we’ve found a solution?

SMT solving Type checking

Γ ⊢ e : τ

Human inspection Testing

✓

Success in limited domains

The problem

Challenges

Reading

Spreadsheet
formulas

Regular
expressions

Trigonometric
functions

Loop-free
programs

SQL
queries

Bit
twiddling

a(b|c)*d

from t select *
where

x & 0xBEEF << y

Reading

Background reading: Program Synthesis

The problem

Challenges

Reading

Program Synthesis

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Oleksandr Polozov
University of Washington

polozov@cs.washington.edu

Rishabh Singh
Microsoft Research

risin@microsoft.com

Boston — Delft

“This survey is a general overview of the state-of-the-art
approaches to program synthesis, its applications, and sub-
fields. We discuss the general principles common to all
modern synthesis approaches such as syntactic bias, oracle-
guided inductive search, and optimization techniques.”

Program Synthesis.
S. Gulwani, O. Polozov and R. Singh.
Foundations and Trends in Programming Languages,
vol. 4, no. 1-2, pp. 1–119, 2017.

Online:
https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

Paper 1: types and examples (2015)

The problem

Challenges

Reading

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Preprint Copy — To Appear in PLDI 2015

Type-and-Example-Directed Program Synthesis

Peter-Michael Osera Steve Zdancewic
University of Pennsylvania, USA
{posera, stevez}@cis.upenn.edu

Abstract
This paper presents an algorithm for synthesizing recursive functions
that process algebraic datatypes. It is founded on proof-theoretic
techniques that exploit both type information and input–output
examples to prune the search space. The algorithm uses refinement
trees, a data structure that succinctly represents constraints on the
shape of generated code. We evaluate the algorithm by using a
prototype implementation to synthesize more than 40 benchmarks
and several non-trivial larger examples. Our results demonstrate
that the approach meets or outperforms the state-of-the-art for this
domain, in terms of synthesis time or attainable size of the generated
programs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—
Proof Theory; I.2.2 [Artificial Intelligence]: Automatic Pro-
gramming—Program Synthesis

General Terms Languages, Theory

Keywords Functional Programming, Proof Search, Program Syn-
thesis, Type Theory

1. Synthesis of Functional Programs
This paper presents a novel technique for synthesizing purely
functional, recursive programs that process algebraic datatypes.
Our approach refines the venerable idea (Green 1969; Manna and
Waldinger 1980) of treating program synthesis as a kind of proof
search: rather than using just type information, our algorithm also
uses concrete input–output examples to dramatically cut down the
size of the search space. We exploit this extra information to create
a data structure, called a refinement tree, that enables efficient
synthesis of non-trivial programs.

Figure 1 shows a small example of this synthesis procedure in
action. For concreteness, our prototype implementation uses OCaml
syntax, but the technique is not specific to that choice. The inputs to
the algorithm include a type signature, the definitions of any needed
auxiliary functions, and a synthesis goal. In the figure, we define nat

[Copyright notice will appear here once ’preprint’ option is removed.]

(∗ Type signature for natural numbers and lists ∗)
type nat = type list =
| O | Nil
| S of nat | Cons of nat * list

(∗ Goal type refined by input / output examples ∗)
let stutter : list -> list |>
{ [] => []
| [0] => [0;0]
| [1;0] => [1;1;0;0]
} = ?

(∗ Output: synthesized implementation of stutter ∗)
let stutter : list -> list =
let rec f1 (l1:list) : list =
match l1 with
| Nil -> l1
| Cons(n1, l2) -> Cons(n1, Cons(n1, f1 l2))

in f1

Figure 1. An example program synthesis problem (above) and the
resulting synthesized implementation (below).

(natural number) and list types without any auxiliary functions.
The goal is a function named stutter of type list -> list,
partially specified by a series of input–output examples given after
the |> marker, evocative of a refinement of the goal type. The
examples suggest that stutter should produce a list that duplicates
each element of the input list. The third example, for instance, means
that stutter [1;0] should yield [1;1;0;0].

The bottom half of Figure 1 shows the output of our synthesis
algorithm which is computed in negligible time (about 0.001s).
Here, we see that the result is the “obvious” function that creates
two copies of each Cons cell in the input list, stuttering the tail
recursively via the call to f1 l2.

General program synthesis techniques of this kind have many
potential applications. Recent success stories utilize synthesis in
many scenarios: programming spreadsheet macros by example (Gul-
wani 2011); code completion in the context of large APIs or li-
braries (Perelman et al. 2012; Gvero et al. 2013); and generating
cache-coherence protocols (Udupa et al. 2013), among others. In
this paper, we focus on the problem of synthesizing programs in-
volving structured data, recursion, and higher-order functions in
typed programming languages—a domain that largely complements
those mentioned above.

The Escher system (by Albarghouthi et al. [2013]) and the Leon
system (by Kneuss et al. [2013]) inspires this work and also tackle
problems in this domain, but they do so via quite different methods.
Compared to the previous work, we are able to synthesize higher-
order functions like map and fold, synthesize programs that use
higher-order functions, and work with large algebraic datatypes.

Combining Types and Examples As a proof-search-based synthe-
sis technique, our algorithm relies crucially on the type structure of

PLDI’15 Preprint 1 2015/4/16

“It is founded on proof-theoretic tech-
niques that exploit both type information
and input–output examples to prune the
search space.
[…]
The goal is […] partially specified by a se-
ries of input–output examples given after
the |> marker, evocative of a refinement
of the goal type.
[…]
Our algorithm […] uses the proof-theoretic
idea of searching only for programs in β-
normal, η-long form

Paper 2: refinement types (2016)

The problem

Challenges

Reading

Program Synthesis from Polymorphic Refinement Types

Nadia Polikarpova Ivan Kuraj Armando Solar-Lezama
MIT CSAIL, USA

{polikarn,ivanko,asolar}@csail.mit.edu

Abstract
We present a method for synthesizing recursive functions that
provably satisfy a given specification in the form of a poly-
morphic refinement type. We observe that such specifications
are particularly suitable for program synthesis for two reasons.
First, they offer a unique combination of expressive power and
decidability, which enables automatic verification—and hence
synthesis—of nontrivial programs. Second, a type-based spec-
ification for a program can often be effectively decomposed into
independent specifications for its components, causing the syn-
thesizer to consider fewer component combinations and leading
to a combinatorial reduction in the size of the search space. At the
core of our synthesis procedure is a new algorithm for refinement
type checking, which supports specification decomposition.

We have evaluated our prototype implementation on a large
set of synthesis problems and found that it exceeds the state of the
art in terms of both scalability and usability. The tool was able to
synthesize more complex programs than those reported in prior
work (several sorting algorithms and operations on balanced
search trees), as well as most of the benchmarks tackled by
existing synthesizers, often starting from a more concise and
intuitive user input.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; I.2.2 [Automatic Programming]: Program
Synthesis

General Terms Languages, Verification

Keywords Program Synthesis, Functional Programming, Re-
finement Types, Predicate Abstraction

1. Introduction
The key to scalable program synthesis is modular verification.
Modularity enables the synthesizer to prune candidates for
different subprograms independently, whereby combinatori-
ally reducing the size of the search space it has to consider.
This explains the recent success of type-directed approaches to
synthesis of functional programs [12, 14, 15, 27]: not only do
ill-typed programs vastly outnumber well-typed ones, but more
importantly, a type error can be detected long before the whole
program is put together.

Simple, coarse-grained types alone are, however, rarely
sufficient to precisely describe a synthesis goal. Therefore, ex-
isting approaches supplement type information with other kinds
of specifications, such as input-output examples [1, 12, 27],
or pre- and post-conditions [20, 21]. Alas, the corresponding
verification procedures rarely enjoy the same level of modularity
as type checking, thus fundamentally limiting the scalability of
these techniques.

In this work we present a novel system that pushes the idea
of type-directed synthesis one step further by taking advantage
of refinement types [13, 33]: types decorated with predicates
from a decidable logic. For example, imagine that a user intends
to synthesize the function replicate, which, given a natural
number n and a value x, produces a list that contains n copies
of x. In our system, the user can express this intent by providing
the following signature:

replicate :: n :Nat →x :α→{ν : List α |len ν=n}

Here, the return type is refined with the predicate len ν = n,
which restricts the length of the output list to be equal to the
argument n; Nat is a shortcut for {ν : Int |ν≥0}, the type of
integers that are greater or equal to zero1. Given this signature,
together with the definition of List and a standard set of integer
components (which include zero, decrement function, and in-
equalities), our system produces a provably correct implementa-
tion of replicate, shown in Fig. 1, within fractions of a second.

We argue that refinement types offer the user a convenient
interface to a program synthesizer: the signature above is only
marginally more complex than a conventional ML or Haskell
type. Contrast that with example-based synthesis, which would

1 Hereafter the bound variable of the refinement is always called ν and the
binding is omitted.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4261-2/16/06...$15.00
http://dx.doi.org/10.1145/2908080.2908093

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
C

522

“We present a method for synthesizing re-
cursive functions that provably satisfy a
given specification in the form of a poly-
morphic refinement type.

“a unique combination of expressive power
and decidability […] a type-based specifi-
cation for a program can often be effec-
tively decomposed into independent spec-
ifications for its components […] leading to
a combinatorial reduction in the size of the
search space.

“The tool was able to synthesize more com-
plex programs than those reported in prior
work (several sorting algorithms and oper-
ations on balanced search trees) […] often
starting from a more concise and intuitive
user input.”

Paper 3: paramorphisms (2024)

The problem

Challenges

Reading

Recursive Program Synthesis using Paramorphisms

QIANTAN HONG, Stanford University, USA

ALEX AIKEN, Stanford University, USA

We show that synthesizing recursive functional programs using a class of primitive recursive combinators
is both simpler and solves more benchmarks from the literature than previously proposed approaches. Our
method synthesizes paramorphisms, a class of programs that includes themost common recursive programming
patterns on algebraic data types. The crux of our approach is to split the synthesis problem into two parts: a
multi-hole template that �xes the recursive structure, and a search for non-recursive program fragments to �ll
the template holes.

CCS Concepts: • Software and its engineering→ General programming languages; Programming by example;
Search-based software engineering; Automatic programming.

Additional Key Words and Phrases: Program Synthesis, Examples, Stochastic Synthesis, Recursion Schemes

ACM Reference Format:

Qiantan Hong and Alex Aiken. 2024. Recursive Program Synthesis using Paramorphisms. Proc. ACM Program.

Lang. 8, PLDI, Article 151 (June 2024), 24 pages. https://doi.org/10.1145/3656381

1 INTRODUCTION

We consider the problem of synthesizing recursive programs from input-output examples. Following
previous work, we consider functional programs over algebraic data types such as the natural
numbers, lists, and trees [Kneuss et al. 2013; Lubin et al. 2020; Osera and Zdancewic 2015]. For
example, consider a program that appends two lists:

append Nil ; = ;

append (Cons ℎ C) ; = Cons ℎ (append C ;)

This program uses general recursion, that is, the function append is explicitly recursively de�ned,
with calls to append within its de�nition. Depending on what other language features are present,
unrestricted general recursion is di�cult to reason about; for example, proving termination of
general recursive programs is normally non-trivial.
In practice many iterative/recursive programs, including append, can be expressed using more

restricted primitive recursive constructs. The essence of primitive recursion is that the number of
iterations or recursive invocations is known when the function is �rst called. For example, the
fold combinator captures a typical primitive recursive pattern where the number of recursive calls
is the length of the list argument. A standard (general recursive) de�nition of fold is:

fold Nil = 5 = =

fold (Cons ℎ C) = 5 = 5 ℎ (fold C = 5)

We can use fold to write a well-known alternative de�nition of append:

append ;1 ;2 = fold ;2 ;1 Cons

Authors’ Contact Information: Qiantan Hong, Stanford University, Stanford, USA, qthong@stanford.edu; Alex Aiken,
Stanford University, Stanford, USA, aaiken@stanford.edu.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART151
https://doi.org/10.1145/3656381

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 151. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

“Our method synthesizes paramorphisms, a class of pro-
grams that includes the most common recursive program-
ming patterns on algebraic data types.

[…]

The paramorphism combinator on lists is:
para Nil gNil gCons = gNil
para (Cons h t) gNil gCons = gCons h (t, para t gNil gCons)

[…]

We have shown by experiment that an implementation of
our approach is able to synthesize all the problems han-
dled by the current state of the art as well as substantially
harder problems.”

Writing suggestions

The problem

Challenges

Reading

Decidability
How does the system determine when a solution is valid?

Scalability
How complex can specifications be?
How large can generated programs be?
What subset of the language is targeted?
How long does synthesis take?

Practicability
How easy is it for users to express specifications?

Applicability
What range of problems might the system apply to?

