- Advanced topics in programming languages

Partial evaluation

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2025 -




Partial evaluation basics




Partial evaluation

Partial static inputs s

evaluation For program g, with s R ¢ define partial evaluation:

PE(q, s) = gs such that gs(d) = q(s, d)

Example: consider a parser with inputs g (grammar) and ¢ (string). We want

PE(parser, g) = parser, such that parser,(c) = parser(g, c)




Binding-time analysis (BTA)

Partial . o . . o
evaﬁ:af:on Key idea: start with inputs s and d; assign each expression a binding time.

let rec pow x n =
if n =0 then 1

else x x (pow x (n - 1))

Two key analogies: BTA as type inference; BTA as abstract interpretation.




Binding-time analysis (BTA)

Partial . o . . o
evaﬁ:af:on Key idea: start with inputs s and d; assign each expression a binding time.

let rec pow [X''n =
if n =0 then 1

else [x * (pow x (n - 1))

Two key analogies: BTA as type inference; BTA as abstract interpretation.




Partial evaluation

Take a static environment { N — 3 } and annotated program P:

Partial
evaluation

let rec pow [X''n
if ' n =0 then

else x *x (pow (al = D)

and fS-reduce P to produce a (more efficient?) specialized program:

pows X = X * (x * (x * 1))

Check: pow; x = pow x 3.




Binding-time improvements

Naive specialization can produce poor results. For example, in this program
Partial
evaluation

s + (d + 1)

the sub-expression d + 1 is dynamic because d is dynamic.

Binding-time improvements can bring static expressions together:

d + (s + 1)




Reading



Neil D.Jones

CarstenK. Gomard
Peter Sestoft

Partial Evaluation
and Automatic
Program Generation

C.AR. HOARE SERIES EDITOR

Background reading

Partial Evaluation and Automatic Program Generation
N.D. Jones, C.K. Gomard, and P. Sestoft,
With chapters by L.O. Andersen and T. Mogensen.

Prentice Hall International
June 1993
ISBN 0-13-020249-5.

Online: https://www.itu.dk/people/sestoft/pebook/



https://www.itu.dk/people/sestoft/pebook/

Paper 1: Continuation-based partial evaluation

Continuation-Based Partial Evaluation - . q g 5
_— I Control-based binding-time improvements [..] have
i i ety evolved from ad-hoc source-level rewrites to
a systematic source-level transformation into

continuation-passing style (CPS).

“Recently, Bondorf has explicitly integrated the CPS
transformation into the specializer, thus partly alle-
viating the need for source-level CPS transformation.
This CPS integration is remarkably effective [..] We
show that it can be achieved directly by using the
control operators shift and reset [..]

“The control operators not only allow the partial eval-
uator to remain in direct style, but also can speed
up partial evaluation significantly.”




Eta-Expansion Does The Trick *

Olivier Danvy ~ Karoline Malmkjaer Jens Palsberg
BRICS ! MIT*

Aarhus University*

May 1996

Abstract

Partial-evaluation folklore has it that massaging one’s source pro-
grams can make them specialize better. In Jones, Gomard, and
Sestoft’s recent textbook, a whole chapter is dedicated to listing
such “bindi nprovements”: nonstandard use of continuation-
passing style, eta-expansion, and a popular transformation called “The
Trick”. We provide a unified view of these binding-time improvements,
from a typing perspective.

Just as a proper treatment of product values in partial evaluation
requires partially static values, a proper treatment of disjoint sums re-
quires moving static contexts across dynamic case expressions. ‘This re-
quirement precisely accounts for the nonstandard use of continuation-
passing style encountered in partial evaluation. Eta-expansion thus
acts as a uniform binding-time coercion between values and contexts.
be they of function type, product type, or disjoint-sum type. For the
latter case, it enables “The Trick”.

In this article, we extend Gomard and Jones's partial evaluator
for the A-caleulus, A-Mix, with products and disjoint sums; we point

sta-expansion for (finite) disjoint sums enables The Trick; we
e our carlier work by identifying that eta-expansion can be
obtained in the binding-time analysis simply by adding two coercion
rules; and we specify and prove the correctness of our extension to
A-Mix.
Keywords: Partial evaluation, binding-time analysis, program spe-
cialization, binding-time improvement, eta-cxpansion, static reduction.

Paper 2: eta expansion

“Just as a proper treatment of product values in
partial evaluation requires partially static values, a
proper treatment of disjoint sums requires mov-
ing static contexts across dynamic case expressions.
This requirement precisely accounts for the nonstan-
dard use of continuation-passing style encountered
in partial evaluation. Eta-expansion thus acts as a
uniform binding-time coercion between values and
contexts, be they of function type, product type, or
disjoint-sum type. For the latter case, it enables
“The Trick™"




Paper 3: LR Parsing

The Essence of LR Parsing “Partial evaluation can turn a general parser into
a parser generator. The generated parsers surpass
those produced by traditional parser generators in
speed and compactness. |..]

“The functional implementation of LR parsing allows
for concise implementation of the algorithms them-
selves and requires only straightforward changes to
achieve good specialization results. In contrast, a
traditional, stack-based implementation of a general
LR parser requires significant structural changes to
make it amenable to satisfactory specialization.”




Writing suggestions

Binding-time improvements
How useful are CPS conversion and eta expansion in practice?
Are there any other generally-useful binding-time improvements

Applicability and limitations
How widely applicable is partial evaluation in practice?
What kind of performance improvements might we expect?

Compilation
Might it be practical to use partial evaluation as a compilation technique?

Demise
What happened to partial evaluation as a research field?




