- Advanced topics in programming languages

Module systems

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2025 -




Module systems basics

“A module is a function which produces environments of a particular
signature when applied to argument instances of specified signatures.”

Modules for Standard ML (1984)
David MacQueen




module
struct
type
type

a Structure
IntSet =

elem = int
t = elem list

let empty = []

let

rec mem x = function

| [1 — (x ... %)

end

Structures and signatures

a signature

module type SET =
sig

type elem

type t

val empty : t

val mem : elem — t — bool

(x ... %)

end

Ascribing signatures to structures (IntSet :SET) involves subtyping, including

abstraction (turning concrete types into abstract types)

instantiation (turning polymorphic types into concrete types)

as well as width and depth subtyping (dropping and subtyping entries).




a structure
module IntSet =
struct
type elem = int
(type t = elem list)
let empty = []
let rec mem x = function

| [1 — (x ... %)

end

Structures and signatures

a signature
module type SET =
sig
type elem
val empty : t
val mem : elem — t — bool

(% ... %)

end

Ascribing signatures to structures (IntSet :SET) involves subtyping, including

(abstraction)(turning concrete types into abstract types)

instantiation (turning polymorphic types into concrete types)

as well as width and depth subtyping (dropping and subtyping entries).




a structure
module IntSet =
struct
type elem = int
type t = elem list
(let empty = [1)
let rec mem x = function

| [1 — (x ... %)

end

Structures and signatures

a signature

module type SET =
sig

type elem

type t

(val empty : t )

val mem : elem — t — bool

(x ... %)

end

Ascribing signatures to structures (IntSet :SET) involves subtyping, including

abstraction (turning concrete types into abstract types)

(instantiation)(turning polymorphic types into concrete types)

as well as width and depth subtyping (dropping and subtyping entries).




Functors

a functor
module type ORDERED =
sig
type t
val compare : t — t — int
end

module MakeSet (Elem: ORDERED) =
struct

type elem = Elem.t

type t = elem list

let mem = List.mem

end

Functors: functions from modules to modules.



Abstract (and less abstract) types

a type for MakeSet
module MakeSet (Elem: ORDERED)
SET with type elem = Elem.t

expanded signature
SET with type elem = Elem.t
~ Sig
type elem = Elem.t
type t
val mem : Elem.t — t — bool

end

In the type of mem: t is abstract, Elem.t is shared, bool is concrete.




Sharing as dependency

Module types involve various forms of dependency:

Dependency between types and values:

module type ORDERED =
sig

type t

val compare : t - t — int (x depends on t %)
end

Dependency between arguments and results:

module MakeSet
(Elem: ORDERED) —»
SET with type elem = Elem.t (* depends on Elem.t x)




Sharing as dependency

Module types involve various forms of dependency:

Dependency between types and values:

module type ORDERED =
sig

type
val compare : — t — int (* depends on t x)

end

Dependency between arguments and results:

module MakeSet
(Elem: ORDERED) —»
SET with type elem = Elem.t (* depends on Elem.t x)




Sharing as dependency

Module types involve various forms of dependency:

Dependency between types and values:

module type ORDERED =
sig

type
val compare : — t — int (* depends on t x)

end

Dependency between arguments and results:

module MakeSet :
(Elem)¢©OROERED) —
SET with type elem =(Elem.t) (* depends on Elem.t =*)




Higher-order modules

Using higher-order modules can lead to loss of type equalities:

module Apply

module IS1
module IS2

= Apply(MakeSet)(Int) (*x IS1.t /=

higher-order functors

(MakeSet : (Elem:ORDERED) — SET)
(Elem : ORDERED) = MakeSet(Elem)

nt.t x)
nt.t x)

I
I

MakeSet (Int) (x IS2.t

Leroy's solution: extend the path notation to include applications

type t = MakeSet(Int).t



Module systems history

“In the case of constructions, we obtain the notion of a very high-level
functional programming language, with complex polymorphism well-
suited for module specification.”

The Calculus of Constructions (1988)
Thierry Coquand and Gérard Huet




Modules and dependent types

Towards a theory of type structure
(Reynolds)

Abstract types have existential type
(Mitchell & Plotkin)

Using dependent types to express modular structure
(MacQueen)

History The Calculus of Constructions
(Coquand & Huet)

Higher-order modules and the phase distinction
o (Harper, Mitchell & Moggi)

A type-theoretic approach to higher-order modules with sharing
(Harper & Lillibridge)

F-ing modules
(Rossberg, Russo & Dreyer)




Reading



Background reading (optional)

§11 (Related work and discussion) of Chapter 1 (The Design Space of ML Modules) of
F-ing modules, extended version Understanding and Evolving the ML Module System
(Rossberg, Russo, Dreyer, 2015) (Dreyer, 2005)

11 Related work and discussion Chapter 1

The literature on ML module semantics is voluminous and varied. We will therefore

focus on the most closely related work. A more detailed history of various accounts s
of ML-style modules can be found in Chapter 2 of Russo’s thesis (1998; 2003). The Design Space of ML Modules

Existential types for ADTs. Mitchell & Plotkin (1988) were the first to connect the

informal notion of “abstract type” to the existential types of System F. In F, values What is the ML module system? Tt is difficult to say. There are several dialects of the ML 1
and while the module systems of these dialects are certainly far more han not

important and rather subtle differences among them, particularly with 1 to the semantics of

data abstraction. The goal of Part I of this thesis is to offer a new way of understanding these
differences, and to derive from that understanding a unifying module system that harmonizes and
improves on the exist is.

In this chapter, T will give an overview of the existing ML module system design space. T begin
in Section 1.1 by developing a simple example—a module implementing sets—that establishes some
basic terminology and illustrates some of the key features shared by all the modern variants of the
ML module system. Then, in Section 1.2, T describe several dialects that represent key points in

the design space, and discuss the major axes along which they differ

Reading




Reading

A Type-Theoretic Approach to Higher-Order Modules with Sharing*

Robert Harper!

Mark Lillibridge?

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3801

Abstract

The design of a module for constructing and main-
taining large programs is task that raises a number
of theoretical and practical issues. A fandamental ssue is

e i e by allovig the progeammer to specify
equational relationships between types in separate modiles,
batare not cxpresve nongh o llow the prgparmnescom:
plete control over the propagation of type information. be-
tween modules
‘These problems are addressed from by

paint by considering a calculus

F. The calculus difers from those considered in previous
studies by relying exclusively on 3 new form of wesk sum

progeammiag idioms; the language may be easily restricted
to “second-class” modales found in ML-lke languages.

1 Introduction

Modularity is an essential technique for developing and
maintaining large software systems [46, 24, 36). Most
modern programming languages provide some form of
module system that supports the construction of large
systemsfrom a collection ofseprately-defined program
32). A fundamental problem is the man-
gt o th e
components of a largs
both conceptual and
to combine these components into a coherent. whole.
In typical cases this problem is addressed by equipping
each module with a well-defined interface that mediates
all access to the module and requiring that interfaces be
enforced st system link time.

The Standard ML (SML) module system [17, 32]
is a particularly interesting design that has proved to
be useful in the development of large software sys-
tems [2, 1, 3, 11, 13]. The main constituents of the
SML module’ system are signatures, structures, and
functors, with the lattet two sometimes called modules
A structure is a program unit defining a collection of
types, exceptions, values, and structures (known as sub-
structares of the structure). A functor may be thought
of as a “parameterized structure”, a first-ord

ot S0y vt fo o pr of s ot o
ovidod that the d for
Grectcommaril sdvantage. e ACM gyl nosen st s

to structures. A sign:
terface describing the constituents of a st
types, values, exceptions, and structures
along with their kinds, types, and interfaces. See Fig:
ure 1 for an illustrative example of the use of the SML
module system; a number of sources are available for
further examples and information [15, 39]

A crucial featuse of the SML module system s the no-

Paper 1: Translucent sums

“The calculus differs from those considered in
previous studies by relying exclusively on a new
form of weak sum type to propagate informa-
tion at compile-time, in contrast to approaches
based on strong sums which rely on substitution

[.]

“Modules are treated as “first-class” citizens,
and therefore the system supports higher-order
modules and some object-oriented program-
ming idioms”




Paper 2: Applicative functors

Applicative fanctors and fully transparent higher-order modules “We present a variant of the Standard ML mod-

o ule system where parameterized abstract types

PN —— [--] map provably equal arguments to compati-

ot e R ble abstract types, instead of generating distinct
e . types at each application as in Standard ML.

“This extension solves the full transparency
problem (how to give syntactic signatures for
: higher-order functors that express exactly their
P; e Ly i propagation of type equations)”

pe<hicker gnerss
aclu

Reading




Paper 3: F-ing modules

F-ing Modules “Our elaboration defines the meaning of

Anireas Ry c . - module expressions by a straightforward,

compositional translation into vanilla Sys-

tem Fy, [..] We thereby show that ML mod-

ules are merely a particular mode of use of
System F.. [..]

Abstract
M

“[T]he previous [translations] all start from a
pre-existing dependently-typed module lan-
guage and show how to compile it down to
Fo [.-] [O]ur approach is simpler and more
accessible to someone who already under-
stands F,, and does not want to learn a new
dependent type system just in order to un-
Reading derstand the semantics of ML modules.”




Reading

Writing suggestions

Abstract types
How do approaches to abstract types differ between designs?

Separate compilation
How do ML-style modules systems support separate compilation?

Higher-order functors
Are higher-order functors practically important?

Importance of sharing
What is the role and significance of sharing specifications?

Dependent types vs polymorphism
Are modules better approached via dependent types or polymorphism?



